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Quantization of topological invariants under symmetry-breaking disorder
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In the strictly periodic setting, the electric polarization of inversion-symmetric solids with and without time-
reversal symmetry and the isotropic magnetoelectric response function of time-reversal-symmetric insulators
are known to be topological invariants displaying an exact Z2 quantization. This quantization is stabilized by the
symmetries. In the present work, we investigate the fate of such symmetry-stabilized topological invariants in the
presence of a disorder which breaks the symmetries but restores them on average. Using a rigorous analysis, we
conclude that the strict quantization still holds in these conditions. Numerical calculations confirm this prediction.
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An important issue in the field of symmetry-protected
topological phases is the fate of the topological invariants in
the presence of bulk and surface disorder which can break the
symmetries [1]. For the time-reversal-symmetric topological
insulators, this issue is related to the contamination of the
samples with magnetic impurities and it has been addressed
experimentally and theoretically in a number of works [2].
While this contamination can be fully controlled in laboratory
conditions, this is not the case in the real world conditions.
Still, if the contamination is small, the magnetic impurities
are in a noncorrelated disordered phase and, on average,
the time-reversal symmetry is preserved. Then a question
which is extremely relevant for the practical applications
of these materials is whether the topological characteristics,
such as the extended character of the surface states and the
quantization of the bulk topological invariant, are preserved
under such “average” time-reversal-symmetry conditions. The
first characteristic has been shown in Ref. [3] to hold if the
disorder is not too strong and here we show that the isotropic
magneto-electric response function [4] remains quantized in
such disordered regimes, provided a spectral gap is present.
The antiferromagnetic topological insulators introduced in
Ref. [5] are another class where the topology is stabilized by an
average time-reversal symmetry. In the presence of disorder,
this class of insulators was recently shown [6] to possess
distinct topological phases surrounded by a sharp phase
boundary which can be detected by transport measurements.
Furthermore, the weak topological insulators can be thought
of as protected by the translational symmetry, and disorder
definitely breaks this symmetry but the symmetry is restored
on average. References [7,8] gave evidence that, in certain
conditions, this is enough for the surface states of weak
topological insulators to avoid Anderson localization.

When some of the stabilizing symmetries are space symme-
tries, such as for the crystalline topological insulators [9,10]
or the inversion-symmetric [11,12], the reflection-symmetric
[13,14], or the spin-orbit free topological insulators [15] in
general, these issues are actually of central importance because
the space disorder of the atoms is inevitable and impossible to
control even in the laboratory conditions. If, for example, one
considers the random displacements of the atoms due to finite
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temperature, there can be no expectations that the disordered
potential respects the underlying symmetry of the lattice, but
one can be sure that, on average, the symmetries are strictly
preserved since the thermodynamic state (including the nuclei)
is symmetric. Such restoration of the symmetries by averaging
also occurs when the disorder is induced by defects which
do not destroy the crystalline order completely. Reference
[1] introduced a Z2 topological invariant, which in principle
covers all classes of symmetry-protected topological insulators
(and more) in such disordered conditions. This topological
invariant was put to work for a disordered model with
averaged reflection symmetry and a localization-delocalization
transition was observed numerically exactly at the point
where the invariant changed its value. In the present work,
we consider disordered insulators with averaged inversion
symmetry and show that the classical electric polarization
assumes strict quantized values 0 or 1

2 , provided a spectral
gap is present.

Now, the existing definitions of the symmetry-stabilized
topological invariants depend fundamentally on the exactness
of the symmetries, hence, at first sight, it seems impossible to
define them for a concrete disorder configuration which, just
by itself, breaks the symmetries. However, as noted in Ref. [1],
when the symmetries, which are preserved only average, are
combined with the translations, then a certain self-averaging
property takes place, enabling one to define exact topological
invariants for such realistic conditions. In the present work, we
provide a precise formulation of this self-averaging property
within the framework of homogeneous disordered systems
[16,17]. While at this moment we cannot make any statements
about the boundary states, our findings definitely contribute
to the growing body of evidence that the symmetry-stabilized
topological insulators are more robust than previously thought.

