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Direct manifestation of topological order in the winding number of the Wannier-Stark ladder
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Topological quantum phases of matter have been a topic of intense interest in contemporary condensed matter
physics. Extensive efforts are devoted to investigate various exotic properties of topological matter including
topological insulators, topological superconductors, and topological semimetals. For topological insulators, the
dissipationless transport via gapless helical edge or surface states is supposed to play a defining role, which
unfortunately has proved difficult to realize in experiments due to inevitable backscattering induced in the sample
boundary. Motivated by the fundamental connection between topological invariants and the Zak phase, here, we
show that the nontrivial band topologies of both two- and three-dimensional topological insulators, characterized
by the Chern numbers and the Z2 invariants, respectively, are directly manifested in the winding numbers of the
Wannier-Stark ladder (WSL) emerging under an electric field. We use the Floquet Green’s function formalism
to show that the winding number of the WSL is robust against interband interference as well as nonmagnetic
impurity scattering.
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I. INTRODUCTION

Formulated in terms of algebraic commutation relations
between operators, quantum mechanics had not been usually
related to geometry or topology before the discovery of the
geometric phase [1,2], or more commonly known as the Berry
phase. The notion that the topological structure of the Berry
phase can be used as a new “order parameter” distinguishing
between different quantum phases of matter has triggered
an intense outburst of research activities in contemporary
condensed matter physics [3–6].

In two dimensions, where perpendicular spin components
are conserved, such an order parameter is the spin-dependent
Chern number, which can be in principle measured via the spin
Hall conductance according to the Kubo formula [7,8]: Gspin

H =
(C↑ − C↓)e2/h, where Cσ is the Chern number of an occupied
band with spin component σ . Unfortunately, fully spin-filtered
measurements are very difficult to perform in experiments.
An alternative is to measure the ballistic two-terminal charge
conductance, which is observed to be quantized approximately
as G = 2e2/h in a two-dimensional (2D) topological insulator
(TI) [9–11] agreeing with a theoretical prediction assuming
that gapless helical edge states generate dissipationless charge
transport [12].

In contrast to chiral edge states in the quantum Hall effect,
however, the helical edge states are inevitably coupled to
various backscattering sources induced in the sample boundary
so that the conductance quantization is not exactly protected
[13–20]. This means that the edge transport measurement
is not an ideal method to reveal the bulk band topology of
2D TIs, which remains to be protected against nonmagnetic
impurity scattering as well as other perturbations. Given this
problem, it is beneficial to devise a physical observable directly
manifesting the topological order in the bulk without reference
to the nonuniversal electron dynamics in the sample boundary.
In this context, it is worth mentioning that the spin-charge
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separation in the presence of a π flux defect can be used as a
possible avenue to reveal the band topology in the bulk [21,22].

The situation becomes even more complicated in three
dimensions, where different spin components are in general
mixed and thus the spin-dependent Chern number is not
properly defined. In this situation, proper topological order
parameters are the Z2 invariants, (ν0; ν1,ν2,ν3), which can
fully characterize the three-dimensional (3D) band topology
if both inversion and time-reversal symmetries are present.
Unfortunately, no simple transport measurement can manifest
these 3D topological invariants as directly as the (spin Hall or
two-terminal charge) conductance in two dimensions. Instead,
the strong Z2 topological invariant ν0 (most important for the
robustness of a given 3D TI) is predicted to be manifested in
the quantized magnetoelectric effect, where an electric field
induces a topological contribution to the magnetization [23].
While an actual measurement of the magnetoelectric effect
may be too difficult to perform at present, the fact that the
topological invariant has a direct physical consequence is
important as a matter of principle.

In practice, the 3D band topology has been inferred from
the existence of helical surface states, which exhibit the
spin-momentum locking as a consequence of the nontrivial
topological order [24,25]. However, a problem is that the
spin-momentum locking by itself is not directly related to any
of the 3D topological invariants. In some sense, it is even more
beneficial in three dimensions to devise a physical observable
directly manifesting the topological invariants (in addition to
the magnetoelectric effect).

Motivated by the fundamental connection between topo-
logical invariants and the Zak phase, in this work, we show
that the nontrivial band topologies of both 2D and 3D TIs
(characterized by the Chern numbers and the Z2 invariants,
respectively) are directly manifested in the energy spectrum
of electrons under an electric field via the winding number of
the Wannier-Stark ladder (WSL). The WSL is a set of energy
eigenstates of electrons confined in the lattice under an electric
field, which are the quantized modes of the Bloch oscillation.
In contrast to a recent interferometric method proposed in
optical lattices [26–29], which combines the coherent Bloch
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oscillation with the Ramsey interferometry, our spectroscopic
method can be applied to condensed matter systems, where
the phase coherence is not guaranteed. Concretely, we use the
Floquet Green’s function formalism to show that the winding
number of the WSL is robust against interband interference as
well as nonmagnetic impurity scattering.

Provided that the fully interacting Floquet Green’s function
is obtained, our method can be applied to any strongly
correlated systems with the nontrivial band topology in order to
address various theoretical issues such as (i) how far the topo-
logical order can persist as a function of correlation strength
and (ii) what new phases of strongly correlated topological
matter can emerge at sufficiently strong correlation. It is worth
mentioning that the definitions for topological invariants were
previously extended to general strongly correlated systems in
equilibrium, i.e., without the electric field [30–32]. Experi-
mentally, this means that the magnetoelectric effect (which is
directly related with a topological invariant) can be used to
characterize strongly correlated topological insulators. In our
theory, the nontrivial winding number of the WSL can play a
role similar to that of the magnetoelectric effect.

The rest of the paper is organized as follows. In Sec. II,
we summarize briefly how the 2D and 3D band topologies
are characterized by the Chern numbers and the Z2 invariants,
respectively. In Sec. III, we explain how the winding number
of the WSL can provide a direct manifestation of topological
invariants. Specifically, our theory is presented in three levels
of complexity: (i) the semiclassical theory of the Abelian Berry
connection/curvature, which can be applied to 2D TIs in the
adiabatic limit (Sec. III A), (ii) the requantized effective theory
of the general non-Abelian Berry connection/curvature, which
can be applied to 2D as well as 3D TIs in the adiabatic limit
(Sec. III B), and (iii) the full quantum theory using the Floquet
Green’s function formalism, which can be applied to general
situations (Sec. III C). We present computational results in
Sec. IV, proving that the winding number of the WSL provides
a direct manifestation of topological invariants in both 2D
and 3D TIs. We conclude in Sec. V, where we discuss the
experimental feasibility of observing the winding number of
the WSL.

II. BAND TOPOLOGY

A. Chern numbers in two dimensions

Let us begin with 2D TIs, where perpendicular spin
components are conserved. The Hamiltonian for 2D TIs
has the following generic structure [3,4,33,34]: H =∑

k,σ=↑,↓ ψ
†
kσHσ (k)ψkσ with H↓(k) = H ∗

↑ (−k) and

H↑(k) = εkI2 + dk · σ =
(

εk + dk,z dk,−
dk,+ εk − dk,z

)
, (1)

where ψ
†
kσ = (c†kασ ,c

†
kα′σ ) with c

†
kασ being the electron cre-

ation operator with momentum k, spin σ , and orbital α.
The physical meaning of α depends on the specific model.
Concretely, α denotes the sublattice indices, A or B, in the
Kane-Mele (KM) model, and the conduction/valence band
indices, E1 or H1, in the Bernevig-Hughes-Zhang (BHZ)
model. In is the n × n identity matrix. σ = (σx,σy,σz) consists

of the Pauli matrices. The dk vector has three components
dk = (dk,x,dk,y,dk,z), where the first two components can be
combined as dk,± = dk,x ± idk,y . The band dispersion is given
by E±(k) = εk ± |dk| and εk ± |d−k| for spin up and down,
respectively, indicating that the system becomes insulating
when |dk| �= 0.

The 2D band topology is characterized by the total flux
of the Berry curvature piercing through the entire Brillouin
zone (BZ) for each spin component. Called the (first) Chern
number, the total flux of the Berry curvature is equivalent to
the wrapping number of the normalized dk field around the
unit sphere,

C↑ = −C↓ = 1

4π

∫
BZ

dkxdky d̂k · (∂kx
d̂k × ∂ky

d̂k), (2)

where d̂k = dk/|dk| [3,4]. In fact, the 2D band topology can
be fully determined by examining the low-energy behavior of
dk=K+q around K = 0 or other low-energy momenta, where
dK+q can be generally expanded as (Aqx, ± Aqy,M + B(q2

x +
q2

y )). When a single low-energy point exists at K = 0 [33],
the band topology becomes nontrivial if M/B < 0 and trivial
otherwise. In the Kane-Mele model [12,34] defined on the
honeycomb lattice, there are two low-energy Dirac points at
K = K± = ( 2π

3a
, ± 2π

3
√

3a
), both of which should satisfy the

nontriviality condition in order for the whole valence band
to become topologically nontrivial.

In the presence of the time-reversal symmetry, the spin-
dependent Chern numbers are always opposite between differ-
ent spin components, which means that the 2D band topology is
fully characterized by the Chern number difference. Motivated
by the analogy between the charge and time-reversal polariza-
tion (TRP), the Chern number difference can be alternatively
computed in a discrete form, which is formulated in terms of
the parities of the time-reversal operator, δi(=1,2,3,4), at four
time-reversal invariant momenta (TRIM) [34]:

(−1)ν2D =
4∏

i=1

δi, (3)

where the 2D Z2 invariant, ν2D, is identical to half of the Chern
number difference computed in an integral form in Eq. (2):

ν2D = C↑ − C↓
2

(mod 2). (4)

As shown in the following section, the fact that the 2D
topological invariant can be computed in a discrete form
has played an important role in defining the 3D topological
invariants.

B. Z2 invariants in three dimensions

In three dimensions, different spin components are in
general mixed. The Hamiltonian for 3D TIs has the following
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generic structure [3,4]: H = ∑
k ψ

†
kH (k)ψk with

H (k) = εkI4 + dk · �

=

⎛
⎜⎜⎜⎝

εk − dk,3 dk,4 0 dk,−
dk,4 εk + dk,3 dk,− 0

0 dk,+ εk − dk,3 −dk,4

dk,+ 0 −dk,4 εk + dk,3

⎞
⎟⎟⎟⎠,

(5)

where ψ
†
k = (c†kα1

,c
†
kα2

,c
†
kα3

,c
†
kα4

) with c
†
kα being the elec-

tron creation operator with momentum k on generalized
orbital α, which includes both spin and orbital degrees
of freedom. As before, the physical meaning of α de-
pends on the specific model. In the model for BiSe-family
materials, (α1,α2,α3,α4) = (P 1+

z ↑ ,P 2−
z ↑ ,P 1+

z ↓ ,P 2−
z ↓).

