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We utilize the variational method to study the Kondo screening of a spin-1/2 magnetic impurity in a three-
dimensional (3D) Weyl semimetal with two Weyl nodes along the kz axis. The model reduces to a 3D Dirac
semimetal when the separation of the two Weyl nodes vanishes. When the chemical potential lies at the nodal
point, μ = 0, the impurity spin is screened only if the coupling between the impurity and the conduction electron
exceeds a critical value. For finite but small μ, the impurity spin is weakly bound due to the low density of states,
which is proportional to μ2, contrary to that in a 2D Dirac metal such as graphene and 2D helical metal, where the
density of states is proportional to |μ|. The spin-spin correlation function Juv(r) between the spin v component of
the magnetic impurity at the origin and the spin u component of a conduction electron at spatial point r is found
to be strongly anisotropic due to the spin-orbit coupling, and it decays in the power law. The main difference
of the Kondo screening in 3D Weyl semimetals and in Dirac semimetals is in the spin x (y) component of the
correlation function in the spatial direction of the z axis.
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I. INTRODUCTION

Two-dimensional (2D) Dirac fermions have been proposed
and observed in graphene [1–3] and in surface states of
3D topological insulators (TIs) [4–6]. 3D Dirac semimetal
represents a new state of quantum matter, which can host 3D
Dirac fermions in the bulk [7]. The stable 3D Dirac semimetals
have been realized experimentally in Na3Bi compounds [8] and
Cd3As2 crystals [9,10], where the Dirac points are stabilized by
crystalline symmetry and the Dirac nodes are degenerate. If
the inversion (P) or time-reversal (T ) symmetry is broken,
each Dirac node splits into two Weyl nodes resulting in
Weyl semimetals [11–13]. Weyl semimetals show interesting
physics such as Fermi arc surface states and chiral anomaly.
Recently, Weyl semimetals have attracted much attention
because a new TaAs family of Weyl semimetals has been
predicted in theories [14,15] and subsequently observed in
experiments [16–23].

A single magnetic impurity [24] in a conventional metal
is well described by the Anderson impurity model. This
model or the Kondo problem [25] has been widely studied
by using various methods [26–34]. The impurity spin-1/2
is fully screened, and the correlation between the impurity
spin and a conduction electron of distance r is of a power-
law decay 1/rd if r < ξK and 1/rd+1 if r > ξK , with ξK

the Kondo coherence length and d the dimensionality of
the host metal [35–37]. Graphene has a peculiar electron
structure, where the density of states (DOS) vanishes at
a charge neutral point or at half-filling. The property of
a magnetic impurity in half-filled graphene falls into the
category of a pseudogap Kondo problem [38–40], which has
been studied consistently using various methods including
the numerical renormalization group (NRG). In single-layer
graphene, the full screening of a magnetic impurity requires
a finite strength of the hybridization between the impurity
and Dirac electrons, and the spin-spin correlation between
the impurity and conduction electron decays with 1/r3 power
law for large r [41]. Recently, the Kondo effect in 3D Dirac

and Weyl systems was studied using the NRG method, and
it was found that the magnetic impurity shows a diverse
range of Kondo physics, depending on the DOS of the host
system and the symmetries broken by perturbations [42]. The
spin-spin correlation in the spin-orbit coupled systems may
be interesting since the coupling between the spin and the
momentum results in anisotropy in both the spin and spatial
spaces.

The purpose of this paper is to investigate the properties
of spin-spin correlation in Dirac and Weyl semimetals. We
study the binding energy and the various components of
spin-spin correlation, and we illustrate the similarity or
differences between the Dirac and Weyl semimetals. The
variational method we apply has been used to study the ground
state of the Kondo problem in conventional metals [33,43],
antiferromagnets [44], and 2D helical metals [45].

The paper is organized as follows. We present the model
and dispersion relation in Sec. II. In Sec. III, we apply
the variational method to study the binding energy. In Sec.
IV, we investigate the spin-spin correlation between the
magnetic impurity and the conduction electrons in Dirac or
Weyl semimetals, and we compare the results in these two
systems. Finally, the discussions and conclusions are given in
Sec. V.

