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Angle-dependent magnetoresistance oscillations of cuprate superconductors
in a model with Fermi surface reconstruction and magnetic breakdown
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We calculate angle-dependent magnetoresistance oscillations (AMRO) for interlayer transport of cuprate
superconductors in the presence of (π,π ) order. The order reconstructs the Fermi surface, creating magnetic
breakdown junctions; we show how such magnetic breakdown effects can be incorporated into calculations of
interlayer conductivity for this system. We successfully fit experimental data from an overdoped cuprate using
our model, showing that behavior previously attributed to anisotropic scattering in this material may in fact be
due to (π,π ) ordering. This work paves the way for the use of AMRO as a tool to distinguish ordered states that
have different ordering wave vectors.
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I. INTRODUCTION

Understanding the nature of broken symmetry phases in
the thermodynamic phase diagram of the cuprates is a key
step toward understanding the origin of high-temperature
superconductivity. For example, the discovery of the pseu-
dogap [1] has fueled the search for many kinds of order [2–7],
including nematic phases that could strongly enhance Tc [8].
Yet of the broken symmetries connected to unconventional
superconductivity, antiferromagnetism remains one of the
most important, appearing in cuprate, iron-pnictide, organic,
and heavy fermion materials [9–11].

Evidence of Fermi surface reconstruction arising from
broken symmetry order has come from quantum oscillation
measurements in both hole-doped [12–14] and electron-
doped [15] cuprates at low temperatures and high magnetic
fields, but the nature of the broken symmetry remains a matter
of considerable debate. Antiferromagnetic (π,π ) reconstruc-
tion has been proposed for both the hole- and electron-doped
materials [15,16], but recent evidence for a (possibly field-
induced) charge density wave [17–20] has suggested more
complex orders are driving the reconstruction.

The ability to experimentally differentiate between these
different ordered states is crucial. In this work, we suggest
that interlayer angle-dependent magnetoresistance oscillations
(AMRO) can be used to distinguish between long-range
ordered states in the cuprates that have different ordering wave
vectors. Angle-dependent magnetoresistance is a sensitive
probe of the Fermi surface of a material [21–25] and can
therefore be used to investigate the geometry of a reconstructed
Fermi surface. The measurement is also sensitive to the energy
scale of any (translational) symmetry-breaking order [26].
This energy scale is related to a “magnetic breakdown field,”
as we describe below. Importantly, these effects on AMRO
can be observed even in materials that do not show quantum
oscillations. Thus the measurement is useful in systems in
which sample disorder is high, or in which the order has a
small correlation length [5,6].
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AMRO data from Tl2Ba2CuO6+δ provided the earliest
transport evidence for the existence of a three-dimensional
Fermi surface in an overdoped cuprate [21]. The temperature
evolution of the AMRO is consistent with a superposition
of isotropic and anisotropic scattering rates about the Fermi
surface [27], and it was determined that these do not have the
same temperature dependence: the isotropic scattering rate
is quadratic with temperature (as expected of an ordinary
Fermi liquid), while the anisotropic scattering rate is linear
(connecting it to the non-Fermi liquid physics of the cuprate
phase diagram). Additionally, the anisotropic scattering is
strongest in the antinodal region of the Fermi surface.
Therefore it has been suggested that the anomalous scattering
temperature dependence may be related to (π,π ) fluctua-
tions [27–29], possibly originating from antiferromagnetism.
A similar anomalous scattering has been observed in over-
doped La2−xSrxCuO4 through angle-resolved photoemission
spectroscopy measurements and has been posited to arise from
antiferromagnetic fluctuations in that material [30]. We show
here that the introduction of (π,π ) order on the Fermi surface
of Tl2Ba2CuO6+δ will indeed affect the AMRO of this system
in a similar way to the introduction of anisotropic scattering.

We demonstrate this connection by simulating the AMRO
of a model cuprate material in the presence of antiferro-
magnetic order. The interpretation of AMRO measurements
requires efficient and versatile calculations of the magneto-
transport of a given Fermi surface so that models can be
compared to experimental results. These calculations are more
challenging in the presence of static order that reconstructs the
Fermi surface. We have developed a general method to perform
such calculations for quasi-two-dimensional (Q2D) materials
based on previous work in organic metals [31]. It is both easy
to implement and computationally inexpensive. In Sec. II we
use this method to calculate the interlayer magnetoresistance
of a tetragonal Q2D material in the presence of (π,π )
order and including the effects of magnetic breakdown. In
Sec. III we apply this model to the known Fermi surface of
Tl2Ba2CuO6+δ[21] and show that the temperature dependence
of the AMRO can be captured by this magnetic breakdown
model. In Sec. IV we discuss the physical consequences
of this model and its potential range of applicability for
distinguishing between different kinds of broken symmetry
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order in the cuprates. Our general method is laid out in detail
in Appendix A.