In is the n × n identity matrix. � = (
1,
2,
3,
4,
5)
consists of the Gamma matrices satisfying the Clifford
algebra {
i,
j } = 2δijI4. Since there are five Gamma ma-
trices, the corresponding dk vector has also five compo-
nents: dk = (dk,1,dk,2,dk,3,dk,4,dk,5). Specifically, for BiSe-
family materials, dk can be expanded around the 
 point
as dk,± = dk,1 ± idk,2 � A1(kx ± iky), dk,3 � M + B1(k2

x +
k2
y) + B2k

2
z , dk,4 � A2kz, and dk,5 � 0. Similarly, εk can be

expanded as εk � C + D1(k2
x + k2

y) + D2k
2
z .

In the presence of mixing between different spin compo-
nents, the spin-dependent Chern numbers cannot be defined
properly in 3D TIs. In fact, mathematically, the Chern number
cannot be defined at all in three dimensions. Fortunately, if both
inversion and the time-reversal symmetries are present, the
3D band topology can be characterized by four Z2 invariants,
(ν0; ν1,ν2,ν3), which depend on the parities of the time-reversal
operator, δi(=1,...,8), at eight TRIM [35,36]. Playing the most
important role by governing the robustness of a given 3D TI,
the strong Z2 invariant, ν0, is defined as

(−1)ν0 =
8∏

i=1

δi = (−1)ν2D (−1)ν2D′ , (6)

where ν2D and ν2D′ are the 2D Z2 invariants of the inversion-
symmetric 2D subspaces containing one set of four TRIM and
the other, respectively [29]. It is worth mentioning that ν0 is
proportional to the integral of the Chern-Simons three form
over the 3D BZ, which is only quantized in the presence of
both inversion and the time-reversal symmetries [37].

Equation (6) implies that the 3D TI becomes a strong TI if
and only if the band topology of the inversion-symmetric 2D
subspace containing one set of four TRIM is opposite to that of
the 2D subspace containing the other. In the cubic lattice, this
means that the band topology of the kza = 0 subspace should
be topologically nontrivial if that of the kza = π subspace is
topologically trivial, and vice versa. Of course, this statement
should be true regardless of whether we choose the kxa = 0
and π subspaces (or the kya = 0 and π subspaces) instead
of the kza = 0 and π counterparts. In this example, the other
three Z2 invariants simply correspond to the 2D Z2 invariants
of the kx = 0, ky = 0, and kz = 0 subspaces; that is to say,
ν1 = ν2D(kx=0), ν2 = ν2D(ky=0), and ν3 = ν2D(kz=0).

III. WINDING NUMBER OF THE WANNIER-STARK
LADDER

A. Semiclassical theory of the Abelian Berry
connection/curvature

To appreciate how the energy spectrum of electrons under
an electric field can reveal the band topology, it is instructive
to first consider the semiclassical dynamics of an electron
wave packet moving in the lattice. Here, for simplicity, we
assume that the electron wave packet is entirely composed of
the plane waves consisting of a single nondegenerate band,
which is well separated from other bands in the full energy
spectrum. Also, for the time being, let us focus on the 2D TI,
where perpendicular spin components are conserved so that
the Hamiltonian for each spin component is decoupled. In this
situation, the Berry connection/curvature becomes Abelian.
An extension to the general case of the non-Abelian Berry
connection/curvature is discussed in Sec. III B.

Under an electric field, the electron wave packet in the
lattice performs the Bloch oscillation [38], whose dynamics is
described by the semiclassical Lagrangian [39]

L(r,ṙ,k,k̇) = �k · ṙ + �An(k) · k̇ − Hn(r,k), (7)

where r is the center position, �k is the mean crystal momen-
tum, andHn(r,k) = En(k) + eE · r is the semiclassical Hamil-
tonian for the nth energy band. An(k) = 〈φn(k)|i∇k|φn(k)〉 is
the Berry connection with φn(k) being the periodic part of the
Bloch wave function for the nth energy band. In the case of the
two-band model in Eq. (1), there are two degenerate energy
bands for each spin component,E±,σ (k), and the corresponding
Berry connections, A±,σ (k). From this forward, we focus on
the lower occupied band with spin up so that we simplify the
notation by setting H(r,k) = H−,↑(r,k), Ek = E−,↑(k), and
Ak = A−,↑(k). Note that the same analyses presented below
can be repeated for spin down.

By applying the variational method to the above La-
grangian, one can derive two equations of motion. First,
�k̇ = −eE, which tells us that the crystal momentum parallel
to the electric field, �k‖, changes linearly in time, while the
perpendicular crystal momentum, �k⊥, remains fixed. Here,
the charge of electron is defined to be −e. Second, �ṙ =
∇kEk + eE × Bk, where the former term on the right-hand
side is the usual group velocity and the latter is the anomalous
velocity due to the (Abelian) Berry curvature Bk = ∇k × Ak.
Without the anomalous velocity, these equations of motion
describe the usual Bloch oscillation, which can be understood
in terms of the Bragg scattering of a wave packet at the BZ
boundaries.

The anomalous velocity generates not only a bending of
the Bloch-oscillation orbit, but also a shift of its center.
Considering that the quantized mode of the Bloch-oscillation
orbit is nothing but the WSL eigenstate [40,41], this means that
the WSL eigenstate centers are shifted by the Berry curvature
effect. To see how this is possible, let us subtract a total
derivative �

d
dt

(k · r) from the Lagrangian in Eq. (7), which
generates the following new Lagrangian:

L′(r,k,k̇) = −�R(r,k) · k̇ − H(r,k), (8)

where R(r,k) = r − Ak can be interpreted as the canon-
ical position conjugate to k. In this interpretation, the
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Bloch-oscillation orbit is quantized according to the Bohr-
Sommerfeld quantization rule:∮

C

dk‖ · R(r,k) = 2πn (n ∈ Z), (9)

where C denotes a closed orbit with the constant energy, where
k‖a‖ sweeps through the entire BZ between −π and π with
k⊥a⊥ fixed. Here, a‖ is the lattice constant of the projected unit
cell along the parallel direction to the electric field. Meanwhile,
a⊥ is defined so that a‖a⊥ is the area of the unit cell.

As a consequence of the Bohr-Sommerfeld quantization
rule, the center position, or the polarization of the WSL
eigenstates, is quantized according to

∮
C

dk‖ · r = 2πn +
γZak(k⊥), where the noninteger shift is called the Zak phase
[42–44]:

γZak(k⊥) =
∮

C

dk‖ · Ak, (10)

which is generally a function of k⊥. See Appendix A for
computational details of γZak(k⊥). Now, by equating the
energy of the WSL eigenstates with the averaged semiclassical
Hamiltonian over C, a‖

2π

∮
C

dk‖H(r,k), one can show that the
energy spectrum of the WSL eigenstates is given by

EWSL
n (k⊥) = Ē(k⊥) +

(
n + γZak(k⊥)

2π

)
eEa‖, (11)

where Ē(k⊥) = a‖
2π

∮
C

dk‖Ek.
The Zak phase is related to the Chern number, i.e., the

total flux of the (Abelian) Berry curvature piercing through
the entire BZ,

C = 1

2π

∫
BZ

d2k · Bk, (12)

which, by using Stokes’ theorem, can be rearranged as follows
[43]:

C =
∫ π/a⊥

−π/a⊥

dk⊥
2π

∂γZak(k⊥)

∂k⊥
= γZak

2π
. (13)

Equation (13) indicates that if C = ±1, the WSL index n goes
to n ± 1 after k⊥a⊥ sweeps through the entire BZ. This means
that the Chern number is equivalent to the winding number of
the WSL across the BZ as a function of k⊥. Figures 1(a)–1(c)
provide schematic diagrams summarizing the discussion so
far.

With both spin components taken into account, the time-
reversal symmetry dictates that C↑ = −C↓. This means that
two separate sets of the WSL branches for spin up and down
should wind oppositely and cross each other at k⊥a⊥ = 0
and ±π , which are TRIM. Moreover, following similar logic
predicting that the Kramers doublets should exchange partners
in the helical edge states [34], one can predict that the WSL
branches should also exchange their Kramers-doublet partners
(i.e., the doubly degenerate WSL eigenstates at TRIM) in the
topologically nontrivial phase, while not in the trivial phase.
This prediction is fully confirmed, as shown in Fig. 1(d) and
Sec. IV.

Finally, it is worthwhile to mention that the Zak phase was
previously used as a topological invariant to predict the exis-
tence of edge states based on the bulk-edge correspondence
between the quantized value of the Zak phase and the existence

of a localized edge state [44]. In 2D TIs, the Zak phase is not
generally quantized except at TRIM (or equivalently inversion-
symmetric momenta), where it becomes either 0 or π . One of
the main points in our work is that the proper topological
invariant characterizing the entire 2D band topology is not the
Zak phase itself, but rather the change of the Zak phase across
the one-dimensional BZ of k⊥, i.e., the winding number of the
WSL.

B. Requantized effective theory of the general non-Abelian
Berry connection/curvature

We now consider the general case, where the Berry connec-
tion/curvature is non-Abelian [45]. To this end, it is convenient
to concentrate on the generic four-band model discussed in
Eq. (5) for 3D TIs, which has four energy bands in total with
the lower two being degenerate and separated from the upper
two (also degenerate) bands by an energy gap. As before, for
simplicity, we focus on the lower two degenerate energy bands,
both of which are fully occupied at half filling. Generally, in
the absence of conserved (pseudo)spin components, the Berry
connection/curvature has off-diagonal terms between different
energy bands. Mathematically, the Berry connection in general
has the SU(2) non-Abelian gauge structure with Ak,αβ =
〈φ−,α(k)|i∇k|φ−,β(k)〉, where φ−,α(k) and φ−,β (k) are the
periodic parts of the Bloch wave function in the lower two
degenerate energy bands with α and β denoting the pseudospin
indices, say, u and d. In the non-Abelian case, the Berry
curvature is defined as Bk = ∇k × Ak − iAk × Ak, where
the second term does not in general vanish due to the
noncommutative relationship between the Berry connections
with different spatial coordinates.

The semiclassical Lagrangian can be extended in the non-
Abelian case as follows [46–49]:

L(r,ṙ,k,k̇,η,η̇) = i�η†η̇ + �k · ṙ + �(η†Akη) · k̇ − H(r,k),

(14)

where r, k, and H(r,k) = E(k) + eE · r are all defined the
same as before in Eq. (7). A new addition is the η =
(ηu,ηd )T variables, which denote the band decomposition
of the wave packet satisfying the normalization condition,∑

α=u,d |ηα|2=1. The equation of motion for r is obtained
similarly to the Abelian case with a modification that the Berry
curvature Bk is now replaced by the η-averaged non-Abelian
Berry curvature η†Bkη. The dynamics of η is governed by
i�η̇ = eE · Akη. The equation of motion for k is the same as
before in the Abelian case.