II. ANDERSON MODEL HAMILTONIAN

We utilize the Anderson impurity model to study the Kondo
screening of a spin-1/2 magnetic impurity in a 3D Dirac
or Weyl semimetal. The model Hamiltonian contains three
parts: the kinetic energy H0 of the Dirac or Weyl semimetal,
the impurity Hamiltonian Hd , and the hybridization between
the impurity and the Dirac or Weyl semimetal HV . The
Hamiltonian reads

H = H0 + Hd + HV . (1)
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FIG. 1. (Color online) Schematics of the dispersion relation of
(a) Dirac semimetals and (b) Weyl semimetals along the kz axis. The
Dirac cones are located at kz = 0 in the Dirac semimetals, and the
Weyl nodes are located at kz = ±b/(2λ) in the Weyl semimetals. μ

is the chemical potential and εd is the energy level of the Anderson
impurity.

Here the kinetic energy part is given by

H0 =
∑

k

�
†
k[2λσz(S × k) · ẑ + 2λzσykz + σxMk

+ bSz − μ]�k,

=
∑

k

�
†
k

⎛
⎜⎜⎜⎝

b − μ 2iλk− −2iλkz 0

−2iλk+ −b − μ 0 −2iλkz

2iλkz 0 b − μ −2iλk−
0 2iλkz 2iλk+ −b − μ

⎞
⎟⎟⎟⎠�k,

(2)

where k = (kx,ky,kz) and k± = kx ± iky . σ , S are Pauli matri-
ces in orbital and spin spaces, respectively. The basis vectors of
the bulk states are chosen as �k = (ak↑,ak↓,bk↑,bk↓)T , where
a and b are orbital indices. Mk = M − tk2, with M the Dirac
mass. For λz > 0 and M < 0, H0 describes a strong topological
insulator with Z2 index (1; 000). Here we shall consider the
case with M = 0 while the bulk gap closes at k = 0 and a
transition between a topologically nontrivial phase and a trivial
phase occurs. For simplicity, we shall assume that λz = λ

eliminates the extra anisotropy, and we set Mk = 0 since
the nonzero Mk merely modifies the high-energy dispersion,
which has a minor influence on our study. At b = 0, the H0

describes the Dirac semimetal. At b �= 0, it describes a Weyl
semimetal with broken time-reversal (T ) symmetry [6,13,46].
In a Dirac semimetal, the Dirac points are doubly degenerate
[see Fig. 1(a)], while in a Weyl semimetal each Dirac point
splits into two Weyl nodes due to the broken T or parity
symmetry. We note that the Weyl semimetal studied in the
present paper corresponds to the T -broken case. For b > 0,
the Weyl nodes are located at the points (0,0,±b/2λ) on the
kz axis as shown in Fig. 1(b).

The local magnetic impurity Hamiltonian can be written
as

Hd = (εd − μ)(d†
↑d↑ + d

†
↓d↓) + Und↑nd↓. (3)

d
†
↑(↓) and d↑(↓) are the creation and annihilation operators of the

spin-up (spin-down) state on the impurity site, and εd and U

are the impurity energy level and on-site Coulomb repulsion,
respectively.

Finally, the hybridization between the magnetic impurity
and the host material is described by

HV =
∑

k

d
†
kV̂ �k. (4)

dk = (dk↑,dk↓)T , where dks (d†
ks) is the impurity annihilation

(creation) operators in momentum space. V̂ is the hybridiza-
tion strength, and we assume the magnetic impurity is equally
coupled to the four bands in the semimetal,

V̂ =
(

Vk 0 Vk 0

0 Vk 0 Vk

)
. (5)

The single-particle eigenenergy, εj (k), with j = 1,2,3,4,
can be obtained by diagonalizing the noninteracting Hamilto-
nian H0, and it is given by

ε1(k) = −
√

4λ2
(
k2
x + k2

y

) + (b − 2λkz)2 − μ,

ε2(k) = −
√

4λ2
(
k2
x + k2

y

) + (b + 2λkz)2 − μ,

ε3(k) =
√

4λ2
(
k2
x + k2

y

) + (b − 2λkz)2 − μ,

ε4(k) =
√

4λ2
(
k2
x + k2

y

) + (b + 2λkz)2 − μ,

(6)

where b = 0 and b �= 0 correspond to the Dirac and Weyl
semimetals, respectively. The corresponding eigenstates are
given by

