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Breakdown of the universality of the Kadowaki-Woods Ratio in multi-band metals
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We calculate the Kadowaki-Woods ratio (KWR) in Fermi liquids with arbitrary band structures. We find that,
contrary to the single-band case, the ratio is not generally independent of the effects of electronic correlations
(universal). This is very surprising given the experimental findings of a near universal KWR in many multiband
strongly correlated metals. We identify a limit where the universality of the ratio is recovered. We discuss the
KWR in Dirac semimetals and find that the KWR is independent of correlations, but strongly dependent on the
doping of the system: for massless fermions, the KWR is proportional to the inverse square of the carrier density.
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I. INTRODUCTION

Fermi-liquid theory describes the low-temperature behavior
of the vast majority of metals extremely well [1–6]. One of the
beauties of Fermi-liquid theory is that it reduces the description
of the interacting electron fluid to a small number of (Landau)
parameters. Therefore, ratios in which these parameters cancel,
such as the Wilson-Sommerfeld ratio and Wiedemann-Franz
law [1,7], provide important tests of Fermi-liquid theory.

In a Fermi liquid, the electronic contributions to the resis-
tivity, [ρel(T ) = AT 2], and heat capacity, [Cel(T ) = γ T ], are
both governed by the effective mass m∗—roughly speaking,
A ∝ m∗2 and γ ∝ m∗. So the Kadowaki-Woods ratio, A/γ 2,
should be constant in a Fermi liquid [8–12]. More precisely,
one might expect correlations to leave the Kadowaki-Woods
ratio (KWR) unrenormalized because a Kramers-Kronig trans-
formation relates the real and imaginary parts of the self-
energy [12–14], which determine the electronic contributions
to the heat capacity and resistivity, respectively. This means
that the KWR is somewhat similar to a fluctuation-dissipation
theorem.

First Rice [15] and later Kadowaki and Woods [16]
found that A/γ 2 is approximately constant within classes of
materials (transition metals and heavy-fermion compounds,
respectively). However, the ratio differs by two orders of
magnitude between these two classes. It was subsequently
discovered that the Kadowaki-Woods ratio in transition metals
and organic charge-transfer salts can be even larger than in the
heavy fermions (see Refs. [14,17] and references therein).

It was long believed [12,18] that the size of the KWR gave
an indication of the strength of the electron-electron scatter-
ing [19]. However, more recently, it has been argued that this
is incorrect [14,17]. Rather, the large variations in the KWR
between different classes of materials can be explained almost
entirely by taking into account noninteracting properties of the
materials (e.g., electron density and dimensionality) [14,17].
Furthermore, it has been shown [14] that the modified KWR
takes the same predicted value, A/γ 2f = 81/4π�k2

Be2 (where
f is a material-specific function of the noninteracting band
structure, defined below), in a large range of transition
metals, charge-transfer salts, heavy-fermion compounds, and
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elemental metals; a result which has since been verified in
many other materials [20–26].

Deviations from this predicted universal value of the
KWR could provide an indication of non-Fermi-liquid be-
havior. However, most previous calculations of the (modified)
KWR [8,10,14] have focused on simple, single-band models
with toy dispersion relations, e.g., spherical Fermi surfaces.

In this paper, we derive a modified KWR for Fermi liquids
with arbitrary dispersion relations, including band structures
with multiple bands crossing the Fermi surface (henceforth
when we refer to the number of bands in a material, this counts
only those bands that cross the Fermi level, since bands away
from the Fermi surface will only enter weakly via high-order
scattering terms). We find that the universality of the KWR
evident in the single-band expression is not a general feature of
the multiple-band case. In the most general case, the strength of
electronic correlations does affect the value of the KWR. This
is extremely puzzling as the KWR is found to be close to its
universal value in many multiband systems (see, in particular,
Fig. 2 of [14]). However, if the renormalization is the same in
all bands (in a sense made precise in Sec. V), then correlations
do cancel in the KWR.

Previous studies of the KWR in systems with orbital de-
generacy [27,28] or multiple bands [17] have found that either
of these can cause some variation in the KWR. However, this
body of work has assumed that the electronic correlations are
identical in all bands/orbitals. An important example, where
this may have led to an incorrect interpretation of the measured
KWR, is NaxCoO2. The large KWR was initially interpreted as
evidence of “giant electron-electron scattering” [18] without
any possible effects of multiple bands in this system [29,30]
or other material-specific factors such as the unit cell volume
or the dimensionality of the system [14,17].