The Bohr-Sommerfeld quantization rule is no longer
applicable in the non-Abelian case. Consequently, it is not
obvious how to quantize the Bloch oscillation and obtain the
energy spectrum of the WSL eigenstates. To overcome this
obstacle, we requantize the semiclassical theory as follows
[48,49]. First, we note that the canonical position R(r,k) in
Eq. (8) can be generalized to beR(r,k,η) = r − η†Akη. Then,
we promote R to a quantum variable, R̂, which is conjugate to
k. Next, we formally eliminate the η variables by promoting
the Hilbert space of the requantized effective Hamiltonian to be
defined in the η pseudospinor space, |η〉. Finally, by replacing
r with rI2 = R̂I2 + Ak in H(r,k), we obtain the requantized
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FIG. 1. (Color online) Schematic diagrams illustrating the fundamental connection between the 2D topological invariant and the winding
number of the WSL. Panel (a) depicts the semiclassical situation, where an electron wave packet performs the Bloch oscillation in the
2D momentum space under an electric field E. In the presence of the Abelian Berry curvature Bk, the Bloch oscillation is affected by the
anomalous velocity eE × Bk/�. The semiclassical path of the Bloch oscillation (encircling the torus along the k‖ direction) is quantized via
the Bohr-Sommerfeld quantization rule with an additional geometrical factor eiγZak(k⊥), where γZak(k⊥) is the Zak phase. Panel (b) shows that
the center positions of the WSL eigenstates (i.e., the center positions of the envelope wave functions plotted via green and orange dashed
lines) are shifted by γZak(k⊥)a‖/2π , which generates a corresponding shift in the energy spectrum of the WSL eigenstates. For clarity, only
the wave function for the central WSL branch is shown. Panel (c) illustrates that the trivial/nontrivial Chern number is directly manifested
in the trivial/nontrivial winding number of the WSL as a function of k⊥. Panel (d) shows that, with the time-reversal symmetry dictating that
the spin-dependent Chern numbers are opposite between different spin components, i.e., C↑ = −C↓, two separate sets of the spin-dependent
WSL branches (distinguished by red and blue lines) wind oppositely in the topologically nontrivial phase, which is characterized by the 2D Z2

invariant ν2D = (C↑ − C↓)/2 = 1 (mod 2). In the topologically trivial phase characterized by ν2D = 0, there is no winding of the WSL. Note
that the guide lines for the WSL branches are obtained from the actual solution of the semiclassical theory for the Bernevig-Hughes-Zhang
model via Eq. (11).

effective Hamiltonian

Heff(k) = EkI2 + eE · (R̂I2 + Ak), (15)

where R̂ = i∇k since it is conjugate to k.
The energy spectrum of the WSL eigenstates can be

obtained by solving the eigenvalue equation of Heff(k):

Heff(k)|η〉 = EWSL(k⊥)|η〉, (16)

where the WSL eigenenergy, EWSL(k⊥), is shown to be a
function of the perpendicular momentum to the electric field,
k⊥. Note that the parallel momentum k‖ is not a good quantum
number. Now, it is convenient to utilize the periodicity in the
momentum space and perform the Fourier transformation with
respect to k‖, which leads to the Floquet-type representation
of the eigenvalue equation:

∑
βm

[
Mnm

αβ (k⊥) + neEa‖δαβδnm

]
ηβm = EWSL(k⊥)ηαn, (17)

where

Mnm
αβ (k⊥) = a‖

2π

∫ 2π
a‖

0
dk‖ei(n−m)k‖a‖(Ekδαβ + eE · Ak,αβ)

≡ Enm(k⊥)δαβ + eE · Anm
αβ (k⊥) (18)

with α,β ∈ {u,d} and n,m ∈ Z. In general, this Floquet-type
eigenvalue equation is solved via numerical digonalization.

Since actual solutions are obtained numerically, it is not
easy to figure out the precise dependence of EWSL(k⊥) on k⊥.
It is, however, possible to infer a general structure of EWSL(k⊥)
based on the following two observations. First, if EWSL(k⊥) is a
solution, EWSL(k⊥) + neEa‖ with n being any integer is also a
solution. This means that EWSL(k⊥) has a ladder-like structure
even in the non-Abelian case. Second, in the Abelian limit, i.e.,
when Ak,αβ = Akδαβ , EWSL(k⊥) recovers the semiclassical
solution in Eq. (11). To see this, let us rewrite the eigenvalue
equation in Eq. (16) in a differential equation form:

[
Ek + eE

(
i

∂

∂k‖
+ Ak,‖

)]
η(k) = EWSL(k⊥)η(k), (19)
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where Ak,‖ is the parallel component of Ak along the electric
field. The above equation can be solved formally by

η(k) = e− i
eE

∫ k‖
0 dk′

‖[EWSL(k⊥)−Ek′−eEAk′ ,‖], (20)

where k = (k⊥,k‖) and k′ = (k⊥,k′
‖). Equation (20) is not yet

a complete solution since the energy eigenvalue EWSL(k⊥) is
unknown. EWSL(k⊥) is determined by imposing the periodic
boundary condition: η(k⊥,k‖ + 2π/a‖) = η(k⊥,k‖), which
leads to the following quantization condition:

1

eE

∫ 2π/a‖

0
dk′

‖[EWSL(k⊥) − Ek′ − eEAk′,‖] = 2nπ, (21)

which can be rearranged as the semiclassical solution in
Eq. (11). Based on these two observations, we deduce a general
form of EWSL(k⊥) as follows:

EWSL
n (k⊥) = Ẽ(k⊥) +

(
n + γ̃ (k⊥)

2π

)
eEa‖, (22)

where it is assumed that both Ẽ and γ̃ do not depend on E

at sufficiently weak E, i.e., in the adiabatic limit. This means
actually that Ẽ = Ē = a‖

2π

∮
C

dk‖Ek. Meanwhile, γ̃ reduces to
γZak only if the Berry connection/curvature becomes Abelian.
It is confirmed in Sec. IV B that the exact eigenvalue solution of
the requantized effective Hamiltonian is indeed well described
by Eq. (22) (and is also entirely consistent with the full
quantum theory presented in the following section).

So far, we have explained how to obtain the energy spectrum
of the WSL eigenstates in the general case of the non-Abelian
connection/curvature. With all the complications due to the
non-Abelian structure, however, it is unclear at this stage how
the energy spectrum of the WSL eigenstates can manifest
the band topology in three dimensions. Fortunately, in the
presence of both inversion and time-reversal symmetries, the
3D band topology is characterized by the band topologies
of the special 2D subspaces within the 3D BZ, where the
Berry connections/curvatures become Abelian. These special
2D subspaces are those with the inversion symmetry, where
the inversion parity plays the role of a good quantum
number guaranteeing the existence of a diagonalized basis.
In other words, within these special 2D subspaces, the Berry
connection satisfies the following Abelian condition,[

Ai
k,A

j

k

] = 0, (23)

with i and j denoting two orthogonal directions in the 2D
subspaces. In the cubic lattice, these 2D subspaces are the
ki-kj planes with kka = 0 and π , where (i,j,k) = (x,y,z),
(y,z,x), or (z,x,y). Under this condition, one can always
find an appropriate set of bases, via which both Ai

k and Aj

k
are diagonalized simultaneously. Then, the WSL eigenenergy,
EWSL

σ (k⊥), for each component of the diagonalized basis,
say, pseudospin σ , simply reduces to the Abelian version
with a well-defined Chern number. Consequently, the WSL
has a well-defined winding number for each diagonalized
pseudospin component in these 2D subspaces.

Now, with the time-reversal symmetry dictating that the
total Chern number is zero, the three weak Z2 invariants
are simply the 2D Z2 invariants of three 2D subspaces at
kx = 0, ky = 0, and kz = 0, which are half the Chern number

differences between diagonalized pseudospin components
within the corresponding 2D subspaces. Similarly, according
to Eq. (6), the strong Z2 invariant is determined by the two
Z2 invariants of 2D subspaces, for example, at kza = 0 and
π . As mentioned previously, the same strong Z2 invariant is
obtained regardless of whether one chooses the kxa = 0 and
π , the kya = 0 and π , or the kza = 0 and π planes.

In addition to the general argument for the Abelian condi-
tion above, one can explicitly show that the Abelian condition
is precisely satisfied in the generic four-band model in Eq. (5)
for 3D TIs. Actual calculations are a little bit messy, but the
gist of why the Abelian condition is satisfied in this model can
be revealed by examining the long-wavelength expansion of
Ak around TRIM. For convenience, let us concentrate on one
of the TRIM at k = 0, where Ak is expanded as

Ak � ξkσzẑ × k + ξ ′
kσ × k, (24)

where the concrete forms of the coefficients, ξk and ξ ′
k, are not

important for the current purpose. With the help of Eq. (24),
it is now straightforward to show that the Abelian condition
is satisfied for all three 2D subspaces of the kx-ky , ky-kz, and
kz-kx planes around k = 0. Similar arguments can be given for
other TRIM. As mentioned, it can be explicitly shown without
any expansion that the Abelian condition is precisely satisfied
for the entire subspaces of inversion-symmetric planes. See
Appendix B for the proof of the Abelian condition in the
generic four-band model.

To summarize, the 3D topological invariants are directly
manifested in the winding numbers of the WSL within the
inversion-symmetric 2D subspaces containing TRIM, where
the Berry connections/curvatures become Abelian. In general
2D subspaces, the WSL does not have well-defined winding
numbers. Regardless of the existence of well-defined winding
numbers, however, it is always possible to predict the energy
spectrum of the WSL eigenstates precisely by solving the
eigenvalue equation of the requantized effective Hamiltonian
in Eq. (16). This means that the requantized effective theory by
itself can be applied to any situations including 2D/3D topo-
logical insulators even with time-reversal symmetry breaking
terms. See Fig. 2 for a schematic diagram illustrating the
discussion so far in this section.

