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Symmetry, distorted band structure, and spin-orbit coupling of group-III metal-monochalcogenide
monolayers
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The electronic structure of (group-III) metal-monochalcogenide monolayers exhibits many unusual features.
Some, such as the unusually distorted upper valence-band dispersion we describe as a “caldera,” are primarily the
result of purely orbital interactions. Others, including spin splitting and wave-function spin mixing, are directly
driven by spin-orbit coupling. We employ elementary group theory to explain the origin of these properties,
and use a tight-binding model to calculate the phenomena enabled by them, such as the band-edge carrier
effective g factors, optical absorption spectrum, conduction electron spin orientation, and a relaxation-induced
upper-valence-band population inversion and spin polarization mechanism.
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I. INTRODUCTION

Three-dimensional van der Waals solids from the (group-
III) metal monochalcogenide layered semiconductor family
MX (where M is Ga or In, and X is S, Se, or Te) have
been intensively investigated by both experiment and theory
for many decades. The classical literature on this subject
[1] contains reports of measurements on optical absorption,
photo- and electroluminescence, photoconductivity, radiative
recombination, electrical conductivity, and the Hall effect
[2–9]. Even conduction electron spin polarization via optical
orientation was carried out to study the spin-dependent carrier
dynamics [10,11]. On the theory side, we find the first attempt
to derive the band structure based on a symmetry analysis
and a simple few-band model occurring over fifty years ago
[12]. Since then, many detailed band structure calculations
have appeared, utilizing the empirical pseudopotential method
[13–15] or tight-binding formalism [16–23].

However, it was not until the recent search for beyond-
graphene [24,25] two-dimensional semiconductors (such as
transition metal dichalcogenides [26–29] and phosphorene
[30–33]) that this class of materials was experimentally
realized down to few- or monolayer thickness by mechanical
exfoliation from bulk crystals. Experimentally, GaS and
GaSe ultrathin layer transistors have been demonstrated [34].
Photoluminescence measurements show exciton features and
a reduction of optical efficiency when the sample thickness
decreases [35,36]. Circularly polarized photoluminescence
reveals the spin dynamics in nanoslabs [37,38]. In some cases,
a monolayer MX can even be synthesized epitaxially on silicon
[39] or nonepitaxially on insulating substrates such as SiO2 via
vapor phase deposition, with quality that rivals the exfoliated
materials [40,41].

Despite this recent explosion of experimental results with
monolayer MX, the theoretical establishment has relied almost
exclusively on sophisticated ab initio methods to model the
electronic structure. In particular, an unusual distortion of
the highest valence-band (sometimes called an “upside-down
Mexican hat” [42] or “sombrero”) is predicted to create an
indirect band gap and a density-of-states singularity at or near
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the band edge [43]. This feature, which is more appropriately
called a “caldera,” vanishes in the bulk [44]. First-principles
schemes have made other fascinating predictions, such as
spontaneous magnetism in p-type monolayer GaSe [45,46].
However, the underlying fundamental physics at the root of
many intriguing properties is obscured by these brute-force
numerical approaches, leaving many elementary questions
without satisfactory answers.

Our aim in the present work is to investigate the underlying
symmetries responsible for the many unique properties that are
common to all MX monochalcogenide monolayers sharing
the same type of lattice structure and zone-center band-edge
states. Using elementary group theory, we reveal the origin
of the extraordinary caldera-shape valence-band edge, and
examine various important phenomena made possible by
the spin-orbit symmetry. These include orbital degeneracy
breaking in the valence band, k-cubic dependence of the
lowest-order Dresselhaus splitting, orbital magnetism and
effective Landé g factor, and spin dynamics during optical
orientation. To assist the reader in acquiring an intuitive and
quantitative understanding of our theory, we take the case of
GaSe as a specific example in numerical calculations, using an
empirical tight-binding model following Refs. [22] and [23]
and incorporating on-site spin-orbit coupling parameters [47],
as well as ab initio density-functional theory (DFT) with the
QUANTUM ESPRESSO package [48]. We emphasize that these
numerical procedures are implemented only as a verification
of the underlying physics determined by symmetry, which
remains robust regardless of the numerical details (such as the
choice of functional or pseudopotential in DFT).

This paper is organized as follows. We start with back-
ground information on the essential group theory in Sec. II,
and with the assistance of the nearly free electron model, we
analyze the symmetry of the spin-independent band structure,
revealing the interactions causing an unusual valence-band
distortion: the caldera. In Sec. III, we include the spin-orbit
interaction and investigate its effect on the broken band
degeneracy, eigenfunction composition, and spin splitting.
In Sec. IV, we show how orbital diamagnetism and valley-
spin coupling result from the spin-mixed wave-function
symmetry. Finally, in Sec. V, we discuss conduction electron
spin orientation by optical excitation, including relaxation
dynamics causing spin-polarized population inversion in the
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lower valence band and three-level spin pumping of the upper
valence band.

II. SYMMETRY SANS SPIN

The unit cell of the monolayer metal-monochalcogenide
hexagonal lattice is composed of two group-III metal and
two chalcogen atoms, forming an upper and a lower sublayer
related by in-plane mirror reflection symmetry [Fig. 1(a)].
Within each layer, the two types of atoms are covalently
bonded and arranged alternately at the honeycomb lattice sites
[Fig. 1(b)]. The honeycomb lattice is buckled such that metal
atoms are closer to the opposite sublayer. In this configuration,
the two sublayers are tightly bound by adjacent metal atoms
[blue bond in Fig. 1(a)].

The first Brillouin zone is shown by the hexagon inscribed
within the reciprocal lattice in Fig. 1(c), together with high-
symmetry points �, K (K ′), and M . The reciprocal lattice
points that are equidistant from the origin can be divided into
three sets according to their symmetry, denoted in Fig. 1(c) by
three different types of markers (green hexagram, blue square,
and red circle), corresponding to the three types of zone-center
states in the nearly free electron band structure shown in
Fig. 1(d). Before proceeding with a detailed discussion of
electronic properties, we first present a brief symmetry analysis
of the system using group theory.

FIG. 1. (Color online) Unit cell of single-layer group-III metal
monochalcogenide in (a) perspective- and (b) plan view. The
red and green spheres correspond to chalcogen anions and metal
cations, respectively. The dashed blue frame represents the unit
cell boundaries. The three solid lines in (b) are axes for 180◦

in-plane rotation operations. Panel (c) shows the reciprocal lattice
points and reduced Brillouin zone, where different colored markers
indicate symmetry-related points of different zone-center character,
resulting in degeneracies of �-point plane-wave eigenstates in the (d)
nearly-free electron band structure along K-�-M axes.

TABLE I. Character table of the �-point D3h group. �1–6 in
parenthesis are corresponding IRs in the convention of Bethe notation,
in which the extra IRs after the double group extension are �7–9 (not
listed here). The basis functions, s and px,y,z orbital configurations,
and important invariants are also listed. The assignment of plus
and minus superscripts to representations follows the convention of
even and odd parity with respect to the operation of in-plane mirror
reflection σh of C4. The superscripts on the orbitals indicate the
relative sign between orbitals on different (upper/lower) sublayers.
Note that k = (kx,ky) = k(cos φ, sin φ).