We also demonstrate that in Dirac semimetals, the KWR
depends strongly on the carrier density n, RKW ∝ 1/n2. In
contrast, for a massive semimetal with an isotropic quadratic
dispersion, RKW ∝ 1/n7/3 [14]. In semimetals, the carrier
density is both small and tunable, allowing for a large variation
in n, and a direct test of this prediction.

The remainder of this paper is laid out as follows. In
Sec. II, we introduce the phenomenological local Fermi-liquid
theory on which our calculations are based. In Sec. III, we
calculate the resistivity of an arbitrary multiband Fermi liquid
by calculating the conductivity from linear response theory. In
Sec. IV, we calculate the effect of multiple bands on the heat
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capacity. In Sec. V, we combine these results to determine the
form of the Kadowaki-Woods ratio in arbitrary band structures.
In Sec. VI, we apply this form of the KWR to simple models
of Dirac semimetals.

II. PHENOMENOLOGICAL LOCAL
FERMI-LIQUID THEORY

There are two very different ways one might proceed
to evaluate the KWR. One could start from a microscopic
model for a specific material or class of materials and
proceed to evaluate the self-energy within some approximation
and thence the resistivity and heat capacity. Indeed, many
authors have taken this approach [6,8–11,27]. However, this
approach necessarily entails limitations; no single microscopic
Hamiltonian applies to all of the wide range of materials for
which the KWR has been measured. An alternative approach,
which we follow below, is motivated by the experimental
observation that the universality of the KWR seems to be a
feature of Fermi liquids in general, and so we wish to describe
the most general Fermi liquid possible. This motivates the
study of phenomenological forms of the self-energy for Fermi
liquids. Microscopic and phenomenological approaches to
the KWR are extremely complementary and, probably, both
are required for a complete understanding of what this ratio
tells us.

Miyake et al. [12] introduced a phenomenological form for
the self-energy of a single-band local Fermi liquid. The natural
generalization (see Supplemental Material [31]) of this model
to include multiple Fermi surfaces is to assume that in each
band ã = (a,σ ), where a denotes the band and σ the spin
(giving 2Nb spin bands), the imaginary part of the self-energy
takes the phenomenological form

�′′
ãã(ω) = − �

2τ0;ã
− sã

ω2 + (πkBT )2

(ω∗
ã)2

for |ω2 + (πkBT )2| < (ω∗
ã)2, (1a)

= −
(

�

2τ0;ã
+ sã

)
F

{[
ω2 + (πkBT )2

(ω∗
ã)2

] 1
2
}

for |ω2 + (πkBT )2| > (ω∗
ã)2, (1b)

where the energy ω is measured from the Fermi level, τ−1
0;ã is the

impurity scattering rate, sã is the maximum electron-electron
scattering rate compatible with a Fermi liquid (see below),
F (x) is a monotonically decreasing function with F (1) = 1
and F (∞) = 0, and ω∗

ã is an energy scale characterizing the
strength of the many-body correlations (we will show below
that the quasiparticle weight Zã ≈ ω∗

ã/4sã).
Equation (1) makes a number of important assumptions.

Therefore, it is important to understand why this is a reasonable
ansatz.

Local (momentum-independent) self-energy. Given a diag-
onal self-energy, the effective mass of the quasiparticles in the
ãth spin band of a Fermi liquid is given by

m∗
ã

mã

=
∣∣∣∣ 1 − ∂�′

ãã(k,ω)/∂ω

1 + ∂�′
ãã(k,ω)/∂εkã

∣∣∣∣
k=kF ; ω=0

, (2)

where �′
ãã(k,ω) is the real part of the self-energy for the

ãth spin band, mã is the bare (band) mass, εkã is the bare
dispersion, and kF is the Fermi energy [32]. The KWR is
of interest in strongly correlated materials where m∗

ã � mã ,
which implies |∂�′

ãã/∂ω| � 1 and hence that the frequency
dependence of the self-energy is of primary importance.
Furthermore, in this limit, it can be shown [33,34] that
m∗