In our theory, the existence of well-defined 3D topological
invariants depends crucially on the fact that the the Berry
connections/curvatures become Abelian and thus the winding
numbers of the WSL are well defined within the inversion-
symmetric 2D subspaces containing TRIM. It is important to
note that, similarly to our theory, the logic behind dimensional
increase for the derivation of 3D Z2 invariants is also based on
the fact that the 2D topological invariants are well defined
within the inversion-symmetric 2D subspaces containing
TRIM. Interestingly, the discrete representation of the strong
Z2 invariant in Eq. (6) becomes equivalent to an integral
representation formulated in terms of the Chern-Simons three
form if both inversion and time-reversal symmetries are present
[37]. Concretely, the integral of the Chern-Simons three form
over the 3D BZ is given as follows [23]:

θ = 1

8π

∫
d3kεijkTr

[(
Bij

k + 2

3
iAi

k · Aj

k

)
· Ak

k

]
, (25)
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General 2D subspaces:
Non-Abelian Berry

connection/curvature

Inversion-symmetric
2D subspaces

containing TRIM:
Abelian Berry

connection/curvature

FIG. 2. (Color online) Schematic diagram illustrating how the 3D topological invariants are directly manifested in the winding numbers
of the WSL within the inversion-symmetric 2D subspaces (purple-colored planes) containing TRIM (denoted by red circles), where the Berry
connections/curvatures become Abelian. Here, the 2D subspaces are chosen to be parallel to the kx–ky plane within the 3D BZ without loss of
generality. According to Eq. (6), the strong Z2 invariant is determined by the two Z2 invariants of the 2D subspaces containing one set of four
TRIM at kza = 0 and the other at kza = π . In general 2D subspaces (gold-colored planes), the Berry connections/curvatures are non-Abelian
and thus the WSL does not have well-defined winding numbers.

where the non-Abelian Berry curvature is given by
Bk

k = 1
2εijkBij

k , where Bij

k = ∂ki
Aj

k − ∂kj
Ai

k − i[Ai
k,A

j

k] with
i,j,k ∈ {x,y,z}. In general, θ in Eq. (25) is not quantized in
contrast to the Chern number. Fortunately, however, in a close
analogy with the fact that the one-dimensional Zak phase is
quantized in the presence of the inversion symmetry [42], it
can be proved that θ is quantized and related with the strongZ2

invariant ν0 in the presence of both inversion and time-reversal
symmetries [37]:

ν0 = θ

π
(mod 2). (26)

In a sense, θ can be regarded as a 3D analog of the one-
dimensional Zak phase. It is important to note that the presence
of both inversion and time-reversal symmetries is crucial to
guarantee the existence of a global basis of wave functions,
which is necessary to prove Eq. (26).

Finally, it is worthwhile to mention that the Z2 invariants
can be also obtained via the Wilson loop, which is the non-
Abelian generalization of the Zak phase factor [29,50]:

Ŵ = P exp

(
i

∮
C

dk‖ · Ak

)
, (27)

where P is the path ordering operator, Ak is the non-Abelian
Berry connection, and C denotes a closed path traced by k‖.
(Note that a different sign convention is used for the phase
in Eq. (27) compared to Refs. [29,50]). Concretely, the Z2

invariants are related to the winding numbers of the phase of
the eigenvalues of the Wilson loop across the one-dimensional
BZ of k⊥ [50]. Considering that the phase of the eigenvalues
of the Wilson loop is in turn related to the center position of the
Wannier function, this method is highly reminiscent of ours,
where the Z2 invariants are related to the winding numbers of
the WSL. Below, we explain exactly how these two methods
are connected.

To this end, it is important to understand physically what
the Wilson loop means. The physical meaning of the Wilson
loop was elucidated by Grusdt et al. [29], who have shown
that the Wilson loop is nothing but the propagator describing
the Bloch oscillation in the limit of strong electric field. To

appreciate further what this means precisely, let us examine
the propagator at general strengths of electric field (for a closed
path C):

Û = P exp

[
i

∮
C

dk‖ ·
(
Ak + 1

eE
Hk

)]
, (28)

where Hk is the Hamiltonian in the absence of electric field.
In the specific situation with two degenerate energy bands
described in this section, Hk = EkI2. See Appendix C in
Ref. [29] for a detailed derivation of Eq. (28).

Now, it is important to note that, while expressed in a
different gauge (namely, the time-dependent vector potential
gauge via the Peierls substitution), Û is actually equivalent
to the propagator of our requantized effective Hamiltonian
Heff in Eq. (15) (expressed in the time-independent scalar
potential gauge). In this context, a rationale behind the
usefulness of the Wilson loop is understood as follow. Since
the main information on band topology is embedded in Ak,
one may ignore Hk from the argument of the exponential
in Eq. (28) if one is only interested in the characterization
of the band topology, not the detailed coherent dynamics
of the Bloch oscillation. Roughly, diagonalizing the Wilson
loop is equivalent to diagonalizing Heff while ignoring the
band-dispersion part. Therefore, the winding numbers of the
phase of the eigenvalues of the Wilson loop should carry
essentially the same topological information as those of the
WSL studied in this work.

Rigorously, however, Hk can be ignored only in the limit
of strong electric field, i.e., ÛE=∞ = Ŵ , where the adiabatic
condition, which is necessary for the very validity of the Berry
connection/curvature, is completely violated. Therefore, the
winding numbers of the phase of the eigenvalues of the Wilson
loop may not be physically observable due to the contradiction
between the adiabatic condition and the strong electric-field
limit. An improvement of the Wilson-loop scheme is to use
directly the coherent dynamics of the Bloch oscillation, which
is governed by ÛE �=∞. As mentioned in Sec. I, an interferomet-
ric method combining the coherent Bloch oscillation with the
Ramsey interferometry was recently proposed to measure the
Z2 invariants in optical lattices [29]. It is emphasized, however,
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that our method, where the winding numbers of the WSL are
observed in spectroscopic measurements, can be applied to
condensed matter systems, where the phase coherence is not
guaranteed.

C. Full quantum theory

The semiclassical theory and the subsequent requantized
effective theory are valid under the condition that the Bloch
oscillation energy �� = eEa‖ is sufficiently smaller than the
interband energy difference. This condition is nothing but
the adiabatic condition for the validity of the Berry phase
so that electrons can remain in a given band during the
Bloch oscillation without making transitions to other bands.
In other words, the electric field should be sufficiently weak
so that the nonlinear effects are negligible. On the other hand,
the Bloch oscillation should be sufficiently faster than the
electron-impurity scattering rate so that electrons can complete
a full cycle of the Bloch oscillation before being scattered off.
In what follows, we assess whether these two conditions can
be met simultaneously in the full quantum theory.

The energy spectrum of the WSL eigenstates is revealed
as a series of sharp peaks in the density of states (DOS),
which can be obtained as the imaginary part of the retarded
Green’s function, ImGr

k(ω). There are two gauge choices
for the implementation of an electric field: (i) the time-
independent scalar potential gauge with φ = −E · x and (ii)
the time-dependent vector potential gauge with A = −cEt .
In this work, we choose the time-dependent vector potential
gauge, where the spatial translation symmetry is formally
present. In the formal presence of the spatial translation
symmetry, the momentum parallel to the electric field, k‖,
is a conserved quantity. However, the DOS becomes gauge-
invariant and physically meaningful only if it is integrated
over k‖. The physically meaningful semilocal DOS is obtained
by integrating out ImGr

k(ω) with respect to k‖. The Green’s
function in the frequency domain, Gr

k(ω), is obtained from
its counterpart in the time domain, Gr

k(t,t ′), via the Fourier
transformation. In the time-dependent vector potential gauge,
Gr

k(t,t ′) is computed via the Peierls shift, �k → �k − eEt ,
of the Hamiltonian H (k), i.e., H (k) → H (k − eEt/�). It
is interesting to note that the Peierls shift plays a role of
incorporating one of the two semiclassical equations of motion
mentioned previously in Sec. III A.

Below, we explain how to compute the (retarded) Green’s
function of the time-dependent Hamiltonian via the Floquet
Green’s function formalism [51,52]. In the Floquet Green’s
function formalism, the semilocal DOS is computed as
follows:

ρα(k⊥,ω + n�̃) = − 1

π
Im

∑
k‖

(
Gr

k

)nn

αα
(ω), (29)

where the Floquet Green’s function is given by(
Gr

k

)nm

αβ
(ω) =

∫
dt

∫
dt ′ei(ω+n�̃)t e−i(ω+m�̃)t ′ (Gk)rαβ(t,t ′)

(30)

with −�̃/2 < ω � �̃/2. Here, the Floquet frequency �̃ is
the natural frequency of the Peierls-shifted Hamiltonian,
H (k − eEt/�), which depends on the specific structure of the

Hamiltonian and is not necessarily the same as �. Usually,
ρα is summed over α since we are interested in the semilocal
DOS contributed by all generalized orbitals including both
spin and orbital degrees of freedom. However, in 2D TIs, where
perpendicular spin components are conserved, ρα for each spin
component can be meaningful. Furthermore, in the special
case of the Kane-Mele model defined on the honeycomb
lattice, where the sublattice index is spatially distinguishable,
ρα for each spin and sublattice index can be independently
meaningful.

The retarded Green’s function in the time domain,
(Gr

k)αβ(t,t ′), is obtained by solving the following equation:

∂

∂t

(
Gr

k

)
αβ

(t,t ′) = − i

�
δαβδ(t − t ′)

− i

�

∑
γ

Hαγ (k − eEt/�)
(
Gr

k

)
γβ

(t,t ′),

(31)

where Hαβ(k − eEt/�) is the matrix element of the Peierls-
shifted Hamiltonian between generalized orbital α and β at
momentum k. Moving to the frequency domain via the Fourier
transformation, Eq. (31) can be written in the Floquet matrix
form:∑

l,γ

{
[�(ω + n�̃) + iη]δαγ δnl − Hnl

αγ (k)
}(

Gr
k

)lm

γβ
(ω)

= δαβδnm, (32)

where Hnm
αβ (k) = 1

T

∫ T

0 dtei(n−m)�̃tHαβ(k − eEt/�) with T =
2π/�̃. See Appendix C for details on how to compute
(Gr

k)nm
αβ (ω) from Eq. (32) for various TI models.

The Floquet Green’s function formalism provides a natural
platform to study the effects of electron-impurity scattering
[52]. To this end, we take a simple model Hamiltonian for the
nonmagnetic on-site electron-impurity interaction,

Himp = V
∑
i,α

niαnimp,i , (33)

where V is the electron-impurity interaction strength, and niα

and nimp,i are the electron and impurity number operators at
the ith lattice site, respectively. The full Green’s function, Gr

k,
is obtained by solving the Dyson equation(

Gr−1
k

)nm

αβ
= (

Gr−1
k

)nm

αβ
− (�r )nn

ααδαβδnm, (34)

where (Gr−1
k )nm

αβ is the inverse of the noninteracting Green’s
function computed in Eq. (32) and �r is the self-energy
due to the electron-impurity interaction. In this work, the
impurity self-energy is computed via the self-consistent Born
approximation (SCBA):

(�r )nn
αα(ω) = V 2

imp

∑
k

(
Gr

k

)nn

αα
(ω), (35)

where Vimp ≡ √
n̄impV with n̄imp being the average impurity

number per site. It is important to note that, in principle, this
formalism can be also applied to strongly correlated topolog-
ical insulators, once the accurate self-energy is obtained for a
strong electron-electron interaction.
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In what follows, it is shown that the results of the full
quantum theory are entirely consistent with those of the
semiclassical theory in the Abelian case and the requantized
effective theory in the general non-Abelian case with all being
robust against interband interference as well as nonmagnetic
impurity scattering.