C1 C2 C3 C4 C5 C6 basis orbitals invariants

�+
1 (�1) 1 1 1 1 1 1 1 s+, p−

z k2

�+
2 (�2) 1 1 −1 1 1 −1 xy σz, sin 3φ

�+
3 (�6) 2 −1 0 2 −1 0 {x,y} {p+

x ,p+
y } {kx,ky}

�−
1 (�4) 1 1 1 −1 −1 −1 xyz

�−
2 (�3) 1 1 −1 −1 −1 1 z s−, p+

z

�−
3 (�5) 2 −1 0 −2 1 0 {xz,yz} {p−

x ,p−
y } {σx,σy}

A. Group theory

The space group of single-layer MX is symmorphic, with
its point group D3h including twelve symmetry operators
divided into six classes, denoted by C1∼6 in Table I. The
identity operator E is in class C1. C2 includes the ±120◦
rotations along an out-of-plane axis [through the position
of any atom or the honeycomb center in Fig. 1(b)]. C3 is
composed of a 180◦ rotation along the three axes [solid lines
in Fig. 1(b)] within the plane bisecting the two sublayers. C4

includes the in-plane mirror reflection σh. C5 and C6 take into
account operators from the product of σh and those in C2 and
C3, respectively.

The Brillouin zone center � point has the same symmetry
of the point group D3h. The six irreducible representations
(IRs), denoted by �±

1,2,3, have the characters given in Table I.
The plus (minus) superscript reflects the even (odd) parity with
respect to σh. Corresponding to each IR, we give in Table I the
lowest-order basis functions, which we will use to describe the
�-point states based on their wave-function symmetries.

For intuitive understanding, and to aid the numerical
calculation of the band structure in the tight-binding
formalism, we also provide in Table I the symmetries of
s and p atomic orbital combinations, following Ref. [22].
Here, similar to the IR labeling convention discussed above,
even (odd) parity of the orbital configuration within the unit
cell upon application of σh is denoted by the plus (minus)
superscript. For example, p−

z of �+
1 consists of pz orbitals

of atoms in the two sublayers with opposite wave-function
phase orientation. Because the atoms are from groups III and
VI, these s and p orbitals dominate the low energy electronic
structure covering the critical band gap region. Their limited
combinations in Table I indicate that only four IRs (�+

1 , �−
2 ,

�+
3 , and �−

3 ) are relevant throughout this paper.
The right-most column of Table I lists several low-order in-

variants according to their behavior under the twelve symmetry
operations. For example, the function sin 3φ belongs to �+

2 ,
where φ is the polar angle of the 2D vector k with respect to the
�-M axis. It transforms to − sin 3φ under the six operations
in classes C3 and C6 that involve rotations along the in-plane
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axes. These invariants are low-order terms in the expansion of
the Hamiltonian based on the k · p̂ theory and will be used for
the discussion of band dispersion near the zone center.

B. Nearly-free electron model

In order to understand the origins of energy dispersion in
the true band structure, we begin with a symmetry analysis
of the nearly free electron (NFE) band structure, which we
show along with the corresponding symmetries of the zone
center states in Fig. 1(d). The lowest-energy state at the �-point
(green hexagram) is of �+

1 symmetry since its wave vector is
the Brillouin zone origin, labeled [00]. The first excited states
(blue square) are sixfold degenerate, with their wave vectors
corresponding to the six reciprocal lattice points nearest to
the origin [Fig. 1(c)] and denoted by [01]. By examining their
characters under all the D3h symmetry operators, it is easily
found that these first excited states are composed of 2�+

3 ⊕
2�+

1 . In fact, all reciprocal lattice points sitting on one of
the three axes of in-plane 180◦ rotation operators possess this
symmetry. All other reciprocal lattice vectors share the same
symmetry with the second excited states, denoted by red circles
in Fig. 1(d) and labeled [11] (the wave vector sum of any two
neighboring [01] states). These are also six-fold degenerate
and have the symmetry of 2�+

3 ⊕ �+
2 ⊕ �+

1 . Given the fact that
we are exclusively considering the low-energy bands, only the
[00] and [01] states are of interest (the energy of [11] plane
waves is nearly 30 eV).

In the 2D NFE model, plane-wave eigenstates are always
even under the in-plane mirror reflection operator σh. In a
physically real lattice where the configurations of atomic
orbitals have even or odd parities with respect to σh, the �+

3
states of [01] can transform into �−

3 , while the �+
1 states of

both [01] and [00] can transform into �−
2 (see the sign of

characters for C3−5 that take z → −z in Table I).
The true crystal lattice potential modifies this plane-wave

dispersion while maintaining the symmetry. First of all,
the finite thickness of the real monolayer (analogous to
confinement in a quantum well) results in a series of subbands
that originate from the primordial 2D states. Secondly, the
in-plane potential breaks the �-point degeneracy of different
IRs in the NFE band structure, and mixes the eigenstates into
a linear combination of plane waves belonging to the same IR.
Numerical procedures utilizing plane waves as basis functions,
such as the empirical pseudopotential method [49] and density-
functional theory (DFT) packages like QUANTUM ESPRESSO

[48], can be used to examine these plane-wave origins.
Our last remark about this NFE model is that the momentum

matrix elements between the reciprocal lattice plane waves—
even if they are allowed by symmetry—are nonvanishing
only for degenerate symmetrized plane waves. For example,
Table I indicates that the momentum operator polar vector
components π̂x and π̂y (we use this notation to avoid confusion
with the px,y,z orbitals) belong to the IR �+

3 , and their
coupling between states belonging to �+

1 and �+
3 is apparently

allowed by symmetry. Momentum matrix elements between
states of these representations, if both are composed of [01]
symmetrized plane waves, clearly have a magnitude on the
order of 2π�/a (where a is the lattice constant). However, the
coupling between �+

1 of [00] and �+
3 of [01] by π̂x,y vanishes

due to the structure of their oscillatory wave functions. We
will show in the following subsection that this fact is essential
in determining the band dispersion, because if two bands are
coupled by the k · p̂ perturbation, they tend to energetically
repel each other. The coupling strength, and hence quantities
like effective masses, thus sensitively depends on whether the
vestigial origin of these bands is the same plane-wave state in
the NFE model.

C. Origin of valence-band distortion, alias the caldera

The empirical tight-binding band structure of GaSe in
the vicinity of the band gap is shown in Fig. 2. Besides the
lowest �−

2 conduction band, five of the nine valence bands are
plotted, including the nondegenerate highest valence-band �+

1
and the two pairs of doubly-degenerate �±

3 . It is interesting
to note that the remaining four lowest valence bands not
shown in Fig. 2 are composed of two pairs of {�+

1 ,�−
2 } (see,

for example, Fig. 1 of Ref. [22]). These states, differing by
their definite parity with respect to σh, are each split by the
sublayer bonding/antibonding energy. This heuristic can be
confirmed by correlating the band splitting with the amplitude
of metal atom pz orbital components (responsible for the
strong intersublayer σ bonding) in each pair. Likewise, the
splitting of �±

3 states is determined by the intersublayer π

bonding/antibonding energy difference between the even and
odd configurations of purely px and py wave functions.