II. AMRO IN THE PRESENCE OF (π,π ) ORDER

As a first application of our method, we wish to understand
how the AMRO of the cuprates is affected by antiferromag-
netism. We therefore consider the case of a Q2D tetragonal
material under static (π,π ) antiferromagnetic order, though
noting that the model below does not depend on the origin of
the (π ,π ) order. As shown in Fig. 1(a), the original Brillouin
zone of such a material will have a square cross section with
primitive reciprocal lattice vectors along kx and ky ; we define
all azimuthal angles in this paper with respect to kx . In the
presence of (π,π ) order, the Brillouin zone is halved in cross
section, resulting in a reconstruction of the Fermi surface as
shown in Figs. 1(b) and 1(c). This new reconstructed Brillouin
zone will have primitive reciprocal lattice vectors along k′

x and
k′
y , which are rotated by 45◦ with respect to kx and ky .

Quasiparticles traversing the Fermi surface will Bragg
diffract at the reconstructed Brillouin zone boundaries, so
they will travel along three distinct Fermi surface pockets as
shown in Fig. 1(d). However, in a large magnetic field, the
quasiparticle path in real space may be curved sufficiently to
avoid Bragg diffraction. This is known as magnetic breakdown

kx

ky
kx’ky’ kx’ky’

kx’ky’

FIG. 1. (Color online) Fermi surface reconstruction of a Q2D
material under (π , π ) antiferromagnetic order, as viewed along kz.
(a) The Fermi surface (FS) and first Brillouin zone (BZ) of a Q2D
tetragonal material; (b) the reconstructed BZ and (c) reconstructed
FS of the material following the onset of (π,π ) antiferromagnetic
order; (d) the repeated-zone view of the reconstructed FS, illustrating
the small cross sections of FS that have replaced the unreconstructed
cylindrical FS. The gray line illustrates Bragg diffraction between
two magnetic breakdown junctions at the BZ boundary. The angle ξ

is also defined here; it will be used in our conductivity calculations.

(MB) and can be thought of as a tunneling in k space from one
pocket to the next [26]. The probability to tunnel in this way
is given by p = e−B0/B , where B0 is the breakdown field and
is a material-dependent constant proportional to the gap in k

space between Fermi surface sections [32]. At every instance
the quasiparticle path reaches a Brillouin zone boundary,
the quasiparticle may either Bragg diffract or undergo MB;
thus such points in the quasiparticle path are known as MB
junctions. As can be seen in Fig. 1(d), the system in question
has eight MB junctions.

We must take the effect of these MB junctions into
account when calculating conductivity. The conductivity of
a Q2D material in a magnetic field can be calculated using
the Shockley tube integral form of the Boltzmann transport
equation [33],

σαβ = e2

4π3�2

m∗

ωc

∫
dkB

∫ 2π

0
vα(ϕ0,kB)dϕ0

×
∫ ∞

ϕ0

vβ(ϕ,kB)e−(ϕ−ϕ0)/ωcτ dϕ, (1)

where ϕ0 is the initial azimuthal position of the quasiparticle
and ϕ is its position after some time t has passed [34]. The
effective mass of the quasiparticle is represented by m∗ and the
cyclotron frequency is ωc = eB/m∗. The velocities in Eq. (1)
are Fermi velocities.

The vector kB points parallel to the magnetic field and
defines the orbital path of a quasiparticle. We integrate across
all values of its magnitude. For a given magnitude, the tip of
the vector will touch a single quasiparticle orbit which can
be defined by k0

z , the kz position of the orbital plane at the
center of the Fermi surface (see Fig. 2). The magnetic field’s
direction is defined by a polar angle (θ ) with respect to kz

and an azimuthal angle (φ) with respect to kx . We can write
|kB | = k0

z cos(θ ) and therefore convert our integral over kB to
one over k0

z .
Note that both m∗ and ωc depend on the orientation of

the applied magnetic field. Specifically, m∗ = m∗
0/ cos(θ ) and

ωc = ω0 cos(θ ), where m∗
0 and ω0 are the cyclotron effective

mass and cyclotron frequency at θ = 0 [35].
Since AMRO is a probe of interlayer conductivity, we want

to calculate σzz. This means we need an expression for vz,
which we can obtain from a symmetry-constrained model of
the Fermi surface. The following equation describes a Q2D
Fermi surface of a layered tetragonal material with simple
cosine warping along kz [21,36]:

EF (kz,ϕ) = �
2k

‖2
F (ϕ)

2m∗ − 2t⊥a

π
cos

(
kzc

2

)
F (ϕ). (2)

In the above, t⊥ is the interlayer hopping, while k
‖
F (ϕ) and F (ϕ)

parameterize the Fermi surface in the azimuthal cylindrical
coordinate. The in-plane and out-of-plane lattice parameters
are denoted by a and c, respectively. Using vz = 1

�

dE(k)
dkz

, we
find the interlayer velocity to be

vz(k,ϕ) = t⊥ac

π�
sin

(
kzc

2

)
F (ϕ). (3)

When a quasiparticle Bragg diffracts at the Brillouin
zone boundary it will have a momentum change given by a
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FIG. 2. When a magnetic field is applied to a Q2D material,
quasiparticles will trace out orbits on the cylindrical Fermi surface
that are perpendicular to the applied field. On the lowest orbit in this
figure, we define the parameters k0

z and kB . On the upper two orbits,
we illustrate the fact that a quasiparticle undergoing Bragg diffraction
moves to a different cross section of the Fermi surface. The dashed
lines represent the Brillouin zone boundaries for the reconstructed
Fermi surface. Note that the azimuthal angle φ is defined with respect
to kx of the unreconstructed system.