γk1 = 1√
C1

{φ1kak↑ + 2iλk−ak↓ + iφ1kbk↑ + 2λk−bk↓},

γk2 = 1√
C2

{−φ2kak↑ − 2iλk−ak↓ + iφ2kbk↑ + 2λk−bk↓},

γk3 = 1√
C3

{φ3kak↑ + 2iλk−ak↓ + iφ3kbk↑ + 2λk−bk↓},

γk4 = 1√
C4

{−φ4kak↑ − 2iλk−ak↓ + iφ4kbk↑ + 2λk−bk↓},
(7)

where Cj are the normalization factors. The parameters φlk
(l = 1,2,3,4) are given by

φ1k = (b − 2λkz) − mk, φ2k = (b + 2λkz) − nk,
(8)

φ3k = (b − 2λkz) + mk, φ4k = (b + 2λkz) + nk,

where mk(nk) =
√

4λ2(k2
x + k2

y) + (b ∓ 2λkz). We can rewrite
the total Hamiltonian H in the diagonal basis as

H =
∑
kj

[εj (k) − μ]γ †
kj γkj +

∑
kj

Vk(γ †
kj dkj + H.c.)

+ (εd − μ)
∑

σ

d†
σ dσ + U d

†
↑d↑d

†
↓d↓, (9)
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where the impurity operators dkj are given by

dk1 = (1 + i)φ1k√
C1

d↑ + (1 + i)2λk−√
C1

d↓,

dk2 = −(1 − i)φ2k√
C2

d↑ + (1 − i)2λk−√
C2

d↓,

dk3 = (1 + i)φ3k√
C3

d↑ + (1 + i)2λk−√
C3

d↓,

dk4 = −(1 − i)φ4k√
C4

d↑ + (1 − i)2λk−√
C4

d↓.

(10)

III. THE BINDING ENERGY

We start from the simplest limit in which the magnetic
impurity and the host material are decoupled from each other,
namely HV = 0. The ground-state wave function of H0 can be
written as

|�〉0 =
∏

kj ;εj (k)<μ

γkj
†|0〉, (11)

where the product runs over all the states inside the Fermi
surface. If εd < μ < εd + U , the impurity is singly occupied
with a local moment, and the impurity energy is εd − μ. The
total energy of the system is given by the sum of the energies
of the host material and of the magnetic impurity,

E0 = εd − μ +
∑

kj ;εj (k)<μ

εj (k). (12)

In the above equations, the index j = 1,2,3,4 denotes the four
bands in the Dirac or Weyl semimetal.

Now we study the effect of HV , which describes the
hybridization between the magnetic impurity and the host Weyl
semimetal by using a variational method. We shall assume the
large-U limit. In this case, we may neglect the doubly occupied
impurity states in our trial wave function for the ground state,
which is given by

|�〉 =
⎛
⎝c0 +

∑
kj

ckj d
†
kj γkj

⎞
⎠|0〉. (13)

c0 and ckj are variational parameters to be determined
by optimizing the ground-state energy. The energy of the
Hamiltonian H in the trial state |�〉 is given by

E=
∑

kj

{
[E0−εj (k)+μ]c2

kj +2Vkc0ckj +[εj (k) − μ]c2
0

}
c2

0 + ∑
kj c2

kj

.

(14)

The variational principle requires

∂E/∂c0 = ∂E/∂ckj = 0, (15)

from which we obtain the following two equations:

Ec0 =
∑
kj

{Vkckj + [εj (k) − μ]c0},
(16)

Eckj = [E0 − εj (k) + μ]ckj + Vkc0,

which lead to⎛
⎝E −

∑
kj

[εj (k) − μ]

⎞
⎠c0 =

∑
kj

Vkckj ,

(17){E − E0 + [εj (k) − μ]}ckj = Vkc0.