Our first-principles calculation using norm-conserving
pseudopotentials shows that the �+

1 highest valence band,
together with the remaining four nondegenerate lowest valence
bands just mentioned, originate from the NFE [00] plane wave.
Their common origin can be understood in terms of subband
formation induced by electron confinement to the quasi-2D

FIG. 2. (Color online) Spin-independent tight-binding band
structure around the zone center along the K-�-M directions, in
the vicinity of the band gap. Here, the y axis (energy) is contracted
within the gap region for better illustration. IRs of zone center
eigenstates are shown. The double-headed arrows indicate dominant
k · p̂ interactions responsible for a caldera-shaped highest valence
band depicted by the 3D illustration inset.
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atomic lattice with finite thickness, as discussed above in
Sec. II B. For example, in the �+

1 highest valence state, this [00]
component accounts for ≈2/3 of the wave-function amplitude,
while only 30% comes from the [01] plane wave. On the other
hand, the two pairs of �±

3 valence bands, as well as the lowest
conduction-band �−

2 , originate from the [01] plane wave (more
than 90% in �±

3 and 80% in �−
2 ).

In light of these wave-function compositions, we can
conclude from the argument at the end of the previous
subsection that the symmetry-allowed momentum matrix
elements coupling these bands, represented in Fig. 2 by

P1 = �

m0
〈�−

2 |π̂x,y |�−
3 〉 (red arrow), (1)

P2 = �

m0
〈�+

1 |π̂x,y |�+
3 〉 (short pink arrow), (2)

are quite different in magnitude. Specifically, the probability
associated with the former (∝ |P1|2) is about an order of
magnitude larger than that of the latter (∝ |P2|2, ≈0.32

smaller). Therefore the effective mass m∗ of �−
2 is much

smaller than the free electron mass m0 (similar to the situation
of the �-point conduction-band minimum in many cubic
systems such as GaAs and Ge), while m∗ of the �+

1 valence
band is slightly smaller than m0 due to the weak upward
repulsion from �+

3 —but still positive!
This unusual dispersion (which would otherwise result in a

smaller, or closed, band gap) is counteracted by the interplay
of several secondary factors. First of all, downward repulsion
comes from the upper conduction bands with �+

3 symmetry
indicated by P3 in Fig. 2 [with similar definition as Eq. (2)].
Our DFT calculation shows that the third-lowest conduction
bands, with �+

3 symmetry, originate from the [01] plane wave.
Close to the � point, their downward repulsive influence on the
�+

1 highest valence band (again, dominated by the [00] plane
wave) cannot compete with the upward contribution from the
close-by �+

3 valence band. Further away from the � point,
however, this upward repulsion quickly vanishes, because the
�+

3 lower valence bands are strongly repelled downward by the
dominant [01] plane-wave component of the �+

1 second-lowest
conduction band (indicated by P4 in Fig. 2). At large enough
k, the �+

3 conduction band wins over the valence band with
the same symmetry, and overwhelms the (positive) quadratic
free-electron dispersion of the upper valence band. A large
energy gap is thus opened.

In summary, the caldera shape of the upper valence band
in the vicinity of the � point is a result of the competition
between the lower valence band and upper conduction bands
with the same �+

3 symmetry, similar to the origin of the
possible indirect band gap in phosphorene along the zigzag
direction [32]. The energy dispersion of the �+

1 upper valence
band can be analytically expressed via this k · p̂ analysis and
second-order perturbation theory by

E = �
2k2

2m0
+ |P2|2k2

EA

− |P3|2k2

EB

, (3)

where, in the second term,

EA = EV B
1+ −

(
EV B

3+ − |P4|2k2

ECB
1+ − EV B

3+

)
(4)

is the energy difference between the �+
1 highest valence band

and the �+
3 valence band. The dispersion of the latter is taken

into account by the last term of Eq. (4), where P4 has a
definition similar to P2 in Eq. (2) but with an amplitude that
rivals P1.

Note that in the large-k limit, the second term of Eq. (3)
approaches a constant, and its contribution to energy dispersion
vanishes. In the last term of Eq. (3), P3 has similar amplitude
to P2, and the energy denominator

EB = (
ECB

3+ − βk2
) − EV B

1+ (5)

is the difference between the �+
3 conduction bands and the

�+
1 highest valence band. The −βk2 < 0 term captures the

negative effective mass of the �+
3 conduction bands due to

k · p̂ suppression from even further bands, and results in a
higher order dispersion of the �+

1 valence band beyond k2.
Such higher order contributions, especially the quartic term,
are important for valence band edge hole states with relatively
large wave vectors, e.g., at the caldera “rim.”

Given that EA is almost an order of magnitude smaller than
EB at the � point, it is very unlikely that the last term in
Eq. (3) would overcome the sum of the first and the second
terms at the zone center and render an ordinary parabolic hole
band with negative m∗, as verified by both the empirical tight-
binding method and first-principles calculation. However,
considering the possible deficiencies of numerical procedures
(for example, underestimation of the band gap in DFT or
uncertainty in tight-binding model parameters), we cannot
unequivocally assert the true nature of the valence-band edge
dispersion. Furthermore, as we will show in the following
section, such dispersion reversal of the highest valence band
at the zone center is sensitive to the spin-orbit coupling
strength. Ultimately, the existence of this �+

1 valence-band
caldera must be empirically verified by experiment, such
as optical spectroscopy (see Sec. V) to detect the divergent
DOS associated with high-order dispersion, or angle-resolved
photoemission spectroscopy (ARPES) to directly probe the
shape of the valence band.

With our fundamental understanding of the caldera’s origin,
we can also easily explain its gradual disappearance and
transition into an ordinary parabolic valence-band edge when
monolayers are stacked and the system evolves toward bulk
[41,44]. As the layer thickness increases, every band of
the monolayer band structure develops a series of subbands
corresponding to different van der Waals bonding with all
possible interlayer phase configurations. The splitting of these
subbands is therefore independent of all k · p̂ interactions,
and rather strongly relies on the wave-function amplitude of
vertically distant chalcogen anion pz orbital component. The
�+

1 valence-band edge has a large anion pz orbital component
[22] that diminishes away from the � point [44], tending to
raise the bottom of the caldera more than the rim. Furthermore,
and just as important, this subband splitting changes the energy
denominators in Eq. (3), causing weaker (stronger) repulsion
from lower (upper) �+

3 bands. These altered interactions result
in a gradually shallower caldera, which eventually disappears
as bulk conditions are approached.

Lastly, we comment on the weak anisotropy of the valence
band, depicted in the inset of Fig. 2. By taking into account
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even higher-order contributions beyond k4, the circular ex-
trema given by Eq. (3) at nonzero k can be modulated by a
term proportional to k6 cos 6φ (Ref. [42]). The resulting six
valence-band maxima occur on the �-K axes, whereas saddle
points exist (nearly equidistant from the zone center) on the
�-M axes.