IV. RESULTS

A. 2D TI

1. Bernevig-Hughes-Zhang model

We study the Bernevig-Hughes-Zhang (BHZ) model [33]
as a first example of the 2D TI model with conserved
perpendicular spin components. Imposed by the symmetry of
the underlying microscopic structure around the 
 point, the
Hamiltonian for four low-lying states (E1 ↑ ,H1↑,E1↓,H1↓)
can be written as the generic form in Eq. (1), which is
repeated here for convenience: H = ∑

k,σ=↑,↓ ψ
†
kσHσ (k)ψkσ

with H↓(k) = H ∗
↑ (−k) and

H↑(k) = εkI2 + dk · σ =
(

εk + dk,z dk,−
dk,+ εk − dk,z

)
, (36)

where ψ
†
kσ = (c†kE1σ

,c
†
kH1σ

) with c
†
kασ being the electron

creation operator with momentum k and spin σ (=↑ , ↓)
on orbital α (=E1,H1). Around the 
 point, εk and dk
can be expanded as εk � C + D(k2

x + k2
y) and dk � (Akx, −

Aky,M + B(k2
x + k2

y)), respectively.
The low-energy Hamiltonian can be promoted to

a tight-binding Hamiltonian via the minimal lattice
regularization, which replaces k by sin (ka)/a and
k2 by 2[1 − cos (ka)]/a2. Specifically, after the min-
imal lattice regularization, we set εk = C + 2D̃[2 −
cos(kxa) − cos(kya)], dk,± = Ã[sin(kxa) ∓ i sin(kya)], dk,z =
M + 2B̃[2 − cos(kxa) − cos(kya)], where we define Ã =
A/a, B̃ = B/a2, and D̃ = D/a2, which all have the same
physical unit as M , i.e., energy. Here, we set the electric field to
be aligned along the principal direction of the square lattice so
that a‖ = a⊥ = a. As mentioned previously, the band topology
becomes nontrivial if M/B < 0 and trivial otherwise.

Figure 3 shows the evolution of the semilocal DOS as a
function of electric field, which exhibits fan-shaped series of
the WSL branches emerging from the center of the valence
band. As one can see, there is excellent agreement between the
results of the semiclassical theory via Eq. (11) for the Abelian
Berry connection/curvature and those of the full quantum
theory via Eq. (29). It is important to note that, in addition
to the main WSL branches emerging from the center, there
are other WSL-like branches emerging from the band edges,
which is known as the Franz-Keldysh effect [53]. Similarly,
the conduction band (not shown in the figure) generates
its own WSL eigenstate branches, which interfere with the
WSL eigenstate branches emerging from the valence band
at sufficiently strong electric fields. Fortunately, despite all
these complicated interferences, the main WSL eigenstate
branches emerging from the center of the valence band can
be clearly identified at an appropriate window of electric field,
say, eEa‖/4D̃ � 0.16, which is indicated by the red arrows in
Fig. 3.

-1                  0                  1 -1                  0                  1

0.3

eE
a 

 /4
D 0.2

0.1

0

-

=

(ħω-  )/4D-

~

~(ħω-  )/4D~

)b()a(

FIG. 3. (Color online) Evolution of the semilocal DOS at (a)
k⊥a = ±π and (b) k⊥a = 0 as a function of electric field. Note that
fan-shaped series of the WSL branches emerge from the center of
the valence band, being entirely consistent with the semiclassical
theory in Sec. III A. Here, we consider a topologically nontrivial
phase in the BHZ model with model parameters such as Ã/4D̃ = 0.6,
B̃/4D̃ = 0.6, C/4D̃ = 0, and M/4D̃ = −0.3. The red dashed lines
are the semiclassical guide lines for the WSL branches obtained from
Eq. (11).

Figure 4 shows the semilocal DOS at eEa‖/4D̃ = 0.16
as a function of k⊥, which confirms that the 2D topological
invariant is directly manifested in the winding number of
the WSL, precisely as predicted by the semiclassical theory
in Eq. (11). Specifically, two separate sets of the spin-
dependent WSL branches wind nontrivially and oppositely in
the topologically nontrivial phase (right panels) accompanied
by an exchange of the Kramers-doublet partners between
k⊥a⊥ = 0 and ±π . Meanwhile, there is no winding of the
WSL in the trivial phase (left panels).

Now, to test the robustness of the band topology against
nonmagnetic impurity scattering, we investigate how the
semilocal DOS changes as a function of electron-impurity
interaction strength Vimp. Note that, here, the effects of
nonmagnetic impurity scattering are taken into account within
the SCBA via Eq. (35). As one can see from Figs. 4(c)–4(f), the
winding number of the WSL can be clearly identified, unless
the electron-impurity interaction strength becomes too strong
to become comparable to the Bloch oscillation energy.

2. Kane-Mele model

Next, we study the Kane-Mele (KM) model [12,34], whose
Hamiltonian is defined on the honeycomb lattice as follows:

H = −t̃
∑
〈i,j〉

ψ
†
i ψj + iλSO

∑
〈〈i,j〉〉

ψ
†
i νij σzψj , (37)

where ψ
†
i = (c†i↑,c

†
i↓), t̃ is the hopping constant, and νij = ±1,

depending on whether the electron takes the left or right turn
to get to the next-nearest neighbor.

After the Fourier transformation, Eq. (37) reduces to the
generic 2D TI Hamiltonian in Eq. (1) with εk = 0, dk,± =
−t̃(e∓ik·c1 + e∓ik·c2 + e∓ik·c3 ), and dk,z = 2λSO{sin(k · a1) −
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FIG. 4. (Color online) Semilocal DOS as a function of k⊥ in the
BHZ model. Here, the semilocal DOS is summed over both spin and
orbital degrees of freedom. The electric field is applied along the
principal direction of the square lattice with magnitude eEa‖/4D̃ =
0.16, which corresponds to the situations indicated by the red arrows
in Fig. 3. Panels (a), (c), and (e) denote when the band topology is
trivial with a choice of M/4D̃ = 0.3, while panels (b), (d), and (f)
denote when it is nontrivial with M/4D̃ = −0.3. Here, Ã/4D̃, B̃/4D̃,
and C/4D̃ are chosen as the same as those in Fig. 3. The electron-
impurity interaction strength is changed so that Vimp/4D̃ = 0, 0.05,
and 0.08 in the top [(a) and (b)], middle [(c) and (d)], and bottom [(e)
and (f)] panels, respectively. The red and blue dashed lines denote
the guide lines obtained in the semiclassical theory via Eq. (11) for
spin up and down, respectively. As predicted, the Kramers doublets
exchange partners between k⊥a⊥ = 0 and ±π in the topologically
nontrivial phase, while not in the trivial phase.

sin(k · a2) − sin[k · (a1 − a2)]}, where c1 = a(1/2,
√

3/2),
c2 = a(1/2, − √

3/2), c3 = a(−1,0), a1 = a(3/2,
√

3/2), and
a2 = a(3/2, − √

3/2). As mentioned previously, the band
topology can be determined by examining the low-energy
behaviors of dk,z around the Dirac points K± = ( 2π

3a
, ± 2π

3
√

3a
);

dk,z � ∓3
√

3λSO ± 9
4

√
3λSO[(qxa)2 + (qya)2] at k=K±+q.

Low-energy behaviors of dk,z near both K± satisfy the
nontriviality condition if λSO �= 0, which means that the whole
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FIG. 5. (Color online) Semilocal DOS as a function of k⊥ in the
KM model. Here, the semilocal DOS is shown only for a given
sublattice of the honeycomb lattice, while summed over the spin
degree of freedom. The electric field with magnitude eEa‖/t̃ = 0.16
is applied along the armchair direction in panels (a) and (b), while
along the zigzag direction in panels (c) and (d). See insets to see how
the electric field is aligned in the BZ. Panels (a) and (c) correspond to
a topologically nontrivial phase with λSO/t̃ = 0.1, while panels (b)
and (d) correspond to ordinary graphene with λSO = 0. The red and
blue dashed lines denote the guide lines obtained in the semiclassical
theory via Eq. (11) for spin up and down, respectively. The yellow
dotted lines indicate when the semiclassical trajectory passes through
the Dirac points, i.e., the monopole singularities.

valence band becomes topologically nontrivial under this
condition.

Figure 5 shows the comparison between the semilocal DOS
of a topologically nontrivial phase (left panels) with λSO �= 0
and ordinary graphene (right panels) with λSO = 0, which
again confirms that the 2D topological invariant is directly
manifested in the winding number of the WSL. It is interesting
to note that graphene does not have a well-defined value for
the 2D topological invariant since the monopole singularities
at K± are located right within the 2D BZ. Figures 5(b) and
5(d) show that the WSL energy spectrum behaves irregularly,
when the semiclassical trajectory at a given k⊥ passes through
the monopole singularities at K±, making the Zak phase
discontinuous [44]. In some sense, graphene can be regarded as
being topologically critical, being neither topologically trivial
nor nontrivial.

Now, it is important to check that the winding number
of the WSL does not depend on the electric-field direction,
while the detailed k⊥ dependence of the WSL energy spectrum
may. To this end, in Figs. 5(a) and 5(b), the electric field
is applied along the armchair direction with a‖ = 3a/2 and
a⊥ = √

3a, while, in Figs. 5(c) and 5(d), applied along the
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zigzag direction with a‖ = √
3a/2 and a⊥ = 3a. As one can

see, the winding number of the WSL does not depend on the
electric-field direction, being consistent with the fact that the
winding number of the WSL is a topological quantity.

B. 3D TI

Finally, we study the 3D TI model describing strong
3D TIs occurring in BiSe-family materials [3,4]. Around
the 
 point, the Hamiltonian for four low-lying states
(P 1+

z ↑,P 2−
z ↑,P 1+

z ↓,P 2−
z ↓) can be written as the generic

form in Eq. (5), which is repeated here for convenience:
H = ∑

k ψ
†
kH (k)ψk with

H (k) = εkI4 + dk · �

=

⎛
⎜⎜⎜⎝

εk − dk,3 dk,4 0 dk,−
dk,4 εk + dk,3 dk,− 0

0 dk,+ εk − dk,3 −dk,4

dk,+ 0 −dk,4 εk + dk,3

⎞
⎟⎟⎟⎠,

(38)

where ψ
†
k = (c†kα1

,c
†
kα2

,c
†
kα3

,c
†
kα4

) with c
†
kα being the

electron creation operator with momentum k on
generalized orbital α = (P 1+

z ↑ ,P 2−
z ↑ ,P 1+

z ↓ ,P 2−
z ↓).