ã/mã � 1/Zã , where the quasiparticle weight is Zã = [|1 −
∂�′

ãã(k,ω)/∂ω|k=kF ; ω=0]−1.
Further motivation for considering a local self-energy

comes from the successes of dynamical mean-field theory
(DMFT) [35,36]. First, it can be shown that in infinite dimen-
sions, the self-energy is exactly momentum independent [35].
Furthermore, in finite dimensions, one can construct a self-
consistent theory on the assumption of a local self-energy,
DMFT. This has been shown to give a good description of
many transport and thermodynamic properties of the metallic
states of materials discussed here—such as heavy fermions,
transition-metal oxides, and organic molecular crystals
[35–39]. Thus, the phenomenological theory constructed
from Eq. (1) can be motivated as a “poor man’s DMFT.”
A momentum-independent self-energy is also found in the
Fermi-liquid regime of Kotliar-Ruckenstein slave boson theo-
ries [40,41].

Low energy/temperature behavior. The assumption that the
metal is a Fermi liquid at low energies and temperatures places
significant constraints on the form of the low-energy part of the
self-energy. From this assumption, we have �′′ ∼ ω2, where
ω ≡

√
ω2 + (πkBT )2 [2,6]. The energy factor ω measures the

area of phase space available for an electron-electron scattering
process at zero temperature. The thermal factor includes the
extra phase space allowed by the thermal distribution of
electrons at finite temperature [42,43].

Maximum resistivity in the Fermi-liquid regime. The low-
energy quadratic growth of �′′ cannot continue indefinitely;
the fact that the self-energy is a causal response function means
that �′′ → 0 as ω → ∞. Furthermore, there is a maximum
resistivity compatible with a Fermi-liquid regime [37,44–47].
There are several ways one might estimate the value of this
maximum. Interestingly, the estimates below give the same
answer to within factors of order unity, suggesting a deep
underlying connection. (i) A Fermi liquid is characterized by
the coherent transport of quasiparticles. The Mott-Ioffe-Regel
limit states that for coherent transport, the mean free path
l � c ∼ 1/kF , where c is the lattice constant [37,44–47]. For
systems with relatively weak electron-phonon interactions, the
quadratic scattering rate observed persists up to the Mott-Ioffe-
Regel limit [23,39,48,49]. (ii) As the self-energy arises from
the elastic scattering of (coherent) quasiparticles, conservation
of particle number implies that the scattering cross section
cannot exceed the unitarity limit [7,50]. For s-wave scattering
at unitarity, only one length scale remains in the problem and
one finds that l � c ∼ 1/kF . It has been observed that the
scattering rate is of the order of the unitarity limit for s-wave
scattering in many strongly correlated systems, most notably
when Kondo physics is at play [7,12,42,51].

It is straightforward to show that (up to factors of order
unity) these constraints imply that the maximum imaginary
part of the self-energy consistent with a Fermi liquid is
�′′

ãã = sã = W 0
ã , where W 0

ã is the energy from the Fermi
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energy to the nearest band edge, i.e., it is approximately (but
typically less than) the bare half-bandwidth of the relevant
band, i.e., the scattering energy �/τ cannot exceed the energy
of a quasiparticle in a Fermi liquid. At times it will be helpful to
specialize to the quadratic dispersion relation appropriate for
free fermions, whence one finds, independent of the dimension
of the system, that sã = E0

F ã � nã/D0;ã , where E0
F ã is the bare

Fermi energy, nã is the density of charge carriers in band ã,
and D0;ã is the bare density of states in band ã at the Fermi
energy. For free fermions, we will choose the factor of order
unity so as to reproduce the one-band expression introduced
by Miyake et al. [12] and set sã = 2nã/3πD0ã .

We will not be concerned here with the details of what
happens once the scattering rate has reached the Mott-Ioffe-
Regel limit. However, for completeness, we note two important
possibilities: (i) resistivity saturation [52] and (ii) entering
the “bad metal” regime [36,37]. The latter is associated with
the absence of well-defined quasiparticles at high tempera-
tures [47] and is a clear indication that Fermi-liquid theory is
no longer applicable.