III. SYMMETRY AVEC SPIN

A. Zeroth-order split-off states and spin mixing

The inclusion of spin-orbit coupling into the Hamiltonian
can be treated within the framework of perturbation theory.
Figure 3 depicts the important changes to the GaSe band
structure among the five highest valence bands before (left)
and after (right) spin-orbit interaction is considered. The
spin-independent bands are identical to those in Fig. 2, except
we have shortened the energetic distance between �+

1 and
�−

3 for clearer illustration. Our incorporation of spin-orbit
coupling into the tight-binding formalism follows the approach
of Ref. [47] by considering the on-site spin-orbit parameters
of Se and Ga atoms.

The most significant hallmark of spin-orbit coupling is the
splitting of the �±

3 bands. Both of these bands have a double
orbital degeneracy before including spin, similar to the top of
the valence band in many cubic semiconductors in which the
threefold degenerate valence band (sixfold if spin is included)
is broken into the fourfold degenerate heavy- and light-hole
bands and the doubly degenerate split-off hole bands. Here,
taking �−

3 as an example, the two orbital states can be denoted
by the axial vector component basis functions as {X = yz,Y =
xz}, see Table I. They are coupled by the zeroth-order spin-
orbit perturbation �

4m2
0c

2 ∇V × p̂ · σ , so that the split-off energy

Γ+
1 :

Γ−
3 : {X, Y }

Γ+
3 : {x, y}

↑ + α√
2
(X + iY ) ↓

↓ + α√
2
(X − iY ) ↑{

1√
2
(X + iY ) ↑

1√
2
(X − iY ) ↓

1√
2
(X − iY ) ↑

1√
2
(X + iY ) ↓

1√
2
(x + iy) ↑

1√
2
(x − iy) ↓

1√
2
(x − iy) ↑

1√
2
(x + iy) ↓{

{

{

{

Dresselhaus
splitting

Δ(Γ+
3 )

Δ(Γ−
3 )

Γ MK

ΓK M

FIG. 3. (Color online) Evolution of valence bands before (left)
and after (right) introducing spin-orbit interaction. Gray arrows
indicate spin-orbit induced broken degeneracy of the �±

3 valence
band. The symmetries of zone-center spin-dependent eigenstates are
described by mixed basis functions given in Table I. Here, X = yz

and Y = xz.

is determined by the off-diagonal matrix element

�(�−
3 ) = �

2

2m2
0c

2
〈X|

(
∂V

∂x

∂

∂y
− ∂V

∂y

∂

∂x

)
|Y 〉, (6)

and the spin-dependent eigenstates are a mixture of X and
Y as shown in Fig. 3. The discussion for �+

3 is the same, by
replacing the basis functions {X,Y } in Eq. (6) with polar vector
components {x,y}. Note that, due to the proximity of �+

3 and
�−

3 , this lowest-order spin-orbit interaction pushes down the
lower pair of �−

3 and raises up the upper pair of �+
3 so much

that their energies even switch order (crossing of the two gray
arrows in the middle of Fig. 3).

The lowest order spin-orbit interaction also couples the �−
3

to the �+
1 highest valence band, since the k-independent spin-

orbit invariants {σx,σy} belong to �−
3 = �−

3 ⊗ �+
1 . This much

weaker nondegenerate perturbation results in negligible energy
shift compared with the split-off energy of �±

3 , but it does
significantly alter the spin-dependent eigenstates by inducing
spin-mixing. If we denote the spin-independent eigenstate of
�+

1 by the scalar basis function 1 as shown in Fig. 3, the unitless
spin mixing coefficient α is

α = �
2

4m2
0c

2E1+−3−
〈1|

(
∂V

∂y

∂

∂z
− ∂V

∂z

∂

∂y

)
|X〉. (7)

Here, E1+−3− is the energy difference between �+
1 and �−

3 ,
and their proximity (only several hundred meV) leads to
a relatively large value of α. Our tight-binding calculation
shows that for �+

1 , the spin-mixing defined by the total square
amplitude of the minority-spin components is α2 ≈ 8% at
the � point, falling only slightly to ≈5% at the caldera
rim. For comparison, we also have an interaction between
the �+

3 valence bands and �−
2 lowest conduction band that

induces spin mixing, yet it is much less pronounced due to
the much larger energy denominator; our calculation gives
0.1%. Since the strength of Elliott-Yafet (EY) spin relaxation
[50,51] is governed by the spin-mixing amplitude, the resulting
EY relaxation rate for spin-polarized conduction electrons is
nearly two orders of magnitude smaller than holes near the
top of the valence band. Another important spin relaxation
mechanism, Dyakonov-Perel (DP), is due to spin splitting of
every band and is discussed in the next subsection (Sec. III B).

Due to the mixing of X and Y components into the �+
1

highest valence band by spin-orbit coupling, optical selection
rules allow in-plane polarized electromagnetic radiation to
connect states across the fundamental band gap. This mixing
is therefore especially important for experiments, since it
allows carrier generation with normally incident band-edge
illumination [11,38]. We elaborate on radiative transitions and
corresponding selection rules relevant for conduction-band
spin polarization via optical orientation in Sec. V.

Lastly, we note that in Fig. 3 the zeroth-order spin-orbit
coupling reduces the depth of the caldera distortion of �+

1
highest valence band. As discussed in the previous section, this
distortion is due to repulsive competition between the valence
and conduction �+

3 bands. Since the energy differences to �+
1

are modified by the split-off energy �(�+
3 ), the dispersion

close to the Brillouin zone center is sensitive to the spin-orbit
strength. Moreover, the spin mixing of �−

3 components into
the highest valence band allows its coupling to bands with �−

2
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symmetry via the k · p̂ perturbation, incurring an additional
downward repulsion contribution from the conduction-band
minimum. In fact, for the tight-binding GaSe model we use, the
positive effective mass at the � point disappears for only ≈35%
stronger spin-orbit strength. With this concern, we reiterate
our lack of absolute certainty on the question of whether the
quantitative nature of the highest valence band is a caldera
shape or an ordinary holelike paraboloid.

B. k3 spin splitting: Dresselhaus effect

A remaining feature of the spin-dependent band structure
shown in Fig. 3 is the splitting of opposite spin subbands for k
along �-K(K ′) directions. Although this splitting vanishes
on the �-M axes (the C2v group of the wave vector for
points on these axes only has two-dimensional double group
IRs), it generally persists for an arbitrary choice of k. This
splitting is similar to Dresselhaus spin-splitting in zinc-blende
semiconductors [52], where it vanishes along �-X [53].
Likewise, it has the same fundamental cause, namely the
absence of space inversion symmetry that allows a spin-orbit-
induced effective internal magnetic field in reciprocal space. In
this subsection, we analyze the symmetry of this higher-order
spin-orbit effect using the method of invariants [54].

There are two potential approaches within this framework.
One could extend single group to double group notation,
in which the Pauli matrices of spin-orbit interaction are
embedded as invariant matrices, while k-dependent terms are
filled into the correct position in the matrices as invariant
components [55]. However, for simplicity, we follow an
alternative approach, considering both k and Pauli matrices
(and their combinations) as invariant components within the
single group notation [56].