reciprocal lattice vector, so its momentum in the z direction
will not change. The quasiparticle will jump to a different
“slice” of the Fermi surface [31], changing its value of k0

z but
preserving kz (see Fig. 2). The amount by which k0

z changes
after Bragg diffraction depends on which MB junctions are
involved; for each pair of MB junctions, the value of kz can
be calculated using purely geometric means (see Appendix C).
Therefore we can see that for a given quasiparticle

kz(ϕ)=k0
z − k

‖
F (ϕ) tan(θ ) cos(ϕ − φ) +

8∑
j=1

nj (ϕ)k(j )
z , (4)

where k
(j )
z is the amount by which k0

z changes each time
the quasiparticle Bragg diffracts from the j th MB junction,
and nj is the number of times Bragg diffraction occurs from
that junction [31]. Note that we have neglected the influence
of the interlayer warping on particle motion; we assume the
interlayer warping is much weaker than the in-plane warping,
so this is a reasonable omission except for θ ≈ 90◦. Setting

nj (ϕ0) = 0 we find

σzz = m∗ cos(θ )

ωc

∫ 2π/c

−2π/c

dk0
z

∫ 2π

0
dϕ0 F (ϕ0) sin

[
ckz(ϕ0)

2

]

×
∫ ∞

ϕ0

dϕ F (ϕ) sin

[
ckz(ϕ)

2

]
e−(ϕ−ϕ0)/ωcτ (5)

up to a constant of proportionality.
Performing the integration over k0

z , we arrive at

σzz = 2π

c
× m∗ cos(θ )

ωc

∫ 2π

0
dϕ0 F (ϕ0)

∫ ∞

ϕ0

dϕ F (ϕ)

× cos

⎛
⎝−G(ϕ) + c

2

8∑
j=1

nj (ϕ)k(j )
z + G(ϕ0)

⎞
⎠

× e−(ϕ−ϕ0)/ωcτ , (6)

where we define G(ϕ) ≡ c
2 × k

‖
F (ϕ) tan(θ ) cos(ϕ − φ).

We neglect the constant prefactor and use cos(x) = Re[eix]
to write

σzz = m∗ cos(θ )

ωc

Re

[ ∫ 2π

0
dϕ0 F (ϕ0)

∫ ∞

ϕ0

dϕ F (ϕ)

× ei[G(ϕ)−G(ϕ0)]e−(ϕ−ϕ0)/ωcτ e

−ic
2

8∑
j=1

nj (ϕ)k
(j )
z

]
. (7)

Note that the value of the integrand changes whenever the
quasiparticle undergoes Bragg diffraction, due to the term∑

nj (ϕ)k
(j )
z . In order to evaluate this integral, we must be

able to account for all possible trajectories of each quasi-
particle. Falicov and Sievert developed a method to handle
such integrals when calculating in-plane conductivity [37],
and recently Nowojewski et al. adapted their method to be
used for AMRO [31].

Following the methods of Ref. [31], we separately consider
the motion of quasiparticles starting in the eight different
segments of the Fermi surface, then sum their contributions
to the conductivity. To do so, we rewrite the above integral in
a vectorized form:

σzz = m∗ cos(θ )

ωc

× Re{λϕ0 · [λinit + �(I − �)−1λϕ]}. (8)

In this equation, the dot product with λϕ0 sums up all the
possible initial positions of the quasiparticle, λinit describes
the initial motion of the quasiparticle up to an MB junction,
and λϕ describes the contribution to conductivity when the
quasiparticle is between MB junctions. For our system, each
vector has eight elements; the j th element of each vector is
defined as follows:

λϕ0 [j ] ≡ e−Mj /ωcτ

∫ Mj+1

Mj

dϕ0F (ϕ0)eϕ0/ωcτ e−iG(ϕ0)

λϕ[j ] ≡ eMj /ωcτ

∫ Mj+1

Mj

dϕF (ϕ)e−ϕ/ωcτ eiG(ϕ) (9)

λinit[j ] ≡ eMj /ωcτ

∫ Mj+1

ϕ0

dϕF (ϕ)e−ϕ/ωcτ eiG(ϕ),
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where

M ≡ π

4
− ξ +

[
0, 2ξ,

π

2
,

π

2
+ 2ξ, π, π + 2ξ,

3π

2
,

3π

2
+ 2ξ, 2π

]
(10)

is a vector giving the azimuthal position of each MB junction and the angle ξ is defined in Fig. 1(d).
The matrix � accounts for the connections between orbit segments, as well as the exponential damping of the integrand upon

traversing a segment of Fermi surface. For our system, it is an 8 × 8 matrix:

� ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ap 0 0 aqe− i
2 k

(2)
z 0 0 0

0 0 bp 0 0 0 0 bqe− i
2 k

(3)
z

0 0 0 ap 0 0 aqe− i
2 k

(4)
z 0

0 bqe− i
2 k

(5)
z 0 0 bp 0 0 0

aqe− i
2 k

(6)
z 0 0 0 0 ap 0 0

0 0 0 bqe− i
2 k

(7)
z 0 0 bp 0

0 0 aqe− i
2 k

(8)
z 0 0 0 0 ap

bp 0 0 0 0 bqe− i
2 k

(1)
z 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where q = 1 − p and we have defined a ≡ e−2ξ/ωcτ and
b ≡ e−(π/2−2ξ )/ωcτ . See Appendix A for an explanation of the
elements of �.