The paper is organized as follows. In the first section, we de-
scribe the homogeneous disordered systems and we formulate
a precise relation between the disorder and symmetry, called
here the compatibility condition, which ensures the restoration
of the symmetry on average. An explicit yet very generic
model for homogeneous disordered solids is presented, and the
inversion as well as the time-reversal symmetries are shown to
be compatible with the model. The second section discusses
the electric polarization of homogeneous disordered systems
with inversion symmetry and no time-reversal symmetry. The
disorder is assumed to be compatible with the symmetry. The
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polarization is shown to be an intensive macroscopic function
with a self-averaging property (preventing fluctuations from
one disorder configuration to another), and which takes
only quantized values. The second section also reports a
numerical analysis which confirms the theoretical predictions.
The third section applies the arguments to the isotropic
magnetoelectric response function of time-reversal-symmetric
(TRS) insulators, leading to similar conclusions. The last
section summarizes our conclusions.

I. HOMOGENEOUS SOLIDS

Physically, a homogeneous system is defined as an extended
system with translation invariance broken at the microscopic
scale, but this symmetry breaking is undetectable at macro-
scopic scales. In other words, taking micron-size samples
from a large piece of a homogeneous material will lead to
same intensive thermodynamic parameters and coefficients (of
course not exactly the same for finite pieces, but the differences
are well below the experimental resolution). Formulating
this property in a mathematically rigorous way was quite a
challenge for the mathematical physics community, but these
days the concept of a homogeneous solid state system has a
very precise meaning and the mathematical framework built
around this concept is natural and fruitful for a large class of
aperiodic systems [16,17]. According to the precise definition,
an aperiodic tight-binding Hamiltonian H over the latticeZd is
homogeneous if H together with its lattice translates TaHT −1

a ,
for all a ∈ Zd , define a set which has a compact closure in the
strong topology of bounded operators. Here and throughout,
Ta will denote the lattice translation by a. What we are going
to present in the following applies strictly to the homogeneous
system so defined, but for concreteness we will carry the
discussion in the context of disordered lattice models, which
are explicitly constructed in Example 1 below.

Henceforth, let us consider a generic finite-range disordered
lattice model

Hω = H0 + Vω (1)

defined over the Hilbert space spanned by |n,α〉, where
n ∈ ZD represent the nodes of the lattice indexing the unit cells
and α = 1, . . . ,Q the orbitals associated with a unit cell. The
orbital index includes the spin degree of freedom, but the latter
will be separated out when needed. The orbitals can and will
be chosen to be real, that is, invariant to complex conjugation:
K|n,α〉 = |n,α〉. The translationally invariant piece H0 of the
Hamiltonian is assumed to depend on a set of N parameters
ξ = (ξ1, . . . ,ξN ). When needed, we write this dependence
explicitly as H0(ξ ) or Hω(ξ ). We include such dependence
because both the electric polarization and the magnetoelectric
response functions are defined through deformations of the
system from a reference configuration. If the reader is more
comfortable with an explicit representation of this parameter
space, he may think of the vector ξ as the (always finite)
collection of hopping amplitudes.

The random potential Vω depends on the disorder configura-
tion ω, which is seen here as a point in a disorder configuration
space �, which is compact and equipped with a probability
measure dω. The system is assumed to be homogeneous, which

in this context is assured by the covariant property

TaHωT −1
a = Htaω, ∀a ∈ Zd , (2)

where t represents a homeomorphic action of the group of
lattice translations on �. The action t is assumed ergodic and
probability preserving so that Birkhoff’s ergodic theorem [18]
applies; namely, the following identity holds with probability
1 in ω:

lim
V →∞

1

V

∑
a∈V

f (taω) =
∫

�

dω′f (ω′). (3)

It is precisely this identity which ensures the nonfluctuating
character of the intensive thermodynamic functions from one
disorder configuration to another.