As mentioned before, dk can be expanded around
the 
 point as dk,± = dk,1 ± idk,2 � A1(kx ± iky),
dk,3 � M + B1(k2

x + k2
y) + B2k

2
z , dk,4 � A2kz, and

dk,5 � 0. Also, εk can be expanded similarly as
εk � C + D1(k2

x + k2
y) + D2k

2
z . Similarly to before, the

low-energy Hamiltonian in Eq. (38) can be promoted
to a tight-binding Hamiltonian via the minimal lattice
regularization: εk = C + 2D̃1[2 − cos (kxa) − cos (kya)] +
2D̃2[1 − cos (kza)], dk,± = Ã1[sin (kxa) ± i sin (kya)], dk,3 =
M + 2B̃1[2 − cos (kxa) − cos (kya)] + 2B̃2[1 − cos (kza)],
dk,4 = Ã2 sin (kza), and dk,5 = 0, where we define Ãi = Ai/a,
B̃i = Bi/a

2, and D̃i = Di/a
2 (i = 1,2).

As mentioned previously, the 3D band topology is charac-
terized by four different Z2 invariants, (ν0; ν1,ν2,ν3). Govern-
ing the robustness of a given 3D TI, the strong Z2 invariant
ν0 becomes nonzero if the 2D topological invariant of the
inversion-symmetric 2D subspace containing one set of four
TRIM is different from that containing the other set. What this
means in the cubic lattice is that the 2D topological invariant,
or equivalently the winding number of the WSL, in the 2D
subspace lying parallel to the kx-ky plane at kza = 0 should be
opposite to that at kza = ±π . Of course, this statement should
be true regardless of whether we choose the kxa = 0 and π

subspaces (or the kya = 0 and π subspaces) instead of the
kza = 0 and π counterparts.

The choice of the kza = 0 and π subspaces is particularly
convenient since, with dk,4 = 0 at kza = 0 and ±π , the Hamil-
tonian in Eq. (38) becomes explicitly block-diagonalized with
each 2 × 2 block precisely reducing to the 2D TI Hamiltonian
of the BHZ model in Eq. (36). In this situation, exactly the same
Zak phase analysis used for the 2D TI model can be applied to
determine the winding number of the WSL in the 2D subspaces
at kza = 0 and ±π . Consequently, in the current model, the 3D
band topology becomes nontrivial if the winding number of
the WSL at kza = 0 is nonzero while that at kza = π is zero, or
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(d) kza = 0.4π(c) kza = 0.2π

(b) kza = 0.1π

FIG. 6. (Color online) Semilocal DOS as a function of k⊥ in the
3D TI model within various 2D subspaces lying parallel to the kx–ky

plane at different kz. Here, the semilocal DOS is summed over for
all generalized orbitals including both spin and orbital degrees of
freedom. The electric field with magnitude eEa‖/4D̃1 = 0.16 is
applied along the principal lattice direction within the x-y plane,
in which situation a‖ = a⊥ = a. Model parameters are chosen such
that Ã1/4D̃1 = 0.6, Ã2/4D̃1 = 0.5, B̃1/4D̃1 = 0.6, B̃2/4D̃1 = 0.3,
C/4D̃1 = 0, D̃2/4D̃1 = 0.2, and M/4D̃1 = −0.3. Panels (a) and (f)
describe the inversion-symmetric 2D subspaces, where the Berry
connection/curvature becomes Abelian and thus the winding number
of the WSL is well defined. The Kramers doublets exchange partners
in panel (a) while not in panel (f), which means that the strong Z2

invariant is nontrivial. In general 2D subspaces [panels (b)–(e)], the
Berry connections/curvatures are non-Abelian. The energy spectra of
the WSL eigenstates are accurately captured by the dashed guide lines
obtained from the requantized effective theory via solving Eq. (16),
which covers the Abelian situations in panels (a) and (f) as limiting
cases.

vice versa. As one can see in Figs. 6(a) and 6(f), this condition
can be satisfied for an appropriate set of model parameters,
generating a strong 3D TI phase.

Meanwhile, in general 2D subspaces at kza �= 0,±π , the
Berry connections/curvatures become non-Abelian. In this
situation, the Zak phase cannot be properly defined and thus the
energy spectrum of the WSL eigenstates is no longer described
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FIG. 7. (Color online) Counterpart of Fig. 6 within various 2D
subspaces lying parallel to the ky-kz plane as a function of kx . Model
parameters are the same as in Fig. 6.

by the simple semiclassical theory of the Abelian Berry con-
nection/curvature in Sec. III A. Instead, the energy spectrum of
the WSL eigenstates is computed via the requantized effective
theory of the general non-Abelian Berry connection/curvature
in Sec. III B. Figures 6(b)–6(e) show the comparison between
the semilocal DOS obtained from the full quantum theory
and the guide lines of the WSL eigenstates (dashed lines)
obtained from the requantized effective theory in Sec. III B.
As one can see, the agreement between the two theories is
excellent. It is important to note that the requantized effective
theory reproduces the results of the semiclassical theory of the
Abelian Berry connection/curvature in Figs. 6(a) and 6(f) in
the Abelian limit.

Finally, it is important to check whether the strong Z2

invariant is uniquely determined, being independent of the
choice of 2D subspaces. To this end, we examine the evolution
of the semilocal DOS in various 2D subspaces lying parallel
to the ky-kz plane as a function of kx , which is shown in
Fig. 7. Unlike in Figs. 6(a) and 6(f), here, the Hamiltonian is
not explicitly block-diagonalized even within the inversion-
symmetric 2D subspaces at kxa = 0 and π . Fortunately, as
explained in Sec. III B, the Berry connections satisfy the

Abelian condition in Eq. (23) within these 2D subspaces.
This means that, within these 2D subspaces, the Hamiltonian
is decomposed into two independent parts with each having
the well-defined winding number of the WSL. Moreover, the
time-reversal symmetry dictates that the two winding numbers
should be opposite. As one can see, this is exactly confirmed in
Figs. 7(a) and 7(f). As before, in general 2D subspaces where
the Berry connections/curvatures are non-Abelian, the energy
spectrum of the WSL eigenstates is accurately captured by the
requantized effective theory in Sec. III B. A similar analysis for
the 2D subspaces lying parallel to the kz-kx plane is guaranteed
to generate exactly the same conclusion as the above due to
the reflection symmetry between the x and y directions.

V. DISCUSSION

In this work, we show that the nontrivial band topologies of
both 2D and 3D TIs, characterized by the Chern numbers and
the Z2 invariants, respectively, are directly manifested in the
winding numbers of the WSL emerging under an electric field.
Being alternative to the topological magnetoelectric effect
[23], this provides a spectroscopic method to measure the
topological invariants directly in the bulk of both 2D and 3D
TIs. Below, we discuss briefly how this method can be realized
in actual experiments.

The main physical observable to be measured is the
semilocal DOS. Considering that the modern STM technique
has sufficient spatial resolution to distinguish individual atoms
in a crystal, the semilocal DOS can be in principle obtained
by scanning the surface of a 2D TI (possibly, obtained in the
thin-film limit of 3D TIs [54]) or the cleaved surfaces of a
3D TI and then partially Fourier-transforming the STM data
along the perpendicular direction to the electric field. Another
method to measure the semilocal DOS is the ARPES, which
can give rise to the momentum-resolved information directly
near the cleaved surfaces of a 3D TI.

The WSL has been so far observed only in man-made
structures such as optical and semiconductor superlattices
since the typical lattice constant in a natural crystal is usually
so small (∼ a few Å) that the energy spectrum of the WSL
eigenstates (broadened by impurity scattering) is not well
resolved for a typical strength of electric field [40,41]. A key
task is to apply a sufficiently strong electric field to overcome
the broadening effect, while suppressing the Joule heating.
This has been achieved in semiconductor superlattices with the
superperiod of 50–100 Å at an electric field of 10–20 kV/cm,
in which situation the energy spacing between the WSL
eigenstates is roughly 10–40 meV [40,41]. If experiments
can be performed in a natural crystal with the same energy
resolution, the required electric field is estimated to be roughly
on the order of 100–200 kV/cm. With stronger electric fields, it
would be important to make TIs truly bulk-insulating [55–57]
in order to suppress the Joule heating.

Actually, it has been proposed that an artificial TI (as
well as an artificial Weyl semimetal) can be constructed in
a superlattice structure, which is composed of alternating
layers of topological and ordinary insulators with the layer
thickness spanning many (∼20–30) unit cells [58]. In this
situation, the energy spacing between the WSL eigenstates
can be dramatically enlarged, opening up the possibility of
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observing the winding number of the WSL even in a weak
electric field. For future work, we would like to investigate
whether this possibility can be realized in realistic material
conditions [59].

Furthermore, it would be also interesting to observe the
energy spectrum of the WSL eigenstates in graphene, which
is topologically critical as explained in Fig. 5. In graphene,
the limitation of a small unit cell can be effectively overcome
by forming the moiré structure [60–62]. Moreover, extensive
efforts are being devoted to enhance the spin-orbit coupling
strength [63–66] to realize the KM model in actual graphene.
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APPENDIX A: ZAK PHASE

In this section, we provide computational details of the
Zak phase in 2D TIs, where the Berry connection/curvature is
Abelian. The 2D TI Hamiltonian in Eq. (1) is repeated here
for convenience: H = ∑

k,σ=↑,↓ ψ
†
kσHσ (k)ψkσ with H↓(k) =

H ∗
↑ (−k) and

H↑(k) =
(

εk + dk,z dk,−
dk,+ εk − dk,z

)
, (A1)

where the detailed form of dk is not important for the current
purpose except that |dk| = |d−k| due to the time-reversal
symmetry.

After diagonalizing Eq. (A1), the energy eigenvalue is
obtained as follows:

E±(k) = εk ± |dk|, (A2)

for both spins, indicating that the system becomes insulating
when |dk| �= 0 in the entire BZ. The corresponding eigenstates
for the lower and upper bands, φ−,σ (k) and φ+,σ (k), respec-
tively, are given as follows:

|φ±,↑(k)〉 = 1√
1 + (ζk,±)2

(
ζk,±e−iϕk

1

)
, (A3)

|φ±,↓(k)〉 = 1√
1 + (ζk,±)2

(
−ζk,±eiϕk

1

)
, (A4)

where ζk,± = (dk,z ± |dk|)/
√

(dk,x)2 + (dk,y)2 and ϕk =
tan−1(dk,y/dk,x).

Now, with help of Eqs. (A3) and (A4), the Berry connec-
tions for spin up and down can be computed as follows:

A±,↑(k) = 〈φ±,↑(k)|i∇k|φ±,↑(k)〉
= −αk,±(dk,y∇kdk,x − dk,x∇kdk,y), (A5)

A±,↓(k) = 〈φ±,↓(k)|i∇k|φ±,↓(k)〉 = −A±,↑(k), (A6)

where

αk,± = |dk| ± dk,z

2|dk|[(dk,x)2 + (dk,y)2]
. (A7)

As discussed in the main text, the energy spectrum of the
WSL eigenstates for each spin component σ is given by

EWSL
n,±,σ (k⊥) = Ē±(k⊥) +

(
n + γZak,±,σ (k⊥)

2π

)
eEa‖, (A8)

where Ē±(k⊥) = a‖
2π

∮
C

dk‖E±(k). The spin-dependent Zak
phase, γZak,±,σ (k⊥), is evaluated via

γZak,±,σ (k⊥) =
∮

C

dk‖ · A±,σ (k), (A9)

which indicates that γZak,±,↑(k⊥) = −γZak,±,↓(k⊥) due to
Eq. (A6), which in turn means that the winding numbers are
opposite for different spin components.