Interactions between electrons in different bands. Equa-
tion (1) is the natural form for a local Fermi liquid provided
interband interactions are weak compared to the intraband
interactions [53]. If the two are comparable (as in some
multiorbital models), then the self-energy is multiplied by an
additional factor of Nb − 1 [27].

Many-body correlations. The remaining issue to be deter-
mined is the size of the coefficient of the quadratic term in
�′′

ãã . This is the key issue that determines the strength of the
many-body correlations. It is mathematically convenient to
parametrize this as sã/(ω∗

ã)2 as this means that the maximum
resistivity compatible with a Fermi liquid is realized when
ω = ω∗. Thus, ω∗ parametrizes all of the many-body effects
present in the material.

High energies/temperatures. Fermi-liquid theory is an
effective low-energy theory and therefore has little to say about
the form of self-energy at high energies and/or temperatures.
Nevertheless, the Kramers-Kronig transformation, which we
will apply below, is a Hilbert transformation that extends
over all ω. Therefore, we do require some constraints on the
high-energy behavior. Here, we assume a monotonic decrease
in �′′ following Miyake et al. [12]. We will show in Sec. IV
[see particularly Eq. (11)] that reasonable changes in the
high-energy form of �′′ only change our results by factors of
order unity. This is because we only concern ourselves with the
low-energy limit of �′ relevant to Fermi-liquid quasiparticles,
so that when we perform the Kramers-Kronig transform, the
poles are restricted to the low-energy (quadratic) part of �′′.

Umklapp scattering. Below we focus on the pure limit,
τ0;ã → ∞. As normal electron-electron scattering conserves
momentum, an electrical resistance can only arise if there
are Umklapp processes [32]. However, it can be shown that
all scattering processes contribute to the resistance when
Umklapp processes are present [54,55].

III. CONDUCTIVITY FROM THE KUBO FORMULA

In general, the contribution to the intraband self-energy
from interband terms scales quadratically with the intraband
self-energy, such that, as long as the self-energy is small,

the intraband contribution will dominate (see Supplemental
Material [31]). When intraband scattering is the dominant
contribution to the scattering rate, the diagonal component
of the conductivity tensor, σxx , for a material with Nb bands
crossing the Fermi surface in the low-temperature limit is [56]

σxx = ue2
�

∫ ∞

−∞

d3k

(2π )3

∫ ∞

−∞

dω

4π

2Nb∑
ã

2πZãδ(ω − Zãωkã)

�′′
ãã(ω)

v2
kxã

×
[
dnf (ω)

dω

]
, (3)

where vkxã is the x component of the group velocity of an
electron in spin band ã, and u measures the extent to which
umklapp scattering processes allow the imaginary part of the
self-energy to contribute to the conductivity. As one expects
that u is O(1) [34,54,55], we henceforth set u = 1.

In Eq. (3), we have neglected vertex corrections. It is
well known that for electron impurity, scattering differences
between the single-particle lifetime and the transport lifetime
are accounted for by the effects of vertex corrections [32].
In the limit of vanishing vertex corrections, the two life-
times are equivalent, corresponding to the relaxation time
approximation [32]. It has been argued that the same is
true for electron-electron scattering [57]. Furthermore, in
infinite dimensions, where the self-energy is strictly local,
it can also be shown that there are no vertex corrections
to the conductivity [35,58], which suggests that the two
approximations are not independent. It is also interesting to
note that in many of the materials for which the KWR has been
studied, the transport and quasiparticle lifetimes do appear to
be very similar [59].

The sharply peaked derivative of the Fermi-Dirac distribu-
tion at low temperatures implies that

σxx ≈
2Nb∑
ã=1

e2
�
〈
v2

kxã

〉
2

∫ ∞

−∞

d3k

(2π )3 Zãδ(Zãμ − Zãωkã)

×
∫ ∞

−∞
dω

[ −1

�′′
ãã(ω)

][
−dnf (ω)

dω

]
, (4)

where 〈· · · 〉 indicates an average over the Fermi surface.
The conductivity is clearly then the sum, in series, of the
conductivities of the individual bands:

σxx =
2Nb∑
ã=1

σxxã =
2Nb∑
ã=1

e2
�
〈
v2

kxã

〉
2

D0;ã

×
∫ ∞

−∞
dω

[
1

�′′
ãã(ω)

][
dnf (ω)

dω

]
, (5)

where the bare density of states of band ã at the Fermi
level is D0;ã = (2π )−3

∫ ∞
−∞ d3k[δ(ωkã − μ)] and σxxã is the

conductivity of spin band ã. It immediately follows that if
interband scattering is neglected, the resistivities of the bands
must add in parallel, consistent with Matthiessen’s rule [1].