We now formulate a precise condition which automatically
leads to the restoration of the symmetry after the disorder
average is taken. Consider a generic symmetry operation:

S|n,α〉 =
∑
n′,α′

Rnα;n′α′ |n′,α′〉, (4)

which can be linear or antilinear. Recall that the orbitals are
real, hence the symmetry is fully determined by the coefficients
Rnα;n′α′ . The symmetry generates an action on the parameter
space,

SH0(ξ )S−1 = H0(Sξ ), (5)

and on the disorder configuration space,

SVωS−1 = VSω, (6)

for which we use the same notation S. As a consequence, we
have the following covariant property:

SHω(ξ )S−1 = HSω(Sξ ). (7)

In fact, such covariant property is obeyed by any function of
the Hamiltonian:

S�(Hω(ξ ))S−1 = �(HSω(Sξ )). (8)

Definition. We say that the symmetry is compatible with
the disorder if

d(Sω) = dω, (9)

that is, if the probability measure dω is invariant under the
action on � induced by the symmetry.

Perhaps the reader already noticed that we are merely
restating the condition formulated in Ref. [1], Sec. II A, in a
more concise mathematical notation. This definition is relevant
when we consider the disorder average,

S
(∫

�

dω �(Hω(ξ ))
)
S−1 =

∫
�

dω �(HSω(Sξ )), (10)

because a change of variable Sω → ω leads to

. . . =
∫

�

d(S−1ω) �(Hω(Sξ )) =
∫

�

dω �(Hω(Sξ )). (11)

In other words,

S
(∫

�

dω �(Hω(ξ ))
)
S−1 =

∫
�

dω �(Hω(Sξ )). (12)
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In particular, if ξ is a fixed point for the symmetry, Sξ = ξ , or
equivalently if SH0(ξ )S−1 = H0(ξ ), then

S
(∫

�

dω �(Hω(ξ ))
)
S−1 =

∫
�

dω �(Hω(ξ )), (13)

which shows that Eq. (9) implies the restoration of the
symmetry for the averaged quantities.

Example 1. Generic homogeneous disordered model.

Hω =
∑

n,α;m,β

[
t
αβ
n−m(ξ ) + Wωαβ

n,m

]|n,α〉〈m,β|, (14)

where ω
αβ
n,m are independent random entries drawn uniformly

from the interval [− 1
2 , 1

2 ]. The collection of all random

variables ω = {ωαβ
n,m} can be viewed as a point in an infinite-

dimensional configuration space �, which is just an infinite
product of intervals [− 1

2 , 1
2 ]. The result is a compact and

metrizable Tychonov space which can be equipped with the
product probability measure:

dω =
∏

n,α;m,β

dωαβ
n,m. (15)

There is a natural action of the lattice translations on �:

(taω)αβ
n,m = ω

αβ
n−a,m−a, a ∈ ZD, (16)

which leaves dω invariant and is known to act ergodically,
hence Eq. (3) applies. It is straightforward to check that the
Hamiltonian has indeed the covariant property:

TaHωT −1
a = Htaω. (17)

Example 2. Compatibility of the inversion symmetry with
the model (14). This symmetry maps the unit cell n into −n
and it can mix the orbitals in the process. However, we can
always choose an orbital basis so that no such mixing occurs,
and since I2 = 1:

I|n,α〉 =
∑

α

σα|−n,α〉, (18)

where all σ ’s are signs. The induced action on � is

(Iω)αβ
nm = σασβω

αβ
−n,−m. (19)

Now,

dω =
∏

n,α;m,β

dωαβ
n,m=

∏
n,m;α

dωαα
n,m

∏
n,m;α<β

dωαβ
n,mdωβα

n,m, (20)

and now one can see explicitly that d(Iω) = dω.
Example 3. Compatibility of the time-reversal symmetry

with the model (14). The TRS is defined as the antilinear map,

	|n,α,σ 〉 = −σ |n,α, −σ 〉, (21)

where the spin degree of freedom σ = ±1 (for spin up/down)
was separated out. Note that 	2 = −1. The induced action on
� is

(	ω)α,σ ;β,σ ′
nm = σσ ′ωα,−σ ;β,−σ ′

n,m . (22)

Then,

dω =
∏

n,α,σ ;m,β,σ ′
dωα,σ ;β,σ ′

n,m

=
∏
n,m

dωα,1;β,1
n,m dωα,−1;β,−1

n,m dωα,−1;β,1
n,m dωα,1;β,−1

n,m , (23)

and now one can see explicitly that d(	ω) = dω.