As a simplification, we have assumed that the gaps that open
in the Fermi surface upon reconstruction are of a negligible
length in k space: we take the MB junction that ends one
section of the Fermi surface to be in the same position as the
MB junction that begins the next section.

With σzz in this vectorized form, we can quickly calculate
numerical values for the conductivity with varying θ and φ.

III. APPLICATION TO A CUPRATE SUPERCONDUCTOR

We are now in a position to apply this model to a real system.
We focus on Tl2Ba2CuO6+δ , since this is the cuprate that has
been studied the most with AMRO [21,27,36,38]. As described
by Hussey et al. [21], the Fermi surface of Tl2Ba2CuO6+δ can
be parameterized by k

‖
F (ϕ) ≡ k00 + k40 cos(4ϕ) and F (ϕ) ≡

k21 sin(2ϕ) + k61 sin(6ϕ) + k101 sin(10ϕ). The coefficients kmn

label an expansion of the Fermi surface in cylindrical har-
monics appropriate for the space group symmetry of this
material [36].

The AMRO of an unreconstructed Fermi surface can be
produced by setting B0 = 0, as shown in Figs. 3(a)–3(d) for
two convenient values of ω0τ . Note that ω0τ = 0.5 reproduces
the experimental AMRO observed by Hussey et al. at 4.2 K
[21]. The AMRO for a system with (π,π ) antiferromagnetic
order is shown in Figs. 3(e)–3(h). This shows many qualitative
differences with the unreconstructed state. The peak at θ = 0
is strongly suppressed in the reconstructed Fermi surface. In
addition, there are more Yamaji angles (peaks in the AMRO)
for low polar angles θ in the unreconstructed state than the
reconstructed state.

The evolution of the AMRO as we go from B0/B ≈ 0 to
B0/B = 10 for ω0τ = 0.5 bears a striking resemblance to the
evolution of the AMRO in Tl2Ba2CuO6+δ with increasing tem-
perature, most notably the disappearance of the hump at θ = 0
[27,39]. This seems surprising, given that Tl2Ba2CuO6+δ

is not known to exhibit any static antiferromagnetic order,

though it has been shown to have strong antiferromagnetic
fluctuations [40].

We explore the possibility that our AMRO calculations can
capture some of the physics of Tl2Ba2CuO6+δ . Using the form
of σzz above, we have produced simulations of out-of-plane
resistivity as a function of angle using existing data for a sam-
ple with Tc = 15 K reported in Ref. [38]. The low-temperature
(4.2 K) AMRO of Tl2Ba2CuO6+δ is well fit by a simple model
with no antiferromagnetic order (B0 = 0), and using this data
the functions k

‖
F (ϕ) and F (ϕ) that describe the Fermi surface

can be fully determined in good agreement with previous
work [21,27,36,38]. See Appendix D for more information
on our determination of these parameters. We used geometric
methods to solve for ξ and k

(j )
z in this system, as explained in

Appendixes B and C, respectively. To study the temperature-
dependent AMRO above 4.2 K, we allowed only two free
parameters: ω0τ and B0. Note that in contrast to Ref. [38], ω0τ

is fixed to be isotropic with azimuthal angle ϕ. We ran simula-
tions across a large range of parameter space and used a least-
squares fitting approach to determine the values of ω0τ and B0

at each temperature. Our best fit to the data is shown in Fig. 4,
showing excellent quantitative agreement with the AMRO of
Tl2Ba2CuO6+δ . The temperature dependence of ω0τ and of B0

as determined from the fits to data are shown in Fig. 5.
As can be seen in Fig. 3, more features are apparent in the

AMRO when ω0τ is higher, making it easier to distinguish
the effects of changing B0. If ω0τ is decreased (by lowering
magnetic fields, raising temperatures, or lowering sample
quality), each quasiparticle will traverse less of the Fermi
surface before it scatters. As illustrated in Fig. 6 of Ref. [41],
this causes the amplitude of AMRO to be reduced, which
makes an accurate determination of B0 more difficult. Thus the
error of our fitting parameters is greater at higher temperatures.
Indeed, Ref. [38] includes AMRO data taken at 90 and 110 K,
but we were not able to accurately determine B0 at those
elevated temperatures.

While Ref. [38] reproduced the observed AMRO using
an anisotropic scattering rate, we find good quantitative
agreement with the data using a magnetic breakdown model
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FIG. 3. (Color online) Calculated dimensionless resistivity of Tl2Ba2CuO6+δ as a function of the orientation of applied magnetic field for
different values of B0/B and ω0τ . We plot resistivity in units of π 4

�
4ω0/m∗

0c(aet⊥k21)2 so that it is dimensionless. The resistivity in plots
(a, b) and (e, f) is scaled up by a factor of 5 for visual clarity. (a, c, e, g) Interlayer resistivity as a function of both θ and φ. (b, d, f, h) Interlayer
resistivity as a function of θ for select values of φ; these azimuthal angles were chosen to facilitate comparison to Ref. [21].