We begin by taking the �+
1 highest valence band as an

example. The direct product of this IR with itself gives
�+

1 ⊗ �+
1 = �+

1 , indicating that any term including σx or σy

is forbidden. These two Pauli matrices behave as axial vectors
(see Table I), which are odd under the operation of in-plane
mirror reflection σh. The same is true for their combination
with kx and ky (both are even under σh). This existence of the
in-plane mirror reflection is a critical factor that determines
the form of Dresselhaus spin splitting. In wurtzite systems
sharing the threefold rotation symmetry but lacking σh as a
group element, σx or σy are allowed in the spin-dependent
Hamiltonian and the lowest-order Dresselhaus field is linear
in kx and ky [57,58].

The remaining Pauli matrix, σz, belongs to �+
2 . Its combi-

nation with polynomials of kx = k cos φ and ky = k sin φ that
also belong to �+

2 are symmetry-allowed invariant components
for the �+

1 band (�+
2 ⊗ �+

2 = �+
1 ). We find that sin 3φ =

3 cos2 φ sin φ − sin3 φ (requiring k3 dependence) is the lowest-
order invariant component that belongs to �+

2 . With all these
concerns, we conclude that the lowest-order Dresselhaus term
can be written as

H k
SO = γ1k

3 sin 3φ σz, (8)

where γ1 is the spin-orbit coupling strength coefficient for this
band. The form of Eq. (8) is universal for all other bands (with
different γ coefficients), including those originating from the
two-dimensional �±

3 bands, due to the constraint imposed

FIG. 4. (Color online) (a) Spin-orbit-induced k-cubic Dressel-
haus splitting [Eq. (8)] of the spin-up and spin-down subbands is
represented by the red manifold. The green hexagonal plane is similar
to the reduced Brillouin zone with �-K and �-M axes shown. Blue
vectors represent the Dresselhaus internal magnetic field. Note that
the out-of-plane field direction is reversed for K and K ′ and vanishes
along �-M . (b) Dominant perturbation paths (the two dashed loops)
for the calculation of the coefficient γ1 in Eqs. (8) and (9). Horizontal
lines represent the spin-dependent �-point states, with their single
group origin listed on the right. E1–4 are the energy values of the
spin-split states with �+

3 single group origin, with respect to the
energy of �+

1v , in ascending order. P2 and P3 are the same as they are
in Fig. 2, and Q is the momentum matrix element between conduction
and valence bands with the same �+

3 symmetry.

by σh and three fold rotational symmetries. Figure 4(a) is
a schematic representation of Eq. (8), where blue arrows
represent the effective internal magnetic field. The field
magnitude is proportional to k3, and alternates direction
between parallel and antiparallel relative to the surface normal
as a function of polar angle.

The spin-splitting parameter γ1 in Eq. (8) can be calculated
using fourth-order perturbation theory. As in the corresponding
calculation for III-V semiconductors, this quantity involves
three matrix elements of the k · p̂ interaction and one of the
spin-orbit coupling �

4m2
0c

2 ∇V × p̂ · σ . Alternatively, spin-orbit

can be taken into account to all orders by using the exact split-
off energies in third-order perturbation term denominators
[53].

As discussed in the previous section, the k · p̂ terms belong
to �+

3 and can couple the �+
1v highest valence band only

to bands with �+
3 symmetry. The �+

3 intermediate states,
in turn, can also be coupled to each other by k · p̂, since
�+

3 ⊗ �+
3 = �+

1 ⊕ �+
2 ⊕ �+

3 . The dominant third-order k · p̂
perturbation paths are therefore those shown in Fig. 4(b), and
include the �+

3v valence band and the lowest �+
3c conduction

band (the same as those given in Fig. 2) as intermediate states.
For simplicity, their energies with respect to �+

1v in ascending
order are denoted by E1−4; clearly, E2 − E1 is equal to �(�+

3 )
given in Fig. 3, and E4 − E3 is the split-off energy of the
conduction �+

3c states (with a similar definition). By summing
over all paths in Fig. 4(b), one obtains

γ1 = �
3

m3
0

∑
i,j=�+

3v,c

〈1|π̂y |i〉〈i|π̂y |j 〉〈j |π̂y |1〉
EiEj

= |P2QP3|
(

1

E2E3
− 1

E1E4

)
, (9)
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where P2 and P3 are given in Fig. 2 and Eq. (2), and Q is the
k · p̂ matrix element �

m0
〈�+

3v|π̂x,y |�+
3c〉. Due to the partitioning

of x and y components in spin-orbit-split �+
3 wave functions

(as shown in Fig. 3), Q couples energy levels only between E1

and E4, and between E2 and E3,1 so that in Eq. (9) there are no
terms with energy denominator E1E3 nor E2E4. Note that the
corresponding calculation for the �−

2 lowest conduction band
involves dominant contribution from the �−

3v,c bands and is
similarly dependent on the spin-orbit-induced splitting �(�−

3 ).
The out-of-plane orientation of the internal magnetic field

in group-III metal monochalcogenides resembles the case of
III-V zincblende semiconductor [110] quantum wells, except
that in the latter system Dresselhaus splitting is linear in k
(see Ref. [59]). In that case, spins oriented normal to the
plane have relatively much longer lifetime than in-plane spins
because they are eigenstates in the Dresselhaus field, and thus
the Dyakonov-Perel (DP) spin relaxation mechanism vanishes
[60]. We therefore expect strong spin relaxation anisotropy in
the monochalcogenides for the same reason. Specifically, when
the spin orientation is chosen to be in-plane, spin relaxation
is governed by DP and proportional to γ1. On the other hand,
spin with out-of-plane orientation is not subject to precession
in the Dresselhaus field and DP is absent; in that case, EY
(determined by the spin-mixing coefficient α) then dominates
spin relaxation.

Another feature of the [110] zinc-blende quantum well,
enabled by the k-linear spin splitting and k-quadratic band
dispersion, is the possibility to generate a so-called “persistent
spin helix” [61–63]. This static spin texture results from
the cancellation of k dependence in the ratio of spin-orbit
field to group velocity determining precession angle. The
monochalcogenide hole states at the �+

1 valence-band max-
imum have a large k4 dispersion component, and together
with k3 Dresselhaus splitting thus can also support a “spin
helix.” However, the underlying threefold rotation symmetry
eliminates its “persistence” in the presence of scattering.

As long as the threefold rotational symmetry is captured,
terms higher than cubic in k are allowed, if constructed by
combining Eq. (8) with an additional invariant component
belonging to �+

1 . For example, noting that k2 belongs to �+
1 , the

possible presence of fifth-order, seventh-order, etc., in k cannot
be ruled out. These higher-order contributions become promi-
nent at large k, especially for band edge states on the rim of
the valence-band caldera. If such higher-order terms have the
opposite sign as the lowest-order cubic term, the Dresselhaus
spin splitting would appear subcubic as k increases. However,
we must emphasize that in this system, a linear Dresselhaus
term is forbidden by symmetry. Any contrived attempt to fit
a numerically calculated spin splitting using only linear and

1More detailed explanation requires the double group framework,
in which the single group �+

3 IR evolves into two double group
IRs as �+

3 ⊗ D1/2 = �8 ⊕ �9 in the Bethe notation (the spinor
D1/2 is denoted by �7). �8 corresponds to states of E1 and E3

in Fig. 4(b), while �9 corresponds to those with energies E2 and
E4. States belonging to �8 and �9 can be coupled by k · p̂ since
�8 ⊗ �9 = �+

3 ⊕ �−
3 includes �+

3 . However, k · p̂ can not couple
�8 or �9 to themselves, since �+

3 is neither included in �8 ⊗ �8 =
�+

1 ⊕ �+
2 ⊕ �−

1 ⊕ �−
2 nor �9 ⊗ �9 = �+

1 ⊕ �+
2 ⊕ �−

3 .

cubic terms, as from DFT in Ref. [64], is physically unjustified
and susceptible to misleading evidence. Mistaken conclusions
are an inevitable consequence of artificial symmetry breaking
stemming from, e.g., numerical rounding errors (associated
with unavoidably representing the irrational values of atomic
position components of the hexagonal Bravais lattice in a
finite-digit scheme) at some arbitrary level of precision.