II. ELECTRIC POLARIZATION OF
INVERSION-SYMMETRIC INSULATORS

A. Generic definition

By definition [19,20], the change in the electric polarization,
as a result of a macroscopic deformation Hω(ξ t ) of the
Hamiltonian, is


Pω =
∫ T

0
jω(t) dt, (24)

where jω(t) is the density of the charge current. The latter is
microscopically defined as

jω(t) = lim
V →∞

1

V

∑
n∈V

Q∑
α=1

〈n,α|ρω(t) Jω(t)|n,α〉, (25)

where ρω(t) is the time-evolved density matrix and

Jω(t) = ie[Hω(ξ t ),X] (26)

is the current operator. Here, X denotes the position operator
and, for convenience, the electron charge e will be set
to unity in the following. If the deformation starts from
the thermodynamic equilibrium state, then the time-evolved
density matrix is

ρω(t) = Ut�FD(Hω(ξ 0))U−1
t , (27)

with Ut being the unitary time evolution generated by Hω(ξ t )
and �FD the Fermi-Dirac distribution. One should not confuse
ρω(t) and �FD(Hω(ξ t )), because the time-evolved density
matrix is no longer given by the Gibbs state.

B. Self-averaging property

Now note that the fundamental formula in Eq. (24) involves
the density of the current rather than the current itself, and
this is why the trace per volume appears in Eq. (25). This
is consistent with the fact that polarization is an intensive
macroscopic function. From a technical point of view, this is an
important observation because we can use Birkhoff’s ergodic
theorem [18] to demonstrate that 
Pω is, with probability 1,
independent of the disorder configuration ω. Indeed, note that
the operator inside the brackets of Eq. (25), called Fω in the
lines below, is covariant:

TaFωT −1
a = Ftaω. (28)

Then,

1

V

∑
n∈V

〈n|Fω|n〉= 1

V

∑
n∈V

〈0|Ft−1
n ω|0〉 =

∫
�

dω 〈0|Fω|0〉 (29)

in the limit V → ∞. The conclusion is that 
Pω is self-
averaging and its macroscopic value comes as an average over
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the disorder configuration space. As such, we can drop the
subscript ω in 
Pω from now on.

C. Schulz-Baldes-Teufel formula

We consider now infinitely slow deformations of the
Hamiltonian, which are better visualized as paths γ in the
parameter space, parametrized as {ξ s}s∈[0,1]. By employing
the adiabatic theorem, Schulz-Baldes and Teufel showed in
Ref. [21] that in the extreme adiabatic limit and when the
temperature goes to zero,


P(γ ) =
∫ 1

0
ds T (Pω(ξ s)i[∂sPω(ξ s),i[X,Pω(ξ s)]]), (30)

where T denotes the trace per volume:

T (. . .) = lim
V →∞

1

V

∑
n∈V

Q∑
α=1

〈n,α| . . . |n,α〉, (31)

and

Pω(ξ ) = χ[−∞,εF ](Hω(ξ )) (32)

is the Fermi projection onto the occupied states at coordinate
ξ . Above, it is assumed that the spectral gap of Hω(ξ s) remains
open for all s ∈ [0,1] and that the Fermi level εF is inside this
gap. We will keep the i = √−1 in front of the commutators
in order to make them self-adjoint. Now, using Birkhoff’s
theorem as before, we can write, equivalently,


P(γ ) =
∫ 1

0
ds

∫
�

dω

Q∑
α=1

×〈0,α|Pω(ξ s)i[∂sPω(ξ s),i[X,Pω(ξ s)]]|0,α〉. (33)

This is the Schulz-Baldes-Teufel formula, which can be re-
garded as the disordered version of the King-Smith-Vanderbilt
formula for the static spontaneous orbital polarization [22].