It is important to note that the same formalism
can be applied to the inversion-symmetric 2D subspaces
within the 3D BZ of 3D TIs, where the Berry connec-
tions/curvatures are Abelian. By choosing the right basis of
wave functions, the 3D TI Hamiltonian can be written as Eq.
(A1) with conserved pseudospin components.

APPENDIX B: PROOF OF THE ABELIAN CONDITION

In this appendix, we provide the proof of the Abelian
condition in Eq. (23) for the generic 3D TI model. To this
end, let us rewrite the generic 3D TI Hamiltonian in Eq. (5):
H = ∑

k ψ
†
kH (k)ψk with

H (k) =

⎛
⎜⎜⎜⎝

εk − dk,3 dk,4 0 dk,−
dk,4 εk + dk,3 dk,− 0

0 dk,+ εk − dk,3 −dk,4

dk,+ 0 −dk,4 εk + dk,3

⎞
⎟⎟⎟⎠,

(B1)

where, via the minimal lattice regularization of the low-
energy effective model, the system parameters can be writ-
ten as εk = C + 2D̃1[2 − cos (kxa) − cos (kya)] + 2D̃2[1 −
cos (kza)], dk,± = Ã1[sin (kxa) ± i sin (kya)], dk,3 = M +
2B̃1[2 − cos (kxa) − cos (kya)] + 2B̃2[1 − cos (kza)], dk,4 =
Ã2 sin (kza), and dk,5 = 0.

Similarly to the 2D TI case, the energy eigenvalue is given
by

E±(k) = εk ± |dk|, (B2)

which indicates that there is a double degeneracy for both
upper and lower bands. Let us distinguish the two degenerate
energy eigenstates within the upper (subscript +) and lower
(subscript −) bands by introducing a pseudospin index, say, u

and d. In other words, the energy eigenstates are distinguished
by two indices with one being ± and the other being u/d.
Specifically, the energy eigenstates, |φ±,u(k)〉 and |φ±,d (k)〉,
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are given as follows:

|φ±,u(k)〉 = 1√
1 + (χk)2 + (ζk,±)2

⎛
⎜⎜⎜⎝

χke
−iϕk

ζk,±e−iϕk

1

0

⎞
⎟⎟⎟⎠, (B3)

|φ±,d (k)〉 = 1√
1 + (χk)2 + (ζk,±)2

⎛
⎜⎝

1
0

−χke
iϕk

ζk,±eiϕk

⎞
⎟⎠, (B4)

where χk = dk,4/
√

(dk,1)2 + (dk,2)2, ζk,± = (dk,3 ±
|dk|)/

√
(dk,1)2 + (dk,2)2, and ϕk = tan−1(dk,2/dk,1).

In general, the Berry connection has off-diagonal matrix
elements mixing between |φ±,u(k)〉 and |φ±,d (k)〉, which
generates the SU(2) non-Abelian gauge structure [45–49].
Specifically, the Berry connection for the lower band is
explicitly written as follows:

Ak,uu = 〈φ−,u(k)|i∇k|φ−,u(k)〉
= −αk(dk,2∇kdk,1 − dk,1∇kdk,2), (B5)

Ak,dd = 〈φ−,d (k)|i∇k|φ−,d (k)〉
= αk(dk,2∇kdk,1 − dk,1∇kdk,2), (B6)

Ak,ud = A∗
k,du = 〈φ−,u(k)|i∇k|φ−,d (k)〉

= βk[dk,4(−i∇kdk,1 − ∇kdk,2)

+ (idk,1 + dk,2)∇kdk,4], (B7)

where

αk = (|dk| − dk,3)2 + (dk,4)2

2|dk|(|dk| − dk,3)[(dk,1)2 + (dk,2)2]
, (B8)

βk = −(dk,1 + idk,2)2

2|dk|(|dk| − dk,3)[(dk,1)2 + (dk,2)2]
. (B9)

Now, one can rearrange Eqs. (B5), (B6), and (B7) as
follows:

Ax
k = βkÃ1Ã2a sin(kza) cos(kxa)σy

−αkÃ
2
1a sin(kya) cos(kxa)σz, (B10)

Ay

k = −βkÃ1Ã2a sin(kza) cos(kya)σx

+αkÃ
2
1a sin(kxa) cos(kya)σz, (B11)

Az
k = βkÃ1Ã2a sin(kya) cos(kza)σx

−βkÃ1Ã2a sin(kxa) cos(kza)σy, (B12)

where the Pauli matrices, (σx,σy,σz), are represented in the
basis of |φ−,u(k)〉 and |φ−,d (k)〉 as follows:

σx = |φ−,u(k)〉〈φ−,d (k)| + |φ−,d (k)〉〈φ−,u(k)|, (B13)

σy = −i|φ−,u(k)〉〈φ−,d (k)| + i|φ−,d (k)〉〈φ−,u(k)|, (B14)

σz = |φ−,u(k)〉〈φ−,u(k)| − |φ−,d (k)〉〈φ−,d (k)|. (B15)

Then, after some algebra, one can show that the commutator
between various components of the Berry connection is
summarized compactly as follows:[

Ai
k,A

j

k

] = 2iεijk sin (kka) cos (kia) cos (kja)Fk, (B16)

where

Fk = αkβkÃ
3
1Ã2a

2[sin (kxa)σx + sin (kya)σy]

+ β2
kÃ2

1Ã
2
2a

2 sin (kza)σz. (B17)

Equation (B16) implies that the commutator vanishes in the
entire ki-kj plane if kk = 0, ± π/a, which is nothing but the
Abelian condition for the inversion-symmetric 2D subspaces.
This completes the proof of the Abelian condition in Eq. (23).

APPENDIX C: FLOQUET GREEN’S FUNCTION

The goal of this appendix is to explain how to compute
the Floquet Green’s function, which satisfies the following
equation:∑

l,γ

{
[�(ω + n�̃) + iη]δαγ δnl − Hnl

αγ (k)
}(

Gr
k

)lm

γβ
(ω)

= δαβδnm, (C1)

where Hnm
αβ (k) = 1

T

∫ T

0 dtei(n−m)�̃tHαβ(k − eEt/�) with T =
2π/�̃. Since the concrete form of the Hamiltonian matrix
element Hαβ(k) depends on the specific model, it is not
possible to obtain the general solution for the Floquet Green’s
function in a closed analytic form. Fortunately, considering
the structure of the generic TI Hamiltonian, it is possible to
derive a formal solution for the Floquet Green’s function with
the same orbital indices, (Gr

k)nm
αα , by summing away all other

contributions from those with different orbital indices. This
formal solution is convenient since the semilocal DOS is solely
dependent on the orbital-diagonal components (Gr

k)nn
αα . Below,

we present such a formal solution first in the case of the 2D TI
with conserved spin components and then in the case of 3D TI
with mixed spin components.

1. 2D TI with conserved spin components

We begin by rewriting the 2D TI Hamiltonian in a matrix
form including both spin components:

H (k)=

⎛
⎜⎜⎜⎝

εk + dk,z dk,− 0 0

dk,+ εk − dk,z 0 0

0 0 ε−k + d−k,z −d−k,+
0 0 −d−k,− ε−k − d−k,z

⎞
⎟⎟⎟⎠,

(C2)

where the concrete forms of εk and dk = (dk,x,dk,y ,dk,z)
depend on the specific model and are shown in Sec. IV A.
As before, dk,± = dk,x ± idk,y . Here, the basis is chosen such
that (1,2,3,4) = (E1 ↑ ,H1 ↑ ,E1 ↓ ,H1 ↓) for the BHZ model
and (A↑ ,B ↑ ,A↓ ,B ↓) for the KM model.

By summing away all contributions from the orbital-off-
diagonal components in Eq. (C1), the inverse of the orbital-
diagonal components of the Floquet Green’s function can be
written in a compact notation with [Gk,αα]nm = (Gk)nm

αα as
follows:

Gr−1
k,11(ω) = [P+

k (ω)]−1 − D−
k · P−

k (ω) · D+
k , (C3)

Gr−1
k,22(ω) = [P−

k (ω)]−1 − D+
k · P+

k (ω) · D−
k , (C4)
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Gr−1
k,33(ω) = [P+

−k(ω)]−1 − D+
−k · P−

−k(ω) · D−
−k, (C5)

Gr−1
k,44(ω) = [P−

−k(ω)]−1 − D−
−k · P+

−k(ω) · D+
−k, (C6)

where the Floquet matrices P±
k (ω) and D±

k are given as

[P±
k (ω)]−1,nm = [�(ω + n�̃) + iη]δnm − (

εnm
k ± dnm

k,z

)
,

(C7)

and

(D±
k )nm = dnm

k,±, (C8)

where εnm
k = 1

T

∫ T

0 dtei(m−n)�̃t ε(k − eEt/�) and dnm
k =

1
T

∫ T

0 dtei(m−n)�̃td(k − eEt/�) with T = 2π/�̃.
The specific forms of εmn

k and dmn
k depend on not only the

detailed k dependencies of εk and dk, but also the electric-field
direction. In what follows, we present the specific forms of εmn

k
and dmn

k for the BHZ model along the principal direction of the
square lattice and the KM model along the armchair as well as
the zigzag directions.

a. BHZ model

The BHZ model is defined on the square lattice. To
appreciate that the concrete form of the Floquet matrices
depends on the electric-field direction, let us imagine that
the electric field is applied along the direction with angle θ

measured from the principal, say, x axis of the square lattice. In
this situation, the Peierls-shifted crystal momentum becomes(

�kx + e
c
Ax(t)

�ky + e
c
Ay(t)

)
=

(
cos θ − sin θ

sin θ cos θ

)(
�k‖ − eEt

�k⊥

)

= 1√
p2 + q2

(
(q�k‖ − p�k⊥) − qeEt

(p�k‖ + q�k⊥) − peEt

)
,

(C9)

where we set θ = tan−1(p/q) with p,q ∈ Z so that all different
time-dependent terms in ε(k − eEt/�) and d(k − eEt/�)
become commensurate with each other. In other words, the en-
tire time dependence occurs through cos [kxa − eaAx(t)/�c],
cos [kya − eaAy(t)/�c], and their sine counterparts, which
means that there exist two different oscillation frequencies:
qeEa/

√
q2 + p2 and peEa/

√
q2 + p2. In this situation, the

Floquet frequency, which is the natural frequency of the
Peierls-shifted Hamiltonian, is given as �̃ = eEã‖/� with
ã‖/a = gcd(q,p)/

√
q2 + p2, where gcd(q,p) denotes the

greatest common divisor of q and p. Note that, for general
angle θ , �̃ is not necessarily the same as the Bloch oscillation
frequency � = eEa‖/�.