with an isotropic scattering rate. Bragg scattering at a MB
junction mimics the effect of an anisotropic scattering rate
on an unreconstructed Fermi surface. However, importantly,
the magnetic breakdown model connects specific parts of
the Fermi surface in a single (Bragg) scattering event, while

˚

˚

FIG. 4. (Color online) Temperature dependence of the interlayer
AMRO of overdoped Tl2Ba2CuO6+δ (Tc = 15 K) at a fixed field of
45 T and a fixed azimuthal direction of φ = 7◦. The solid lines are
c-axis magnetoresistivity data, taken from French et al. [38]. These
data have been normalized to the zero-field resistivity of the sample
at each temperature. The dashed lines are simulations of AMRO for
Tl2Ba2CuO6+δ under antiferromagnetic order, calculated as described
in the text. The simulations have been scaled to match the data at
θ = 0◦ for each temperature. When producing these simulations, all
the parameters related to Fermi surface geometry were fixed and the
only parameters allowed to vary with temperature were ω0τ and B0.

the anisotropic scattering rate is a broad modulation of the
quasiparticle lifetime about the Fermi surface. The similarity
of the two models in reproducing the AMRO suggests that
the apparent anisotropic scattering rate is a symptom of an-
tiferromagnetism, perhaps involving short-range fluctuations.
This could explain the different temperature dependence of
the isotropic and anisotropic components of the scattering rate
observed in Ref. [27].

IV. DISCUSSION

The behavior of ω0τ in Fig. 5(a) indicates a natural
(approximately linear) increase in the scattering rate with
temperature. The evolution of B0 may reflect deeper physics.
As shown in Fig. 5(b), B0 increases quickly with temperature,
peaking at around 45 K. The parameter B0 is a measure of

FIG. 5. (Color online) Temperature dependence of (a) 1/ω0τ and
(b) B0 extracted from fits to data. Error bars are standard errors
extracted from the covariance matrix of the least-squares fitting at
each temperature (see Appendix D).
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the probability of Bragg scattering. For a static reconstructed
Fermi surface, this is related to the separation between
reconstructed sections, which is in turn proportional to the
band gap [26]. Therefore under static reconstruction we
would expect B0 to be largest at 0 K and decrease weakly
with increasing temperature [26,42]. In the presence of
antiferromagnetic fluctuations, similar scattering events might
still occur at points where the reconstructed Brillouin zone
intersects the Fermi surface. In this case, B0 will play two roles:
in addition to parameterizing the separation between sections
of Fermi surface, it also reflects the probability of Bragg
scattering within the time/length scale of the fluctuations [43].
Note that in the overdoped cuprates, there is a known
crossover in the transport from Fermi-liquid–like to non-
Fermi-liquid–like behavior with increasing temperature that is
thought to be associated with critical fluctuations [44]. In this
picture, the increase of B0 with temperature seen in Fig. 5(b)
can be interpreted as an increase in antiferromagnetic fluc-
tuations. As the temperature rises and antiferromagnetic
fluctuations grow, quasiparticles have a nonzero chance of
undergoing Bragg diffraction when they reach MB junctions,
so B0 attains a nonzero value. At still higher temperatures, the
antiferromagnetic correlation time is so short that the effect
of Bragg scattering decreases, resulting in a decrease in B0.
The evolution of B0 looks strikingly similar to the evolution of
the imaginary part of the dynamic susceptibility Imχ (which
is a measure of the magnetic scattering) seen in a number of
neutron experiments in cuprate superconductors; consider, for
example, Fig. 10 of Ref. [45]. We therefore suggest that the
temperature dependence of B0 in Fig. 5(b) reflects the effect
of antiferromagnetic fluctuations on the magnetotransport.

For the above to be plausible, the antiferromagnetic fluc-
tuations of the system should be on a long enough time scale
to affect the quasiparticles’ motion about the Fermi surface:
the time scale of an antiferromagnetic fluctuation should be
longer than the time it takes for a quasiparticle to traverse a
section of Fermi surface from one MB junction to the next. The
antiferromagnetic fluctuations in La2−xSrxCuO4 near optimal
doping have a frequency that is roughly linearly proportional
to temperature [46]. Taking this as a guide, we estimate that
the time scale of an antiferromagnetic fluctuation will be of
the order τAF ∼ �

kBT
. Meanwhile, the time for a quasiparticle

to cross the smallest section of Fermi surface between two MB
junctions is given by τQP ∼ 1

ωc

π/2−2ξ

2π
. Therefore our condition

τAF > τQP is equivalent to

�ωc >
π/2−2ξ

2π
kBT . (11)

For this system the requirement is approximately
ωc

T
> 3.6 × 109 s−1 K−1. (12)

Using m∗ ≈ 5me [47], we find ωc ≈ 1.6 × 1012 s−1 at 45 T and
with θ = 0◦. Therefore antiferromagnetic fluctuations could
be expected to affect quasiparticle motion up to T ≈ 400 K,
much higher than the temperature regime studied in this paper.