D. Quantization

The proof of quantization proceeds in two steps. First,
based on the Schulz-Baldes-Teufel formula Eq. (33), we can
demonstrate that the change in the electric polarization along
the inverted path Iγ (see Fig. 1) is


P(Iγ ) = −
P(γ ). (34)

This equality is remarkable because we are computing the
polarization of a system in an arbitrary disorder configuration

0 1

-I

0 1

-I

FIG. 1. The direct path γ (upper semiplane) and the inverted path
−Iγ (lower semiplane) in the parameter space ξ . The horizontal
axis represents the manifold which is left invariant by the symmetry.
The interesting cases occur when the spectral gap closes along this
manifold, which is schematically shown by the gray region.

which breaks the inversion symmetry. For the periodic case
with strict inversion symmetry, this property is well known
[11,12]. The keys to its proof are the self-averaging property,
the compatibility between the inversion symmetry and disor-
der, and the behavior of the position operator under inversion,
IXI−1 = −X . The proof proceeds as follows:


P(Iγ ) =
∫ 1

0
ds

∫
�

dω

Q∑
α=1

〈0,α|Pω(Iξs)

× i[∂sPω(Iξs),i[X,Pω(Iξ s)]]|0,α〉, (35)

and observe that

Pω(Iξ s) = IPI−1ω(ξ s)I−1. (36)

Then a change of variable ω → Iω and cancelations of terms
such as II−1 lead us to


P(Iγ ) =
∫ 1

0
ds

∫
�

d(Iω)
Q∑

α=1

〈0,α|IPω(ξs)

× i[∂sPω(ξs),i[−X,Pω(ξs)]]I−1|0,α〉. (37)

The probability measure is invariant, d(Iω) = dω. Also, the
0 site is left invariant by I and, since we are tracing over
the orbital degrees of freedom, the action of the remaining I
operators have no effect and can be removed. Then Eq. (34)
follows.

The second step of the proof consists of the following
argument. Assume that the initial and final Hamiltonians are
inversion symmetric; that is, ξ 0 and ξ 1 are fixed points of I,
Iξ 0 = ξ 0, and Iξ 1 = ξ 1. Then any path γ joining the two
Hamiltonians can be closed into a loop by augmenting −Iγ ,
where the minus sign implies that the path is walked in reverse
(see Fig. 1). Note that the argument does not work if the end
points of γ are not fixed points for I. Given Eq. (34), this has
the following effect:


P(γ ) = 1
2 [
P(γ ) + 
P(−Iγ )] = 1

2
P(γ − Iγ ).

(38)

But as already noted in Refs. [21,23], the change in the
polarization along a closed loop leads to the noncommutative
first Chern number defined in Ref. [24]. The conclusion is


Pj (γ ) = 1
2 C1[(γ − Iγ ) × Sj ], j = 1, . . . ,D, (39)

where on the right-hand side is the Chern number of the Fermi
projection over the manifold (γ − Iγ ) times the section of the
noncommutative Brillouin torus along the j th direction:

C1 =
∫

γ−Iγ

dξ T (Pω(ξ )i[∂ξPω(ξ ),i[Xj,Pω(ξ )]]). (40)

The usual constant in front is absent here because one
derivative is taken in the k-space and the other in the real-space
representation. As long as Pω(ξ ) is smooth along the loop and
its matrix elements 〈n|Pω(ξ )|m〉 decay sufficiently fast, all
these Chern numbers are integers for dimension D = 1 or 2.
In D = 3 these Chern numbers are weak topological invariants
and they remain integer only if magnetic fields are not present.
All these conditions are met if the spectral gap at the Fermi
level remains open along the loop.
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In conclusion, when insulators are deformed between fixed
points of the inversion-symmetry operator, the change in the
electric polarization is quantized in units of 1

2 , even thought
the symmetry exists only for disorder averages.

E. Numerical confirmation

We consider the 1-dimensional Rice-Mele model [25]:

Hω(ξ ) = 1

2

∑
n∈Z

[1 + (−1)nξ1](|n〉〈n + 1| + |n + 1〉〈n|)

+ 1

2

∑
n∈Z

[(−1)nξ2 + Wωn] |n〉〈n|, (41)

with on-site disorder. As detailed in Ref. [26], this model
was introduced originally by Rice and Mele to study solitons

in conducting polymers but it was subsequently used in other
contexts too. It is a particular form of the generic model
Eq. (14); hence everything we stated about Eq. (14) continues
to hold here. In the absence of disorder, the Rice-Mele model
is gapped if half filling is assumed, except at ξ = 0, and
it is inversion symmetric whenever ξ2 = 0. Also, it is well
known [26] that adiabatic deformations around closed loops
surrounding the origin lead to a quantized polarization change

P = ±1 (or C1 = ±1).