We define the binding energy as 
b = E0 − E. If 
b > 0,
then the hybridized state has lower energy than the bare state,
so that the hybridized state is more stable. From Eq. (17) we
obtain

ckj = Vkc0

[εj (k) − μ] − 
b

(18)

and

[E − E0 + (εd − μ)]c0 =
∑
kj

Vkckj . (19)

We then obtain the self-consistent equation,

(εd − μ) − 
b =
∑
kj

V 2
k

[εj (k) − μ] − 
b

. (20)

By solving Eq. (20) numerically, we obtain the binding
energy 
b. From Eq. (18) we can calculate ckj for given
k and j . In the calculations, we introduce an energy cutoff
�, and hence the truncation of momentum kc = �/(2λ). The
summation over momentum in Eq. (20) is then replaced by an
integration 1

N

∑
k → 6π2

k3
c

∫ d3k
(2π)3 .

One can see that the binding energy is independent of the
host system to be the Dirac or Weyl semimetal. Although the
Weyl nodes are located at kz = ±b/2λ in the Weyl semimetal,
the dispersion relation around each Weyl node is exactly the
same as those around the Dirac cones, thus the summation over
k on the right-hand side of Eq. (20) shall also remain the same.

We define an effective hybridization  = 3V 2
k

�2 . From Eq. (20)
we obtain

(εd − μ) − 
b + 

[
(�2 − μ2)

�
− 2

(� − |μ|)(μ + 
b)

�

]

= −2
(μ + 
b)2

�
ln

� + μ + 
b


b

. (21)

Then in the limit of small  and � < μ − εd + 2μ, we
have


b ≈ � exp

{
−μ − εd − � + 2μ

2μ2/�

}
(μ �= 0). (22)

If μ �= 0, the hybridization shall always lead to a finite binding
energy 
b > 0. However, if μ = 0, Eq. (21) gives rise to

εd + � = 
b − 2

�

2

b ln
�


b

. (23)

In the limit of small , we obtain 
b ≈ εd + �. The density
of states in the Dirac or Weyl semimetal vanishes, hence the
binding energy 
b has a positive solution only when the
effective hybridization  is above a critical value,  >

|εd |
�

.
This is similar to the case of graphene [47,48] and other 2D
helical metals [45]. In the context of Kondo physics, it is the
so-called pseudogap Kondo problem [38–40].
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FIG. 2. (Color online) Calculated binding energy 
b of a mag-
netic impurity in Dirac or Weyl semimetal as a function of  for
three values of chemical potential μ. � is the energy cutoff, and
 = 3V 2

k /�2 is the effective hybridization. At μ = 0, there is a
threshold  > c = |εd |/� = 7.5 × 10−5 for the bound state. For
μ �= 0, 
b is finite, but it is too small to be seen in the figure for
small .

The self-consistent solution of the binding energy is plotted
in Fig. 2 as a function of the effective hybridization . We
fix the value of μ − εd = 7.5 × 10−5�, and the chemical
potential is chosen as μ = 0 and μ = ±0.1�. While μ = 0 the
system is at half-filling, and we can see that the binding energy

b is nonzero only if the effective hybridization is greater than
the critical value c = |εd |/� = 7.5 × 10−5. While μ �= 0 the
binding energy always has a positive value, which can also be
seen from the analytical results shown in Eq. (22). The DOS
D(E) ∝ E2 is much smaller than that in graphene near the
charge neutral point, so that the screening effect and thus the
binding energy are much smaller than those in the graphene
case. The asymmetry between the μ = ±0.1� cases is due to
the asymmetry of the impurity state between being empty and
doubly occupied.

IV. SPIN-SPIN CORRELATION BETWEEN MAGNETIC
IMPURITY AND CONDUCTION ELECTRONS

Now we study the spin-spin correlation between the
magnetic impurity Sd = 1

2d†σd and the conduction electron
spin Sc = 1

2c†σc in the Dirac or Weyl semimetal. The
impurity-spin–conduction-electron-spin correlation function
is evaluated for μ �= 0 while the binding energy 
b always
has a positive value, i.e., there exists Kondo screening. We
assume that the impurity is located at the origin r = 0, and
we only consider the simplest case in which the spin-spin
correlation function is evaluated along the three axes: the x,
y, and z axes. The spin-spin correlation function between the
magnetic impurity and the conduction electron is given by

Juv(r) = 〈
Su

c (r)Sv
d (0)

〉
, (24)

where u,v = x,y,z and 〈· · · 〉 denotes the ground-state aver-
age. We start with simple symmetry analysis. As we have

 

(a)  

(b)  

 