In the case of (q,p) = (1,0), where ã‖ = a‖ = a and thus
�̃ = �, the Floquet matrices are given as follows:

εnm
k = ei(n−m)k‖a{C + 2D̃[2 − cos(k⊥a)]δnm

− D̃(δn,m+1 + δn,m−1)}, (C10)

dmn
k,± = 1

2i
ei(n−m)k‖aÃ[±2 sin(k⊥a)δnm

+ δn,m+1 − δn,m−1], (C11)

dmn
k,z = ei(n−m)k‖a({M + 2B̃[2 − cos(k⊥a)]}δnm

− B̃(δn,m+1 + δn,m−1)), (C12)

which can be plugged into Eqs. (C7) and (C8) to compute
the inverses of the Floquet Green’s functions in Eqs. (C3)–
(C6), which are then inverted to generate the Floquet Green’s
functions themselves.

b. KM model

The KM model is defined on the honeycomb lattice, where
the Peierls-shifted crystal momentum is given by

(
�kx + e

c
Ax(t)

�ky + e
c
Ay(t)

)
=

(
cos θ − sin θ

sin θ cos θ

)(
�k‖ − eEt

�k⊥

)

= 1√
q2 + p2/3

(
q(�k‖−eEt)−pk⊥/

√
3

p(�k‖−eEt)/
√

3+qk⊥

)
,

(C13)

where we set θ = tan−1(p/
√

3
q

) with p,q ∈ Z so that
(q,p) = (1,0) and (1,1) correspond to when the electric
field is applied along the armchair and the zigzag di-
rections, respectively. Note that (q,p) = (0,1) also corre-
sponds to the zigzag direction. The entire time depen-
dence of the Peierls-shifted Hamiltonian occurs through
six terms: exp [ik(t) · c1], exp [ik(t) · c2], exp [ik(t) · c3],
sin [k(t) · a1], sin [k(t) · a2], and sin [k(t) · (a1 − a2)], where
c1 = a(1/2,

√
3/2), c2 = a(1/2,−√

3/2), c3 = a(−1,0), a1 =
a(3/2,

√
3/2), and a2 = a(3/2,−√

3/2). Note that k(t) =
k − eEt/�. This means that there are six different oscillation
frequencies. As a consequence, the Floquet frequency is given
by �̃ = eEã‖/� with ã‖/a = gcd(3q + p,3q − p,q + p,q −
p,2q,2p)/2

√
q2 + p2/3, where gcd(a1, . . . ,an) denotes the

greatest common divisor among (a1, . . . ,an).
In the KM model, εnm

k is always zero. In this work, dnm
k,± and

dnm
k,z are computed in two different situations with the electric

field applied along the armchair and the zigzag directions.
First, the armchair direction is obtained by choosing (q,p) =
(1,0), where ã‖ = a/2, while a‖ = 3a/2 and a⊥ = √

3a. In
this situation, the Floquet matrices dnm

k,± and dnm
k,z are given by

dnm
k,± = ei(n−m)k‖ã‖ t̃[−2 cos (k⊥a⊥/2)δn,m∓1 − δn,m±2], (C14)

dnm
k,z = ei(n−m)k‖ã‖λSO[−2 sin (k⊥a⊥)δnm

+ 2 sin (k⊥a⊥/2)(δn,m+3 + δn,m−3)]. (C15)

Second, the zigzag direction is obtained by choosing (q,p) =
(0,1), where ã‖ = a‖ = √

3a/2 and a⊥ = 3a. In this situation,
the Floquet matrices are given by

dnm
k,± = ei(n−m)k‖ã‖ t̃[− exp (∓ik⊥a⊥/3)δnm

− exp (±ik⊥a⊥/6)(δn,m+1 + δn,m−1)], (C16)

dnm
k,z = ei(n−m)k‖ã‖λSO[−2i cos (k⊥a⊥/2)(δn,m+1 − δn,m−1)

+ i(δn,m+2 − δn,m−2)]. (C17)

Note that the unit cells for the armchair and the zigzag
directions have different shapes, but the same area. See Fig. 8
for illustration.

195144-15



WOO-RAM LEE AND KWON PARK PHYSICAL REVIEW B 92, 195144 (2015)

FIG. 8. (Color online) Unit cells and the corresponding Brillouin
zones in the electric-field-applied KM model. (a) The red and blue
boxes denote the unit cells in the lattice when the electric field is
applied along the armchair (red arrow) and the zigzag (blue arrow)
direction, respectively. Here, A and B denote different sublattices.
(b) The corresponding Brillouin zones are shown as the red and blue
boxes for the armchair and the zigzag directions, respectively. Here,
K± = ( 2π

3a
,± 2π

3
√

3a
) denote the Dirac points.

2. 3D TI with mixed spin components

Let us begin by rewriting the 3D TI Hamiltonian in a matrix
form:

H (k) =

⎛
⎜⎜⎜⎝

εk − dk,3 dk,4 0 dk,−
dk,4 εk + dk,3 dk,− 0

0 dk,+ εk − dk,3 −dk,4

dk,+ 0 −dk,4 εk + dk,3

⎞
⎟⎟⎟⎠,

(C18)

where the basis is chosen such that (1,2,3,4) =
(P 1+

z ↑,P 2−
z ↑,P 1+

z ↓,P 2−
z ↓). The concrete forms of εk and

dk are shown in Sec. IV B.
Similarly to the 2D TI case, by summing away all contri-

butions from the orbital-off-diagonal components in Eq. (C1),
the inverse of the orbital-diagonal components of the Floquet
Green’s function can be written as follows:

Gr−1
k,11(ω) = [P−

k (ω)]−1 − D−
k · Qa

k(ω) · D+
k

−(
D4

k − D−
k · Qa

k(ω) · D4
k · P−

k (ω) · D+
k

) · Ra+
k (ω)

·(D4
k − D−

k · P−
k (ω) · D4

k · Qa
k(ω) · D+

k

)
, (C19)

Gr−1
k,22(ω) = [P+

k (ω)]−1 − D4
k · Qb+

k (ω) · D4
k

−(
D−

k − D4
k · Qb+

k (ω) · D−
k · P+

k (ω) · D4
k

) · Rb+
k (ω)

·(D+
k − D4

k · P+
k (ω) · D+

k · Qb+
k (ω) · D4

k

)
, (C20)

Gr−1
k,33(ω) = [P−

k (ω)]−1 − D+
k · Qa

k(ω) · D−
k

−(
D4

k − D+
k · Qa

k(ω) · D4
k · P−

k (ω) · D−
k

) · Ra−
k (ω)

·(D4
k − D+

k · P−
k (ω) · D4

k · Qa
k(ω) · D−

k

)
, (C21)

Gr−1
k,44(ω) = [P+

k (ω)]−1 − D4
k · Qb−

k (ω) · D4
k

−(
D+

k − D4
k · Qb−

k (ω) · D+
k · P+

k (ω) · D4
k

) · Rb−
k (ω)

·(D−
k − D4

k · P+
k (ω) · D−

k · Qb−
k (ω) · D4

k

)
, (C22)

where

[
Ra±

k (ω)
]−1 = [P+

k (ω)]−1 − D∓
k · P−

k (ω) · D±
k − D∓

k · P−
k (ω)

·D4
k · Qa

k(ω) · D4
k · P−

k (ω) · D±
k , (C23)[

Rb±
k (ω)

]−1 = [P−
k (ω)]−1 − D4

k · P+
k (ω) · D4

k − D4
k · P+

k (ω)

·D±
k · Qb±

k (ω) · D∓
k · P+

k (ω) · D4
k, (C24)[

Qa
k(ω)

]−1 = [P+
k (ω)]−1 − D4

k · P−
k (ω) · D4

k, (C25)[
Qb±

k (ω)
]−1 = [P−

k (ω)]−1 − D∓
k · P+

k (ω) · D±
k , (C26)

where the Floquet matrices P±
k (ω) and D±,4

k are given as

[P±
k (ω)]−1,nm = [�(ω + n�̃) + iη]δnm − (

εnm
k ± dnm

k,3

)
,

(C27)

and

(D±
k )nm = dnm

k,±, (C28)(
D4

k

)nm = dnm
k,4, (C29)

with (εk)mn and (dk)mn defined the same as before.
As mentioned in the main text, we are interested in the

winding number of the WSL within various 2D subspaces to
determine the strong Z2 invariant. As an example of such 2D
subspaces, let us first consider the 2D subspaces lying parallel
to the kx-ky plane with the electric field applied along the
principal, say, x direction, in which case ã‖ = a‖ = a⊥ = a.
Then, the Floquet matrices are given as a function of two
conserved momenta k⊥(= ky) and kz as follows:

εnm
k = ei(n−m)k‖a({C + 2D̃2[1 − cos (kza)]

+ 2D̃1[2 − cos (k⊥a)]}δnm − D̃1(δn,m+1 + δn,m−1)),

(C30)

dnm
k,± = ∓ 1

2i
ei(n−m)k‖aÃ1[2 sin (k⊥a)δnm ∓ δn,m+1 ± δn,m−1],

(C31)

dnm
k,3 = ei(n−m)k‖a({M + 2B̃2[1 − cos (kza)]

+ 2B̃1[2 − cos (k⊥a)]}δnm − B̃1(δn,m+1 + δn,m−1)),

(C32)

dnm
k,4 = Ã2 sin (kza)δnm, (C33)

which can be plugged into Eqs. (C27)–(C29) to compute
Eqs. (C23)–(C26) and subsequently the inverses of the Floquet
Green’s functions in Eqs. (C19)–(C22), which are then inverted
to generate the Floquet Green’s functions.

Similarly, we also consider the 2D subspaces lying parallel
to the ky-kz plane. Now, the electric field is applied along the
y direction in these 2D subspaces. Then, the Floquet matrices
are given as a function of two conserved momenta k⊥(=kz)
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and kx as follows:

εnm
k = ei(n−m)k‖a({C + 2D̃2[1 − cos (k⊥a)]

+ 2D̃1[2 − cos (kxa)]}δnm − D̃1(δn,m+1 + δn,m−1)),

(C34)

dnm
k,± = 1

2ei(n−m)k‖aÃ1[2 sin (kxa)δnm ± δn,m+1 ∓ δn,m−1],

(C35)

dnm
k,3 = ei(n−m)k‖a({M + 2B̃2[1 − cos (k⊥a)]

+ 2B̃1[2 − cos (kxa)]}δnm − B̃1(δn,m+1 + δn,m−1)),

(C36)

dnm
k,4 = Ã2 sin (k⊥a)δnm, (C37)

which can be used similarly to generate the Floquet Green’s
functions.
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