In the limit of vanishing impurity scattering, τ−1
0;ã → 0,

it follows straightforwardly from Eqs. (1) and (5) that the
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conductivity is given by

σxx = −
2Nb∑
ã=1

e2
�

2

D0;ã
〈
v2

0xã

〉
(ω∗

ã)2

sã

×
∫ ∞

−∞
dω

1

ω2 + (πkBT )2

dnf (ω)

dω
. (6)

After computing the energy integral, the A coefficient for
an Nb-band system is

A = 24k2
B

e2�

[
2Nb∑
ã=1

〈
v2

0xã

〉D0;ã(ω∗
ã)2

sã

]−1

=
(

2Nb∑
ã=1

A−1
ã

)−1

, (7)

and, thus, we see that the coefficients of the individual bands,
Aã , add in parallel.

IV. THE HEAT CAPACITY VIA KRAMERS-KRONIG
TRANSFORM

It follows from the extensivity of the heat capacity that in a
multiband system, the total heat capacity is given by the sum
in series of the heat capacity due to each individual band [1],

γ = Cel;Nb
(T )

T
= π2k2

B

3

2Nb∑
ã=1

D0;ã

Zã

= π2k2
B

3

2Nb∑
ã=1

D0;ã

[
1 − ∂�′

ãã(ω)

∂ω

]
. (8)

To determine how the heat capacity is influenced by interac-
tions and calculate the relevant γ coefficients, we need to first
find the real part of the self-energy in each band. In a Fermi
liquid, the self-energy is causal and limω→∞ �′′(ω) → 0; thus,
the self-energy satisfies the conditions for the Kramers-Kronig
relations in the frequency domain [13]. Knowledge of the form
of the imaginary part of the self-energy is therefore sufficient
to determine the real part, which appears in the definition of
the quasiparticle weight and therefore in the expression for the
heat capacity. The real part of the self-energy within each band
is then

�′
ãã(ω) = 1

π
P

∫ ∞

−∞
dω′ �

′′
ãã(ω′)

ω′ − ω

= −sã

π

{
P

∫ −ω∗
ã

−∞

dω′

ω′ − ω
F

[ |ω′|
ω∗

ã

]

+P

∫ ω∗
ã

−ω∗
ã

dω′

ω′ − ω

[
ω′2

(ω∗
ã)2

]

+ P

∫ ∞

ω∗
ã

dω′

ω′ − ω
F

[ |ω′|
ω∗

ã

]}
, (9)

where we have again taken the limit of vanishing impurity
scattering, and have restricted the pole of the integral, ω′ = ω,
to occur below the cutoff energy scale, |ω′| � |ω∗

ã| (i.e., we
consider only low-energy excitations). This second assumption
is reasonable because we are interested only in the low-energy
contributions to the specific heat. Nevertheless, it is important
to stress that the theory below, which is developed on the basis
of this assumption, will only be valid for ω < ω∗.

The second term in Eq. (9) contributes a logarithmic term
to the result, which we approximate by the lowest-order terms
in a Taylor-series expansion, while the first and third terms
contribute linearly to the self-energy. Neglecting terms of order
O(ω/ω∗

ã)3 and higher, we find that the real part of the self-
energy for a low-energy quasiparticle in band ã is

�′
ãã(ω) = −4sãω

πω∗
ã

ξ, (10)

where

ξ = 1

2

[
1 +

∫ ∞

1
dy

F (y)

y2

]
. (11)

It follows straightforwardly from the definition of F (y)
that 1/2 � ξ � 1; henceforth we take ξ = 1 for simplicity.
Inserting this expression for the real parts of the self-energy
into the heat-capacity expression (8), and taking the strong
scattering (4sã/πω∗

ã � 1) limit, which corresponds physically
to m∗ � m0, we obtain

γ = 4πk2
B

3

2Nb∑
ã=1

sãD0;ã

ω∗
ã

. (12)

Note that Eqs. (8) and (12) imply that ω∗
ã ≈ 4sãZã (=

4Zãnã/3πD0;ã for free electrons), which gives a straightfor-
ward interpretation of this energy scale.