IV. ORBITAL MAGNETISM AND EFFECTIVE g-FACTOR

As previously mentioned, the spin-orbit-induced splitting
of lower �±

3 valence bands is reminiscent of the �4 → �7 ⊕
�8 valence-band splitting in bulk cubic semiconductors. In
this familiar case, the valence-band splitting allows a nonzero
orbital contribution to the magnetic moment and a conduction-
band g factor substantially different from the spin-only value
of 2, with a smaller band gap and a larger split-off energy
strongly enhancing the correction [51,65,66]. Heuristically,
we can surmise that a large orbital g factor in a given band
follows from coupling to nearby bands which originate from
states whose initial orbital degeneracy has been split by spin-
orbit interaction. In MX, the lower �±

3 valence bands are
indeed split by an amount on the order of the band separation
to the upper �+

1 valence band, suggesting a large orbital g

factor there. To test this assumption, we therefore undertake
the appropriate calculation below.

In a magnetic field, we make the Peierls substitution by
writing the canonical momentum vector π̂ → π̂ + eA. An
out-of-plane field Bzz has vector potential A = Bzxy (in the
Landau gauge) so that the Hamiltonian term giving rise to
orbital diamagnetism is e�

4m
(4 π̂y x̂

�
)Bz. The expectation value

of the operator in parenthesis can be evaluated in the Bloch
band basis to yield the orbital magnetic moment (in units of
e�

4m
= μB

2 ) that competes with the spin magnetic moment to
give an overall effective g factor <+2.

Unfortunately, the position operator x̂ cannot be evaluated
directly due to the indeterminate nature of matrix-element inte-
grals over delocalized and non-normalizable Bloch waves that
extend to infinity [67]. Instead, using the Ehrenfest theorem
〈π̂x〉 = mvx = m

d〈x〉
dt

= 1
i�

[x,H] and taking matrix elements

in a band basis |ψn〉, we obtain 〈ψn|x̂|ψn′ 〉 = i�
m

〈ψn|π̂x |ψn′ 〉
En−En′ , as

in Ref. [68]. Thus the orbital “g factors” of each band can be
evaluated using the operator with matrix elements

〈n|gorbit|n′′〉 = 4i

m

∑
n′ �=n

〈ψn|π̂x |ψn′ 〉〈ψn′ |π̂y |ψn′′ 〉
En − En′

. (10)

In a symmetric gauge, π̂y x̂ → 1
2 (π̂y x̂ − π̂x ŷ), with appro-

priate change to the numerator in Eq. (10). We note that in the
tight-binding formalism it is straightforward to use momentum
operators constructed directly from the Hamiltonian H, via
π̂ = m

�
∇kH, although this ignores intra-atomic orbital overlap

contributions while maintaining gauge invariance [69–71].
Immediately, we see that the coupling to bands governing

the orbital g factor is through matrix elements of orthogonal
components of momentum. (An interesting example is phos-
phorene [32] where due to the strongly broken symmetry, all
orbital bands are nondegenerate, and, furthermore, along the
high-symmetry axes in k space the momentum matrix elements
of π̂x and π̂y are never simultaneously nonzero, so that the
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FIG. 5. (Color online) K-�-M orbital magnetic moment of both
spin states in the �+

1 valence band. The units chosen indicate the
orbital contribution to the effective g factor. (Inset) The orbital
magnetic moment of the uppermost valence band within the full
Brillouin zone, highlighting K/K ′ valley magnetism.

orbital g factor of every band vanishes.) According to Table
I, the polar vector components π̂x,y transform like �+

3 , so
coupling to the �+

1 upper valence band is dominated by the
�+

3 lower valence band (and �+
3 upper conduction bands, but

to a lesser degree due to the large energy denominator).
As discussed in Sec. III B, the spin-orbit field vanishes

along �-M and spin degeneracy is preserved. For this axis,
the orbital magnetic moments for spin-up and spin-down
in the �+

1 upper valence band, calculated using first-order
degenerate perturbation theory to evaluate Eq. (10), are equal
in magnitude but opposite in sign as expected (see Fig. 5).
However, lattice inversion asymmetry allows valley-dependent
magnetic interactions [29,72], and this is manifest in the
behavior of orbital magnetic moment along the �-K axis,
where the spin degeneracy is lifted. Instead of sharing equal
magnitude orbital magnetic moment with a nearly degenerate
state at the same k, here, the opposite magnetic moment is
found with its time-reversed partner (along �-K ′). Thus all
three K points (oriented at 120◦ in k space) have identical
magnetic moments (and at |g| ≈ 3, several times larger than
at �), with all three complementary K ′ points having the
opposite moment, nearly independent of spin (see inset to
Fig. 5 for g factor in the full BZ). The lowest conduction
band shows a similar dichotomy between the behavior of the
magnetic moment along �-M and � − K , but the orbital g

factor for electrons is quite small, reaching only approximately
|〈gorbit〉| = 0.3 (not shown).

This relatively small orbital g factor is contrary to our initial
heuristic expectation of a large correction in the �+

1 band based
on the spin-orbit splitting of the nearby �+

3 band. However,
while the denominators in Eq. (10) are indeed small and
unequal as expected, the momentum matrix elements between
these two bands are weak. This can be understood by recalling
from Sec. II B that the dominant plane-wave origin of the
�+

1 upper valence band is from [00], whereas the lower �±
3

valence bands are rooted instead in the [01] plane waves [see
Fig. 1(d)]. The momentum matrix elements between these two

bands, dominated by contributions from different plane-wave
origins, are inherently weak.

V. OPTICAL ORIENTATION

With appropriate selection rules and spin-orbit splitting of
the otherwise degenerate valence band, conduction electron
spin polarization can be generated via interband dipole
excitations [73]. This “optical orientation” process is most
clear in cubic III-V semiconductors with a (� = 1) p-like
valence band, where one j = 1/2 band is split off from the
remaining j = 3/2 states by lowering an energy �. Then,
circularly polarized photons with energy �ω at the band gap
Eg can optically excite electrons into the conduction band,
with matrix element asymmetry for spin-up to spin-down
at the zone center of 3:1. This ratio is determined by the
orbital wave-function components (e.g., the Clebsch-Gordan
coefficients), giving spin polarization P = 3−1

3+1 = 50% for
�ω = Eg [74]. Higher spin polarization can be obtained in
2D epitaxial quantum wells made from the same materials,
where confinement induces splitting of the light and and
heavy-hole states [75,76]. The optical orientation in bulk GaSe
was explored both theoretically [10] and experimentally [11]
in the 1970s (and more recently in Ref. [38]), but the symmetry
of single-layer GaSe is expected to yield different results.