The magnetic breakdown picture of the effect of antifer-
romagnetic fluctuations on AMRO could be substantially im-
proved by including a more realistic model of the MB junctions
in a fluctuating system that includes, for example, a distribution
of ordering wave vectors about (π,π ) [16]. Nevertheless,

this simple model captures many of the important features
observed in the temperature-dependent AMRO without the
need for a multicomponent scattering with a different nodal
and antinodal temperature dependence [27,36,38]. This model
may also prove useful for understanding further transport
properties of Tl2Ba2CuO6+δ (see Appendix E). Moreover, our
results suggest there is a potential link between B0 and the
dynamic susceptibility Imχ . If this connection can find a sound
theoretical basis, it may open the way for the use of AMRO as
an experimental probe of magnetic scattering.

V. CONCLUSION

We have developed a simple and computationally in-
expensive numerical method to calculate AMRO in lay-
ered two-dimensional materials with (π,π ) antiferromag-
netic order. This model can be applied to both hole- and
electron-doped cuprates with an appropriately adjusted Fermi
surface parametrization for direct comparison with experi-
mental data. In addition, our numerical method can easily
be applied to states other than (π,π ) ordering, such as
the charge-ordered states recently proposed in underdoped
YBa2Cu3O6+δ [6,17,18,20] and HgBa2CuO6+δ [48]. We have
shown that an antiferromagnetic Fermi surface reconstruction
with a temperature-dependent magnetic breakdown field can
fit the AMRO of Tl2Ba2CuO6+δ , an overdoped compound
with no static order. The agreement between our fits and the
AMRO data suggests that the features attributed to scattering
anisotropy in these systems [27,36,38] may in fact be due to
fluctuations of a (π,π ) ordering such as antiferromagnetism,
and indeed that the MB field B0 can potentially be used as
an experimental measure of such fluctuations. This would
make AMRO a good complement to scattering probes of
fluctuations, such as neutron scattering and resonant inelastic
x-ray scattering. We propose that future AMRO experiments
at higher magnetic fields and in materials where Imχ has been
determined independently by neutron scattering would provide
an instructive comparison to test the validity of this connection.
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APPENDIX A: GENERAL METHOD FOR CALCULATING
CONDUCTIVITY WITH MAGNETIC BREAKDOWN

In this Appendix we describe a step-by-step method to
calculate σzz in a Q2D material with magnetic breakdown
effects.
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(1) Consider the full, warped-cylindrical Fermi surface that
would exist were the Fermi surface not reconstructed. Using
existing data or theories, determine a likely form of this Fermi
surface as a function of kz and ϕ. This may be exactly fixed or
it may contain free parameters to be fitted.

(2) Use the Fermi surface to determine vα(k,ϕ) and
vβ(k,ϕ) for the element σαβ in question. Note that vx and
vy are not simply proportional to kx and ky for a noncircular
Fermi surface; see the section on in-plane transport below.

(3) Insert these velocities into the Boltzmann transport
equation as given in Eq. (1) of the main text. Wherever kz

appears in the integrand, replace it with the following function
of ϕ:

kz(ϕ) = k0
z − k

‖
F (ϕ) tan(θ ) cos(ϕ − φ) +

∑
j

nj (ϕ)k(j )
z .

(A1)

(4) Replace the integral over kB with an integral over k0
z

multiplied by cos(θ ), and perform the integration over k0
z .

At this point, it should be possible to write the Boltzmann
transport equation in the form

σαβ = C1

∫ 2π

0
dϕ0 f1(ϕ0)

∫ ∞

ϕ0

dϕ f2(ϕ)e
C2

∑
j

nj (ϕ)k
(j )
z

, (A2)

where f1 and f2 are functions, and C1 and C2 are constants.
Note that C2 will be zero if β = x or y.

(5) Determine geometrically where the Fermi surface will
intersect the (reconstructed) Brillouin zone. These points are
the magnetic breakdown junctions. Write a vector, M, giving
the azimuthal position of each junction and ending at the
location of the first junction plus 2π . Be sure that the definition
of ϕ = 0 for this vector is consistent with the definition of
ϕ = 0 for the Fermi surface warping. The length of M will
be n + 1, where n is the number of MB junctions around the
Fermi surface.

(6) Define three vectors of length n as follows:

λϕ0 [j ] ≡ e−Mj /ωcτ

∫ Mj+1

Mj

dϕ0 f1(ϕ0)

λϕ[j ] ≡ eMj /ωcτ

∫ Mj+1

Mj

dϕ f2(ϕ) (A3)

λinit[j ] ≡ eMj /ωcτ

∫ Mj+1

ϕ0

dϕ f2(ϕ).

(7) Define the n × n matrix �. Each row (column) of �

corresponds to a specific section of the Fermi surface between
two MB junctions. The first row of � corresponds to the section
between the first and second MB junctions, as defined in the
vector M; the second row corresponds to the section between
the second and third MB junctions; and so on. The elements
in each row are as follows:

�ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if section i has no connection to section j

aip if section i is connected to section j through magnetic breakdown
(i.e., the quasiparticle on section i goes to section jby following the
full cylindrical Fermi surface)

ai(1 − p)eC2k
(i+1)→j
z if section i is connected to section j through Bragg diffraction

(i.e., the quasiparticle on section i goes to section j by following the
reconstructed Fermi surface),

(A4)

where p = e−B0/Bcos(θ) is the magnetic breakdown probability,
and ai ≡ e−(Mi+1−Mi )/ωcτ . The term ai accounts for the damping
of our integrand as the quasiparticle traverses the ith section of
the Fermi surface. Note the term k

(i+1)→j
z : after traversing the

ith section of the Fermi surface, the quasiparticle would Bragg
diffract from the (i + 1)th magnetic breakdown junction. The
terms k

(i+1)→j
z can be calculated as described in Appendix C

below.
(8) Using the objects defined above, calculate the conduc-

tivity for a given direction of the applied field:

σαβ(θ,φ) = C1 × Re{λϕ0 · [λinit + �(I − �)−1λϕ]}. (A5)

Note that the dot product λϕ0 · λinit yields a double integral
over ϕ0 and ϕ and must be evaluated as such.