V. THE KADOWAKI-WOODS RATIO

Taking the above expressions for A and γ in a multiple-band
system, given by Eqs. (7) and (12), we find that the KWR is
given by

RKW ;Nb
= A

γ 2
= 81

6π2e2�k2
B

⎡
⎣ 2Nb∑

b̃=1

〈
v2

0xb̃

〉D0;b̃(ω∗
b̃
)2

sb̃

⎤
⎦

−1

×
[

2Nb∑
ã=1

sãD0;ã

ω∗
ã

]−2

. (13)

Alternatively, one may define a new ratio,

A

γ 2
fx;Nb

= 81

4πe2�k2
B

, (14)

where we have defined an, in general, nonuniversal function
for an Nb-band Fermi liquid with the resistivity measured in
the x direction,

fx;Nb
= 3π

2

[
2Nb∑
ã=1

sãD0;ã

ω∗
ã

]2
⎡
⎣ 2Nb∑

b̃=1

〈
v2

0xb̃

〉D0;b̃(ω∗
b̃
)2

sb̃

⎤
⎦. (15)

For a single band with D0,↑ = D0,↓ = D0/2, s↑ = s↓ = s,
and ω∗

↑ = ω∗
↓ = ω∗, the f is universal (independent of the

strength of the electronic correlations), but remains strongly
dependent on the noninteracting band structure of the material,

fx;1 = 3π

2
s
〈
v2

0x

〉
D3

0 . (16)

Upon taking the free-electron expression for s, with n↑ =
n↓ = n/2, this expression simplifies to that calculated in
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Ref. [14]:

fx;1 = n
〈
v2

0x

〉
D2

0 . (17)

It is clear from comparing Eqs. (15)–(17) that the factor of v2
0x

arises from the resistivity, one factor of D0 comes from the
resistivity and two come from the square of the specific heat,
and the factor of s2 in the heat capacity squared is partially
canceled by the factor of 1/s in the resistivity. The remaining
factor of s ∼ n/D0 is for free electrons.

The inclusion of multiple Fermi-surface sheets significantly
complicates the form of fx;Nb

. Most importantly, ω∗
ã , which

describes the electronic correlations, does not cancel out of the
multiband expression as it does for the single-band KWR [14].
Therefore, our calculation predicts that the Kadowaki-Woods
ratio is not, in general, independent of electronic correlations.
This is rather surprising as observed values of the KWR
(including the values for many multiband systems) are in
almost universal agreement with the prediction from the
single-band calculation that electronic correlations do not
influence the KWR [14].

It is therefore important to ask how renormalization effects
might cancel in the multiband case and hence universality
might be recovered.

The simplest limiting case for which the effects of many-
body correlations cancel out of the KWR is when ω∗

ã is
independent of the band index ã. This is a straightforward
extension of the earlier assumption of the locality of the
self-energy, by assuming that it is independent of band index
as well as momentum. This assumption yields

fx;Nb
= 3π

2

[
2Nb∑
ã=1

sãD0;ã

]2
⎡
⎣ 2Nb∑

b̃=1

〈v2
0xb̃

〉D0;b̃

sb̃

⎤
⎦. (18)

Although this calculation has been performed with exactly
uniform correlation strengths for simplicity, clearly the result
will hold approximately while the correlation strengths are
close to uniform.

Other limits also produce a universal KWR. For example,
for free fermions, D0;b̃ ∝ nb̃ in any dimension, so if the
carrier density in one band is much larger than all others, the
correlations cancel from the KWR. But it seems unlikely that
this is relevant to the behavior of a broad range of materials.
Note, in particular, that if we have a single heavy band, it
will dominate the heat capacity, but be shorted out of the
resistivity. Thus, the limit of a single heavy band is far from
universal [for example, in the two-band case, the KWR is
scaled by a factor (ω∗

light/ω
∗
heavy)2 in the limit ω∗

light � ω∗
heavy].