FIG. 3. (Color online) Spin-spin correlation between the mag-
netic impurity and the conduction electron along the x axis (a) and
along the y axis (b). The results are the same for the Dirac or Weyl
semimetal. The inset in (a) illustrates spin Sv

d of the magnetic impurity
at the origin r = 0 and the conduction electron spin Su

c at a distance r

along the x axis. The parameters are μ = −0.01�, Vk = 0.05�, and

 = 0.05�, and the energy cutoff � is large enough that the value
of � will not affect the low-energy physics. All the other spin-spin
correlations not shown here are zero.

mentioned, the Dirac semimetals we study in this paper
preserve both P and T symmetries, while in Weyl semimetals
the T symmetry is broken due to the displacement of the
Dirac cones along the kz axis. Both of the systems have
rotational symmetry along the z axis, so we have Juv(r) =
Ju′v′(r′) if u′ = Rz(β)u, v′ = Rz(β)v, r ′ = Rz(β)r , where
Rz(β) is a rotational operator along the z axis. Actually, one
can demonstrate that both systems are unchanged under a
combined mirror reflection and time-reversal transformation.
We may denote the mirror reflection with respect to the
y-z plane as Myz. Then we have T Myz(x,y,z) = (−x,y,z),
T Myz(kx,ky,kz) = (kx, − ky, − kz), and T Myz(Sx,Sy,Sz) =
(−Sx,Sy,Sz). Thus if r is on the x, y, or z axis, we can easily
find that only Jyz(rŷ) = −Jzy(rŷ) and Jxz(rx̂) = −Jzx(rx̂) are
nonzero among the off-diagonal terms. We should emphasize
that due to the absence of the spin SU(2) symmetry, the
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off-diagonal terms can generally be nonzero in coordinate space, but we may only concentrate on the three spatial axes in this
present paper.

We can define functions below and use them to simplify the spin-spin correlation function in coordinate space,

Ij (r) =
∑

k

e−ik·r φkj

Cj

ckj , Jj (r) =
∑

k

e−ik·r φkj

Cj

2λ(−ik+)ckj ,

Tj (r) =
∑

k

e−ik·r φkj

Cj

2λ(ik−)ckj , Yj (r) =
∑

k

e−ik·rckj , (25)

Qj (r) =
∑

k

e−ik·r 4λ2
(
k2
x + k2

y

)
Cj

ckj = 1

2
Yj − Ij .

Here again j = 1,2,3,4 are used to denote the four bands in the Dirac or Weyl semimetals. Then the diagonal terms and the
nonzero off-diagonal terms of the spin-spin correlation function along the three axes are given by

Jzz(r) = −{[|I1 + I3|2 + |I2 + I4|2 + |Q1 + Q3|2 + |J2 + J4|2 − |J1 + J3|2 − |J2 + J4|2 − |T1 + T3|2 − |T2 + T4|2]},
Jxx(r) = −{2[(J1 + J3)(T ∗

2 + T ∗
4 ) + (J2 + J4)(T ∗

1 + T ∗
3 ) + (I1 + I3)(Q∗

2 + Q∗
4) + (I2 + I4)(Q∗

1 + Q∗
3)]},

Jyy(r) = −{2[−(J1 + J3)(T ∗
2 − T ∗

4 ) + (J2 + J4)(T ∗
1 + T ∗

3 ) + (I1 + I3)(Q∗
2 + Q∗

4) + (I2 + I4)(Q∗
1 + Q∗

3)]}, (26)

Jxz(r) = −2 Re{[I1 + I3 + i(I2 + I4)][T ∗
1 + T ∗

3 − i(T ∗
2 + T ∗

4 )] − [J1 + J3 − i(J2 + J4)][Q∗
1 + Q∗

3 + i(Q∗
2 + Q∗

4)]},
Jyz(r) = −2 Im{[I1 + I3 + i(I2 + I4)][T ∗

1 + T ∗
3 − i(T ∗

2 + T ∗
4 )] − [J1 + J3 − i(J2 + J4)][Q∗

1 + Q∗
3 + i(Q∗

2 + Q∗
4)]}.