APPENDIX B: CALCULATING ξ

The angle ξ is defined as shown in Fig. 6. If the Fermi
surface were completely cylindrical, it would obey

cos(ξ ) = π

aAFkF

,

where aAF is the in-plane lattice parameter of the antiferromag-
netically ordered system and kF is the Fermi momentum. We
may neglect the interlayer warping of the Fermi surface, which
is relatively weak, but not the in-plane warping. Therefore we
have the relation

cos(ξ ) = π

aAF [k00 + k40 cos(4ξ )]
,

which can be solved self-consistently for ξ . We know that
aAF = √

2a. We use a = 0.386 6 nm, as given by Analytis
et al. [36]. We use k00 = 7.30 nm−1 and k40 = −0.234 nm−1.
These are the values found by French et al. from fitting their
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kx’ky’

FIG. 6. (Color online) The angle ξ is defined with respect to the
reconstructed Fermi surface of Tl2Ba2CuO6+δ . The Fermi surface is
shown in the repeated zone scheme, with the reconstructed Brillouin
zone overlaid.

4.2-K AMRO data [38] and they are consistent with the results
of our fits (see above). Using these values, we find ξ ≈ 40.18◦.
Due to uncertainty in the Fermi surface fits, we cannot calculate
ξ with accuracy beyond two significant digits. We therefore
round to ξ = 40◦ for use in our fits to high-temperature data.

APPENDIX C: CALCULATING �k( j )
z

As stated in the main text, we can define a vector giving the
azimuthal position of each magnetic breakdown (MB) junction
as follows:

M ≡ π

4
− ξ +

[
0, 2ξ,

π

2
,

π

2
+ 2ξ, π,π

+ 2ξ,
3π

2
,

3π

2
+ 2ξ, 2π

]
. (C1)

The position of these MB junctions on the (unreconstructed)
Fermi surface is shown in Fig. 7.

= 0

kx’ky’

1
8

6 7

4
5

23

FIG. 7. (Color online) Position of the eight magnetic breakdown
junctions on the Fermi surface of Tl2Ba2CuO6+δ under (π,π ) order.
The reciprocal space axes shown correspond to the reconstructed
Brillouin zone.

To find the values of k
(j )
z , we must know where a

quasiparticle goes when it experiences Bragg diffraction at a
given MB junction. To determine this, we need only see which
MB junctions are connected by reciprocal lattice vectors of the
reconstructed Brillouin zone. They are the following: 1 ↔ 6,
2 ↔ 5, 3 ↔ 8, 4 ↔ 7.

An easy way to understand these pairings is to examine the
small Fermi surface orbits that the quasiparticle will follows
if it Bragg diffracts at every junction (see Fig. 8).

As stated in the main text, a quasiparticle undergoing
Bragg diffraction in this system will have k(i)

z = k
(f )
z . We

neglect the weak interlayer warping of the system; then for a
quasiparticle on a particular slice of the Fermi surface, we can
write

kz(ϕ) = k0
z − k

‖
F (ϕ) tan(θ ) cos(ϕ − φ). (C2)

This leads to the condition

k0(i)
z − k

‖
F (ϕi) tan(θ ) cos(ϕi − φ)

= k0(f )
z − k

‖
F (ϕf ) tan(θ ) cos(ϕf − φ), (C3)

and therefore

k(i→f )
z = k0(f )

z − k0(i)
z

= tan(θ )[k‖
F (ϕf ) cos(ϕf − φ) − k

‖
F (ϕi) cos(ϕi − φ)].

(C4)

Since ϕi and ϕf are given by the vector M, we now have
everything we need to solve for k

(i→f )
z for each possible

Bragg diffraction. For example, if a quasiparticle is going
from MB junction 1 to MB junction 6 we have ϕi = π

4 −
ξ and ϕf = π

4 − ξ + π + 2ξ = 5π
4 + ξ . We can use these to

solve for k(1→6)
z , which we denote as k(1)

z for the sake of
brevity.

APPENDIX D: PARAMETER FITTING AND ERROR BARS

We would expect the parameters kmn to be constant with
temperature, as they describe the Fermi surface geometry.
Therefore we can fit these parameters from our 4.2-K data,
since we do not expect reconstruction and magnetic breakdown
to occur at this temperature. From band structure calcula-
tions [49] and from previous AMRO studies [21], we expect
this material to have no c-axis dispersion along the zone
diagonals, as well as along the lines kx = π and ky = π .
In order for this to be realized, it must be the case that
1 − k61/k21 + k101/k21 = 0 [50].

We simulated conductivity for a wide swath of parameter
space and used a least-squares fitting to data to arrive at
the following: k00 = 7.34 nm−1, k40 = −0.25 nm−1, k61/k21 =
0.69 (and therefore k101/k21 = −0.31) [51].