Therefore, the above calculation seems to suggest that the
correlation strength (as measured by ω∗

ã = 4Zãsã ∼ ZãWã)
does not vary strongly between different bands in strongly
correlated systems.

If, further, all of the bands are identical, i.e., if the carrier
density n, the Fermi velocity 〈v2

0x〉, and density of states D0

are equal for all bands, as well as uniform ω∗, we have

fx;Nb
= N2

b

〈
v2

0x

〉
sD3

0 = N2
b fx;1, (19)

and

RKW ;Nb
= 81

4N2
b πe2�k2

B

〈
v2

0x

〉
sD3

0

= RKW ;1

N2
b

. (20)

Thus we see that the expression for the KWR in the single-band
case is modified by a simple factor of 1/N2

b .
At first glance, this expression appears rather similar to the

finding of Kontani et al. [27,28] that in the multiorbital periodic
Anderson model with No impurity states, the KWR is reduced
by a factor of 1/No(No − 1). However, closer examination
reveals that the results are actually very different. In particular
Kontani’s factor arises because of interorbital terms in the
self-energy, whereas our 1/N2

b factor arises purely from the
electronic structure. We do not obtain Kontani’s factor because
of our assumption that interband interactions are irrelevant at
low energies. In contrast, the model Hamiltonian studied by
Kontani [27] explicitly sets the intra- and interorbital interac-
tions to the same strength. Which approach is appropriate will
depend on the material. This therefore adds another layer of
nonuniversality to the KWR.

VI. DIRAC SEMIMETALS

The general expression, given by Eq. (14), can be applied to
systems of arbitrary band structure to calculate the generalized
Kadowaki-Woods ratio, taking into account the effects of
multiple bands. Even for materials where the quasiparticle
weight is similar for all bands, such efforts will, in general,
involve first-principles band structure calculations. In this
section, we calculate the KWR for a simple, linear dispersion
(εkã = �vF |k|) appropriate for Dirac semimetals. These mod-
els present analytically tractable and instructive examples of
complicated band structures for which the presence of multiple
bands is important (here, the number of bands may be taken
as equivalent to the number of Dirac cones, as each cone will
form a sheet in the Fermi surface). Furthermore, the multiple
Fermi surfaces are expected to be identical, allowing us to use
the simplified form of the KWR, and the carrier density will be
low, suggesting that correlations will play an important role.

We apply the KWR expression to a simple model of
a two-band Dirac semimetal, e.g., graphene or Cd3As2

[60–62]. The spatial symmetry between the two bands and
the spin symmetry simplifies the calculation greatly; applying
the expression for Nb identical bands, given by Eq. (19), and
taking the free-electron expression for s, we find

fx;2,D = 2n2

π�2
, (21)

so

A

γ 2
= 1

fx;2,D

81

4πe2�k2
B

= 81�

8e2k2
Bn2

. (22)

Note that fx;2,D is larger by a factor of N2
b = 4 than the

corresponding f in a single-band calculation with the same
dispersion. It is interesting to note that the Kadowaki-Woods
ratio for these materials depends straightforwardly on the
electronic density, which is tunable over a wide range via
chemical doping [61,62], providing a potential experimental
test of this expression.

VII. CONCLUSIONS

We have shown that, in general, the Kadowaki-Woods ratio
of a multiband local Fermi liquid is changed by electronic
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correlations. This is in marked contrast to the single-band
case, where the KWR is independent of the strength of
the electronic correlations. It is therefore puzzling that the
experimental data suggest that within classes of materials, the
KWR is remarkably consistent, and that the modified KWR
is remarkably consistent across many chemically diverse,
strongly correlated metals. The simplest explanation is that
the correlations are indeed very similar across all bands in
these materials. We have also shown that a nonparabolic
dispersion does not significantly alter the form of the KWR,
provided the fermions remain massive. In the case of uniform
renormalization across bands, we have further demonstrated

that RKW ∝ 1/N2
b in a system of Nb bands. In semimetals,

the low carrier density opens the possibility of large variations
in the carrier density, n. In Dirac semimetals, we have shown
that the massless fermion dispersion relations lead to RKW ∝
1/n2N2

b .
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