If we consider the simplest case when μ < 0 and b = 0,
then we have m = 2λk and φ1k = −2λ(k + kz) = −2λk(1 +
cos θ ), and then the correlation reads

Jzz ∝ |I1|2 + |I2|2 + |Q1|2 + |Q2|2. (27)

We take the first term for example,

I1 =
∑

k

e−ik·r φ2
1k

C1
ck1 =

∑
k

e−ik·r φ2
1k

−4mφ1k

ck1

=
∑

k

e−ik·r φ1k

−4mk

ck1 = 1

4

∑
k

e−ik·r(1 + cos θ )ck1. (28)

After a straightforward integration, we obtain

I1 ∝ i

r

(
e−i �

2λ
r − e−i

|μ|
2λ

r
)

− μ + 
b

2λ
ei

(μ+
b )r
2λ

∫ r�/2λ

r
b/2λ

e−iy

y
dy. (29)

By assuming μ + 
b � �, we can ignore the second term
and obtain

I1 = −3iVka0

4�

1

(kcr)2

(
e−i �

2λ
r − e−i

|μ|
2λ

r
)
, (30)

where a0 is the number defined in Eq. (13), and � is the
energy cutoff. We can easily find that I2 = I1, and Q1 and Q2

also decay with 1/(kcr)2, which indicates that the spin-spin
correlation Jzz(r) follows a 1/(kcr)4 decay at long distance.
Using a similar analysis, we can see that while b = 0, all the
other diagonal and off-diagonal components of the spin-spin
correlation decay with 1/(kcr)4 in real space. The results for
the Weyl semimetal (b �= 0) are more complicated, which will
be discussed later.

In Fig. 3, we show the results of Juv(r) for r along the
x and y axes. The values of Juv(r) along these two axes are

independent of b, hence they are the same for the Dirac and
Weyl semimetals. As shown in Fig. 3, the diagonal terms are all
antiferromagnetic at short distance. In Fig. 3(a) for r along the
x axis, we have Jxx(r) = Jyy(r) �= Jzz(r), and only two of the
off-diagonal terms, Jxz(r) = −Jzx(r), are nonzero. The inset
in Fig. 3(a) shows the schematics of the displacement of the
magnetic impurity and the conduction electrons. We assume
the location of the impurity is at r = 0 and the conduction
electron is on the x axis, and the displacement between them
is r . Sv

d and Su
c are used to denote the spins on the magnetic

impurity and the conduction electron, respectively. Similarly,
in Fig. 3(b) we have Jyy = Jzz �= Jxx and only one off-diagonal
term Jyz is nonzero. The off-diagonal terms reflect the spin-
orbit coupling in the Dirac and Weyl semimetals.

In Fig. 4, we show the spin-spin correlation with r along the
z axis, which depends on b, hence it is different between the
Dirac and Weyl semimetals. First, in the 3D Dirac system,
the diagonal terms are all equivalent, Jxx = Jyy = Jzz. As
the value of b increases, the Dirac cones split and Weyl
nodes emerge. One can see that Jzz(r) remains the same
as b increases. We always have Jzz(r)|b=0 = Jzz(r)|b>0 =
Jxx(r)|b=0 = Jyy(r)|b=0 if r is along the z axis. We still have
Jxx = Jyy for b > 0, and we find that these two terms are
modified in the coordinate space as b increases. If μ < 0 and
r = rẑ, then from Eq. (26) we obtain

Jxx(rẑ) = −2
(
J1T

∗
2 + J2T

∗
1 + I1Q

∗
2 + I2Q

∗
1

)
, (31)

where the indices 1 and 2 denote the lower bands whose
Weyl nodes are located at kz = −b/2λ and b/2λ, respectively.
J1 corresponds to the contribution from the lower band
whose Weyl node is at kz = −b/2λ. If we perform a simple
translation along the kz axis and substitute kz with k′

z + b/2λ,

we obtain J1 = JD
1 e−i b

2λ
r , where JD

1 is the result for Dirac
semimetal. Similarly, we can see that T ∗

2 = T D∗
2 e−i b

2λ
r , such
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 ̂ 

FIG. 4. (Color online) Spin-spin correlation between a magnetic
impurity at the origin and a conduction electron at a distance r

along the z axis for Dirac semimetal (b = 0) and Weyl semimetal
of three values of b. The two Weyl nodes are at b/λ along the
kz axis. Correlation for spins along z, Jzz(r), is independent of
b and Jzz(r)|b = Jxx |b=0 = Jyy |b=0, while Jxx(r) and Jyy(r) are
b-dependent. The parameters are μ = −0.01�, Vk = 0.05�, and