The model has two states per unit cell and it can be brought
to the form written in Eq. (14) by defining

|2n〉 = |n,1〉, |2n + 1〉 = |n, −1〉, (42)

in which case the Hamiltonian takes the form

Hω(ξ ) = 1

2

∑
n∈Z

∑
α=±1

(1 + αξ1)

(
|n,α〉

〈
n + 1

2
(1 − α), −α

∣∣∣∣ +
∣∣∣∣n + 1

2
(1 − α), −α

〉
〈n,α|

)

+ 1

2

∑
n∈Z

∑
α=±1

(αξ2 + Wωn,α) |n,α〉〈n,α|. (43)

If in the original rendering of Eq. (41) we choose the
inversion point to be between the 0th and first site, then the
inversion operation takes the form

I|n,α〉 → |−n, −α〉. (44)

It can be set in the diagonal form of Eq. (18) if we choose to
work with the states 1√

2
(|n,1〉 ± |n, −1〉). However, we will

not do that here. A direct computation will show that

IHωI−1 = HIω(Iξ ), (45)

with

I(ξ1,ξ2) = (ξ1, −ξ2), (Iω)n,α = ω−n,−α. (46)

Let us stress again that the on-site disorder breaks the inversion
symmetry because we impose no correlation between ωn,α and
ω−n,−α . However, the probability measure

∏
n,α dωn,α is easily

seen to be invariant under I.
We now choose the path γ to be the semicircle:

γ = 0.1 × {cos s, sin s}s∈[0,π], (47)

which connects two fixed points of the inversion symmetry.
By augmenting with −Iγ we obtain the full circle, s ∈
[0,2π ]. The numerical calculations are performed at finite
size n ∈ {0, . . . ,L} and with periodic boundary conditions.
Formulas from Eqs. (30) and (40) are used for all the results
reported here. The commutator with the position operator
is implemented using the strategy developed in Ref. [27].
The path integral is discretized using 100 points for γ and
200 points for γ − Iγ . The derivative ∂ξ with respect to
ξ along the path is computed using the five-point stencil
finite-difference approximation. The disorder strength W was
increased gradually and the calculation was repeated 100 times
with updated random potential for each W .

The results are reported in Fig. 2, where each dot seen in
these plots represents a single disorder configuration. In other
words, no disorder average has been performed on the data. In
the first row we show the results for 
P(γ ) and Chern number
or 
P(γ − Iγ ). The first thing to notice is the clustering of
the data for 
P(γ ) around the predicted quantized value of
− 1

2 , at disorder strengths lower than a critical value Wc. The
fluctuations around the quantized values can be attributed to
the finite system sizes because the fluctuations can be seen to
diminish as the size of the system gets larger. This confirms
our theoretical prediction that 
P(γ ) is self-averaging hence
nonfluctuating in the thermodynamic limit, and that, at least
for small W ’s, it takes quantized values in the unit of 1

2 .
The Chern number shows a very good quantization, with

virtually no fluctuations from one disorder configuration to
another below the same Wc. The reason for this difference is
that the quantization of the Chern number does not require the
restoring of the symmetry. It only requires that the exponential
decay rate of the Fermi projection be large compared to 1/L.
The Fermi projection also needs to be smooth for ξ along
the loop, but this is automatically the case if the spectral gap
remains open (which is the case for small W ’s). If, for example,
we average 
P(γ ) over just two disorder configurations which
are mirrored by inversion symmetry, then the quantization of