A. Absorption spectroscopy

We calculate the corresponding optical orientation in the
conduction band of monolayer GaSe within the tight-binding
framework, by sampling wave vectors within the full Brillouin
zone and compiling the squared (circularly-polarized) optical
matrix elements in

A↑/↓(�ω) ∝
∑
n�=c

|〈ψ↑/↓
c |π̂±|ψn〉|2δ(�ω − (Ec − En)), (11)

where π̂± = π̂x ± iπ̂y determines the chirality of the circularly
polarized electromagnetic field; this approach restricts our
analysis to direct transitions only. We subsequently calculate
the conduction spin polarization via Pc = A↑−A↓

A↑+A↓ .
The results from a sample of 106 pseudorandom k points

is shown in Fig. 6, where the transition probability via
right-handed circularly polarized light into the spin-up (down)
conduction band is shown in red (blue), together with the
spin polarization Pc in black. One striking feature of these
curves is the abrupt steplike absorption edges due to the 2D
DOS singularity caused by the caldera valence dispersion.
Because of this behavior, we are justified in displaying the
least-squares fit to the spectroscopy with a piecewise quadratic
function. Note that the divergent ∝ (−E)−1/2 density of states
associated with the quartic ∝ k4 dispersion in the �+

1 valence
band causes the near-band-edge absorption to initially fall as
the photon energy �ω increases. The existence of the putative
caldera valence dispersion can therefore be straightforwardly
supported by this one experimental signature, if it can
be isolated from excitonic modification to the absorption
spectrum.

Due to the dominant �+
1 character of the upper valence

band, the optical absorption of normally incident circularly
polarized photons at the fundamental band edge is suppressed
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FIG. 6. (Color online) Spin-resolved optical absorption of right-
handed circular polarized light resulting in excitation of electrons into
the �−

2 conduction band, and the resulting spin polarization (black
line, right axis). Critical band-edge energies are indicated by dashed
or dotted lines.

(i.e., 〈�+
1 |�+

3 |�−
2 〉 = 0). However, the small quantity of

α√
2
(X ± iY ) spatial character with opposite spin mixed into

the wave function from the �−
3 lower valence band (see

Fig. 3) results in perfect 100% optical orientation, despite
weak optical efficiency.

Once the photon energy �ω is sufficient to excite electrons
from the �−

3 band at approximately 3.35 eV, the conduction-
band spin polarization nearly fully reverses due to the much
stronger optical matrix element from a dominant 1√

2
(X ± iY )

character. However, further increases in energy by the split-off
increment �(�−

3 ) populate both spin states nearly equally,
destroying the optical orientation for �ω � 3.7 eV. Again,
this transition is much more abrupt than in the case of cubic
zinc-blende direct-gap semiconductors because of the higher
zone-center density of states in each band.

B. Valence-band polarization via relaxation

An intriguing phenomenon is enabled by the spin structure
of electron states and the corresponding selection rules in these
monochalcogenides. Optical excitation with normally incident
circularly polarized light of sufficient energy generates spin-
polarized carriers in the �−

2 conduction and the upper branch
of the spin-split �−

3 lower valence band [see Fig. 7(a)]. The
direct transition of the �−

3 hole to the �+
1 upper valence

band is suppressed by the optical selection rules involving the
dominant character of the wave functions of each band, so low-
energy but large-momentum phonon emission is necessary
for relaxation. This scattering event takes an initially spin-
polarized hole near the � point to states far away from the zone
center, from where it can relax to the valence-band maximum
via a cascade of optical phonon emission events, shedding
tens of meV energy at each step [77,78]. Due to strong
spin-orbit-induced spin mixing (with amplitude α, see Fig. 3)
in this band, the Elliott spin scattering mechanism results
in virtually complete depolarization upon thermalization.
However, the �−

2 conduction band and �+
1 valence band
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FIG. 7. (Color online) (a) Schematic illustration showing optical
orientation of spin-polarized conduction electrons via circularly-
polarized electromagnetic excitations from the lower valence band
and subsequent relaxation dynamics resulting in polarization of
the upper valence band. (b) Spin-dependent carrier density in an
equivalent three-level system modeled by Eqs. (12)–(18) and (c) the
corresponding spin polarizations. In normalized units, the parameters
are τc = 80, τv = 1, τ� = 1, Rz = 10, τh = 1, Dc = 5, D� = 5, and
G↓ = 0.
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are connected by a strong π̂z optical matrix element with
�−

2 symmetry, so radiative relaxation proceeds via linearly
polarized luminescence emitted in an in-plane direction. Since
this direct interband transition is spin conserving, oppositely
polarized holes will remain in the �+

1 valence band.
This dynamic upper valence-band hole polarization can be

modeled via a rate-equation approach, similar to the simulation
of recent time-resolved luminescence studies in thin but still
3D GaSe flakes [37,38]. A simplified equivalent three-level
system is shown in Fig. 7(a), where spin-conserving interband
transitions (�−

3 ↔ �−
2 optical orientation with generation rate

constant G↑ and spontaneous relaxation rate constant R±, and
�+

1 → �−
2 band gap radiative relaxation with rate constant

Rz) appear in solid arrows, while spin-mixing intraband spin
relaxation (with timescales τc,v,� for conduction, valence and
lower-valence bands, respectively, indicated by subscripts)
appears in dashed arrows. The phonon-assisted �−

3 → �+
1

inter-valence-band transition (with time constant τh) appears
as a solid horizontal arrow.

We can write the following rate equations for the densities
of conduction-band electrons n

↑/↓
c :

dn
↑
c

dt
=X↑ − n

↑
c − n

↓
c

τc

− Rzn
↑
c p↑

v − R±n↑
c p

↑
� , (12)

dn
↓
c

dt
=X↓ − n

↓
c − n

↑
c

τc

− Rzn
↓
c p↓

v − R±n↓
c p

↓
� , (13)

and (lower) valence-band holes (p↑/↓
� ) p

↑/↓
v :

dp↑
v

dt
=p

↑
� + p

↓
�

2τh

− Rzn
↑
c p↑

v − p↑
v − p↓

v

τv

, (14)

dp↓
v

dt
=p

↑
� + p

↓
�

2τh

− Rzn
↓
c p↓

v − p↓
v − p↑

v

τv

, (15)

dp
↑
�

dt
=X↑ − p

↑
� − p

↓
�

τ�

− p
↑
�

τh

− R±n↑
c p

↑
� , (16)

dp
↓
�

dt
=X↓ − p

↓
� − p

↑
�

τ�

− p
↓
�

τh

− R±n↓
c p

↓
� , (17)

where the generation terms X↑/↓ = G↑/↓(D� − p
↑/↓
� )(Dc −

n
↑/↓
c ) incorporate the transition dependence on occupancy

within a finite density of states Dc and D�. These nonlinear
equations are solved under steady-state conditions (all d

dt
= 0)

with the added constraint of global neutrality dictated by
conservation of charge,

(n↑
c + n↓

c ) − (p↑
v + p↓

v + p
↑
� + p

↓
� ) = 0. (18)

Example results for steady-state carrier densities are shown
in Fig. 7(b) as functions of excitation intensity ∝G↑, where
rounded relative parameter values are chosen for illustrative
purposes, and perfect optical orientation excitation (G↓ =
0) is assumed. Because direct (electromagnetic radiative)
transitions are faster than those that involve emission or
absorption of large-momentum phonons during hole energy
relaxation from �−

3 to �+
1 , RzDc is chosen to be more than

an order of magnitude larger than the inter-valence-band
momentum relaxation rate 1/τh. Furthermore, as discussed
in Sec. III A, our tight-binding calculations show that the
�−

2 conduction-band wave function has only 0.1% minority

spin-mixing probability compared to the �+
1 valence band

at 8%, which is reflected in the relative values for the spin
lifetimes τc,v,l .