 = 0.05�.

that J1T
∗

2 = JD
1 T D∗

2 e−i b
λ
r and J2T

∗
1 = JD

2 T D∗
1 ei b

λ
r . Given that

the two lower bands are degenerate at b = 0, we obtain

Jxx(rẑ) = JD
xx(rẑ) cos(br/2λ), (32)

where JD
xx(rẑ) is the x-x spin-spin correlation along the z axis

in the Dirac semimetal, and b/2λ is half of the separation of
the two Weyl nodes along the kz axis. One can easily find that
the displacement of the Weyl nodes along the kz axis will add
an extra phase factor to each function defined in Eq. (25), and
it will further induce complexity to the oscillation behavior
of the spin-spin correlations along the z axis. One can use a
similar approach to prove that for the y-y correlation it shall be
Jyy(rẑ) = JD

yy(rẑ) cos(br/2λ). Generally in the short distance
limit, as shown in Fig. 4, the spin-spin correlation decays faster
as b increases.

Shown in Fig. 5 is the product (kcr)4Jxx(r) as a function
of the dimensionless distance kcr . We use μ = −0.01�, Vk =
0.05�, and 
 = 0.05�. We can see that both terms for b = 0
and 1.0 oscillate in coordinate space, and the decay rate is
proportional to (kcr)−4. This decay rate is consistent with the
general results in normal metals that the spin-spin correlation
decays with rd+1 (d = 3) at far displacement. By carefully
examining Eq. (26), we find that the effect of b is to add an
extra phase factor to the spin-spin correlations, i.e., as the
phase factor cos(br/2λ) added to the spin-spin correlation
JD

xx(rẑ) given in Eq. (32). The results for different values of
b generally have similar contributions, i.e., that the oscillation
in the coordinate space is modified by b.

V. DISCUSSION AND CONCLUSION

In conclusion, we have studied spin-1/2 Anderson impurity
in a Dirac or Weyl semimetal. We apply the variational

 ̂ 

FIG. 5. (Color online) The product (kcr)4Jxx as a function of the
dimensionless distance kcr . Here the displacement r is along the
z axis. We use μ = −0.01�, Vk = 0.05�, and 
 = 0.05�. The
magnetic impurity is coupled to (a) Dirac semimetals (b = 0) and
(b) Weyl semimetals (b = 1), respectively.

method to study the problem at the large-U limit. Due to the
spin-orbit coupling in these two systems, the spatial spin-spin
correlations between the magnetic impurity and the conduction
electron are highly anisotropic. The results of the binding
energy are quite similar to those in graphene and 2D helical
metals, and they are found to be the same for the Dirac and
Weyl semimetal. Due to the vanishing DOS at half-filling, there
exists a critical value of the effective hybridization strength. We
may obtain a positive binding energy only if the hybridization
is above the critical value. While the system is particle-hole
asymmetric, the DOS at the Fermi surface becomes finite, such
that the hybridization always leads to a positive binding energy.
However, due to the fact that the DOS near the Weyl points
is proportional to E2, the screening effect of the conduction
electrons is much weaker than that in graphene, in which
DOS(E) ∝ |E|. Therefore, in the weak hybridization limit and
at the chemical potential near the Dirac point, the impurity
binding energy in the 3D Dirac or Weyl semimetal is much
smaller than that in the corresponding graphene system or 2D
helical metal.

The spin-spin correlations in both the Dirac and Weyl
semimetal are highly asymmetric in coordinate space due to
the spin-orbit coupling. Although the Kondo temperature of
a Dirac or Weyl semimetal is mainly determined by the DOS
and not affected by the spin-orbit coupling [49], the spin-spin
correlation we study here shows rich features spatially. In
general, the diagonal terms decay with r−4 for μ �= 0, which
is in agreement with the results in normal 3D metals. The
spin-spin correlations are independent of the Dirac or Weyl
semimetal, except for the spatial separation between the
impurity and conduction electron along the z axis. In that case,
the momentum b/2λ adds an extra phase factor to spin-spin
correlation Jxx(r) and Jyy(r), so that the spin-spin correlation
is modified according to b.
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