Simultaneously with fitting the Fermi surface geometry, we
used the 4.2-K data to fit for the misalignment of the crystal
with respect to the magnetic field; see Analytis et al. for details
on the significance and calculation of this misalignment [36].
We obtained the best fits to data from �asym = −0.6◦,
�x

asym = −2.5◦, and �
y
asym = −2.8◦.

Once we have fit these parameters at 4.2 K, the only pa-
rameters free to fit for the data as a function of temperature are
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FIG. 8. (Color online) Three small Fermi surface pockets are formed when the Fermi surface of Tl2Ba2CuO6+δ is reconstructed under
(π,π ) order.

B0 and 1/ω0τ . For each temperature we simulated conductivity
across a broad range of B0 and 1/ω0τ and used a least-squares
fitting to arrive at the following values for the best fits to
data:

T (K) B0 (T) 1/ω0τ

4.2 0a 2.50
14 2.5 2.65
32 6.8 3.06
40 8.1 3.28
50 8.6 3.52
70 7.2 4.26

aWe assumed B0 = 0 at 4.2 K in order to perform our fits for
Fermi surface geometry and alignment.

The error bars shown on B0 and 1/ω0τ in the main text are
the standard error of those parameters. At each temperature,
the values of B0 and 1/ω0τ that give the best fit to data are those
for which the sum of squared error (SSE) between data and
simulation is minimized. We can fit the SSE to a functional
form in terms of B0 and 1/ω0τ about that minimum. We use this
functional form to approximate the Hessian matrix for these
two parameters, the inverse of which is the covariance matrix,
C . The standard error for each parameter is then simply given
by

√
C ii/(N−2), where N is the number of data points we used for

the fitting at that temperature (and two is the number of param-
eters we fit). Which diagonal element of C corresponds to each
parameter depends on how we construct the Hessian matrix.

APPENDIX E: IN-PLANE TRANSPORT SIMULATIONS

In addition to calculating σzz, we can use the same methods
as detailed above to calculate the in-plane components of
the conductivity tensor [52]. Neglecting the weak interlayer
warping of our system, we find vx(ϕ) = �

m∗ k
‖
F (ϕ) cos(ϕ − γ )

and vy(ϕ) = �

m∗ k
‖
F (ϕ) sin(ϕ − γ ). Here γ is the angle between

vF and a vector pointing radially outward towards the Fermi

surface, and it is given by

γ (ϕ) = tan−1

[
∂

∂ϕ
[log kF (ϕ)]

]
, (E1)

as described in Ref. [53]. The procedure is then nearly identical
to that for σzz, though slightly simplified by the fact that the
k

(j )
z terms are not involved in the in-plane calculations. We

can calculate in-plane conductivity exactly, whereas we can
only calculate σzz up to a constant of proportionality since we
do not know the value of t⊥.

Rather than calculating the in-plane transport terms and
fitting them to experimental data, we want to see what predic-
tions we can make for in-plane transport based on our analysis
of the interlayer transport. We fit the points from Fig. 5 in the
main text to analytical functions: a second-order polynomial
in temperature for 1/ω0τ , and a function of the form c1

T
e−c2/T for

B0, as we expect that at higher temperatures B0 must decrease
due to weakening antiferromagnetic correlations.

Using these analytical functions of our temperature-
dependent parameters, we are able to calculate the in-plane
transport of Tl2Ba2CuO6+δ at any temperature—though such
calculations should be interpreted with care because we
are extrapolating to higher temperatures using information
that comes from 50 K and below. We can compare these
calculations to data taken from comparable samples by
Mackenzie et al. [54], as shown in Fig. 9. Note that the data
presented in these figures come from a sample with Tc of
15 K, the same critical temperature as the sample whose
AMRO data we have analyzed.

Our simulations of in-plane transport are qualitatively
similar to experimental data, though they do not agree
quantitatively, especially the Hall angle and Hall coefficient.
It is important to note that in the magnetic breakdown model,
where B0/B plays an important role, we do not have Drude-like
resistivity: ρxy is not directly proportional to the magnetic field.
Therefore we would have to use Hall data taken at 45 T to truly
make a meaningful comparison. We cannot simply lower the
magnetic field strength in our calculations to match the field at
which data was taken, as we only have information on B0 for
a 45-T field. It has been proposed that antiferromagnetism in
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FIG. 9. (Color online) Simulations of in-plane transport for Tl2Ba2CuO6+δ compared to experimental data taken from Ref. [54].
(a) Calculated values for the in-plane resistivity and for the cotangent of the Hall angle in a 45-T field plotted versus temperature (inset: data at
7 T). (b) Calculated values of the Hall coefficient as a function of temperature in a 45-T field (inset: data at unspecified field).

the cuprates is enhanced by an applied magnetic field [55,56]
and therefore we cannot assume that the value of B0 at lower
fields matches that at 45 T.

We show these results not because they definitively support
or contradict the magnetic breakdown model, but merely in

the spirit of sharing the results of our explorations. Given that
we do not know the dependence of B0 on B, it seems unlikely
that such in-plane calculations can yield strong evidence for
or against the suggested model unless new in-plane transport
data are taken at 45 T.
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