It can be seen that at low excitation rates, the conduction
and upper valence-band carrier concentration are proportional
to

√
G↑, whereas the lower valence band has a linear depen-

dence. The former behavior is due to mutual Pauli exclusion
suppressing recombination from these bands, whereas hole
transitions from lower to upper valence bands are controlled
only by the initial carrier density.

With increasing excitation intensity, the carrier densities
saturate. In this regime, the conduction-band spin polarization
Pc approaches 100%, and the upper valence-band spin polar-
ization Pv deviates substantially from zero, as can be seen in
Fig. 7(c). Because n

↑
c → Dc as G↑ → ∞ when G↓ = 0, an

exact analytic expression for the saturation polarization can be
obtained by solution to a polynomial equation of only quadratic
order, but its utility to provide physical insight is limited by
(grotesque) complexity. Nevertheless, under the assumption
that τc � τv,h and DcRzτv � 1, we can simplify it to lowest
order:

Pv ≈ −1 + 4

DcRzτv

. (19)

Using parameters from the simulation shown in Fig. 7, Eq. (19)
yields upper valence-band polarization of −92%, in excellent
agreement to the calculated ≈−92.45%. Under the same
assumptions, the lower valence-band polarization P� ≈ τ�

2τh+τ�

gives + 1
3 , again closely matching our numerical result of

≈+33.83%.

VI. SUMMARY

Our study of 2D MX monolayers has revealed the
fundamental origin behind several properties of its electronic
structure. Throughout this group-theory analysis, starting in
Sec. II A, symmetry-allowed momentum matrix elements
have played an essential role in determining, e.g., the k · p̂
coupling leading to the valence-band caldera, the spin-orbit
effect on the band structure, the orbital contribution to the g

factor, the optical absorption selection rules, and the degree
of carrier spin polarization from optical orientation with
circularly polarized electromagnetic radiation. We comment
on the significance of each below.

As we saw in Sec. II C, the valence-band caldera is formed
through a competition between repulsive interactions from
bands at higher and lower energies. Importantly, we found in
Sec. II B that since the eigenstates are confined to 2D, subbands
originating from the primordial NFE [00] plane wave can
produce the �+

1 highest valence band, above the [01]-rooted
�±

3 bands. The weak interband dipole interaction with these
lower bands, the vanishing effect of the �−

2 conduction band
just above, and interactions from even higher bands ultimately
result in the flat caldera. Two-dimensional confinement is the
essential ingredient here, so this phenomenon is not expected
to be unique to MX. In fact, although its symmetry is quite
different from MX, phosphorene has an ultraflat valence band
along the zigzag direction for similar reasons [32].

Spin-orbit coupling induces several important features in
the electronic structure. First of all, as detailed in Sec. III B,
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the broken lattice inversion symmetry allows Dresselhaus spin
splitting, and the remaining point-group symmetry excludes
any in-plane effective field components and a splitting depen-
dence linear in k. More importantly, as discussed in Sec. III A,
the most obvious consequences of spin-orbit coupling are the
broken twofold orbital degeneracy of the �±

3 bands, and spin
mixing into the band-edge states. The latter effect determines
the scattering-induced spin relaxation rate, and the former
enables optical orientation and an orbital contribution to the
effective g factor.

The inequivalence of g factor for states in the Brillouin
zone toward K and K ′, discussed in Sec. IV, has the same
root as the valley-spin coupling in TMDCs. There, however,
the valence-band maxima occur not at the � point, but at
the K and K ′ points per se. Although we do indeed see
a weak valley-dependent g factor in MX, the six shallow
valence-band maxima on the caldera rim are invariably
strongly coupled through intervalley scattering, making an
experimental confirmation through the spin Hall effect or the
valley Zeeman effect especially challenging.

Because the momentum matrix elements determine the
electromagnetic dipole symmetry, they dictate the optical
selection rules. We saw in Sec. V that the in-plane momentum
matrix elements connecting the �+

1 and �−
2 band-edge states

are inherently weak and only due to the spin-orbit-induced
band mixing of �−

3 character into the upper valence band.
The absorption of normally incident transverse-polarized
electromagnetic plane waves with �ω at the band gap energy is
thus suppressed. This constraint on the optical absorption does
not exist in the three-dimensional bulk counterpart material, so
that thinning to a monolayer drastically attenuates the optical
absorption. It is interesting to contrast this situation to TMDCs,
whose transition from an indirect gap in the bulk to a direct
gap in the monolayer results in a massive increase in optical
absorption [27].

These optical selection rules can be exploited to generate
spin-polarized electrons in the conduction band with circularly
polarized photons, as discussed in Sec. V A. When carri-
ers are excited via transitions from the �−

3 lower valence
band, the relaxation down to the upper valence band (by
emission of electromagnetic radiation polarized normal to
the plane and propagating in-plane for electrons, and via

non-spin-conserving cascade mediated by phonon emission
for holes) results in oppositely polarized �+

1 upper-valence-
band holes, as discussed in Sec. V B.

We note that our application of group theory to analyze
the symmetry properties of the MX monolayer can be
straightforwardly extended to the case of stacked few-layer
2D flakes. Depending on the stacking configuration and the
number of layers, the inversion asymmetry of the monolayer
(endowing many of the important spin-dependent qualities
discussed in this paper) may be retained. Otherwise, time-
reversal symmetry will preserve the spin degeneracy and the
Dresselhaus splitting will disappear.

Other potential extensions of our theoretical framework
include an incorporation of the mechanical lattice dynamics to
determine phonon symmetries that could be used to expose the
qualitative and quantitative aspects of various momentum and
spin relaxation mechanisms relevant to our work. For example,
the definite parity of all IRs with respect to reflection symmetry
σh decouples flexural phonons (odd parity) from participating
in spin-conserving momentum scattering, whereas their effect
on EY spin-flip may be strong [28]. The incorporation
of extrinsic invariants into our theory, such as magnetic
field, electric field, and strain, is straightforward once their
transformation properties and corresponding IRs are identified.
In particular, these external fields may break the in-plane
mirror reflection symmetry of the monolayer lattice and induce
linear Bychkov-Rashba spin-orbit coupling [79]. The resulting
interplay with the cubic Dresselhaus field may provide a
potential scheme for electronically actuated spin manipulation.
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