P(γ ) will be as good as that of the Chern number (this
can be shown exactly). While this could be a better numerical
method to compute 
P(γ ), it is irrelevant for the present
discussion because here we want to demonstrate a principle,
namely, that the quantization of 
P(γ ) occurs even for a
single disorder configuration ω, provided the system size is
large enough. So, what is actually happening in this latter
case? For this, let us note that the formula for 
P(γ ) remains
invariant if the disorder is translated. Now, due to the ergodicity
of the translations, when we translate the disorder we start
exploring the disorder configuration space �, and if the size
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FIG. 2. (Color online) Top row: The variation of the electric polarization when the Rice-Mele model is adiabatically deformed along a
semicircle (black dots) and along a full circle (red dots) in the two-parameter space. In the latter case, the variation is equal to a Chern number,
hence the label. The calculations are performed in the presence of a disordered potential which breaks the inversion symmetry but restores
it on the average. The disorder strength was increased from 0 to 7. Each dot corresponds to one disorder configuration and 100 disorder
configurations were considered for each disordered strength. The average and statistical variance are not shown on purpose (see text). Bottom
rows: The spectral gap of the Hamiltonian at half filling. A dot represents the spectral gap at one disorder configuration and one position along
the adiabatic deformation path. The three columns correspond to the different system sizes: L = 100 (a), 200 (b), and 400 (c).

of the system is large enough, at some point a translation
will bring us close to a new disorder configuration which
looks in many respects like the inverted disorder Iω. In
other words, if the system size is large enough, we do not
need to average over two mirrored disorder configurations
because this already happens due to the ergodicity of the
system.

The last issue we need to address is the value of the critical
Wc. We know already that Wc should be larger or equal than the
value of W where the spectral gap of Hω(ξ ) closes somewhere
along the loop. Can Wc be strictly larger than this value that we
mentioned? To answer this question, we plotted in the second
row of Fig. 2 the spectral gaps of Hω(ξ ) at half filling, as
ξ was varied along γ and the disorder configurations were
updated. These many data were then collapsed and shown
for increasing values of W . Whenever a dot in the second
row of Fig. 2 touches the horizontal axis, the spectral gap of
Hω(ξ ) closed for some ξ along the loop and some disorder
configuration. Note that the fluctuations of the gap due to
disorder die out in the thermodynamic limit. By comparing
the first and second rows of Fig. 2, we can conclude with
confidence that the deviations from the quantized values in
the top row of Fig. 2 occur exactly at the value of W where the
spectral gap closes. The answer to our question is no, and the
reason is because the Fermi projection fails to be smooth for
ξ beyond that point.

III. MAGNETOELECTRIC RESPONSE
OF TRS INSULATORS

Consider now an insulator Hω(ξ ) in dimension D = 3.
In this section we investigate the isotropic part of the

magnetoelectric response function:

α = 1

3

3∑
j=1

∂ Pj

∂Bj

. (48)

If TRS is considered, then the partial derivatives with respect
to the magnetic field are taken at B = 0. Since the arguments
are repetitive, we will expedite the exposition.

The main tool of our analysis is the formula derived in
Ref. [28] for the change 
α during a deformation of the system
along a path γ = {ξ s}s∈[0,1] in the parameter space:


α(γ ) = 1

2
εi1...i4

∫ 1

0
ds T (Pω(ξ s)∂i1Pω(ξ s) . . . ∂i4Pω(ξ s)),

where T denotes the trace per volume, ∂j is a shorthand for

∂jPω(ξ s) = i[Xj,Pω(ξ s)], for j = 1,2,3, (49)

and ∂4Pω(ξ s) = ∂sPω(ξ s). Also, εi1...i4 is the antisymmetric
tensor, and summation over repeating indices is assumed.
Since the operator inside the trace per volume is covariant,
we can apply Birkhoff’s ergodic theorem [18] to equivalently
write


α(γ ) = 1

2
εi1...i4

∫ 1

0
ds

∫
�

dω
∑

α

× 〈0,α|Pω(ξ s)∂i1Pω(ξ s) . . . ∂i4Pω(ξ s)|0,α〉. (50)

This shows at once the self-averaging property of the magne-
toelectric response function.

Next, we show that if the deformation occurs along the TRS
mirrored path 	γ , then


α(	γ ) = −
α(γ ). (51)
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This property is well known for periodic [4] and disordered
[28] TRS insulators, but here we compute the magnetoelectric
effect for a system in a disorder configuration which breaks the
TRS. The proof proceeds in the same way as for polarization,
using the self-averaging property, the compatibility between
TRS and disorder, together with the behavior of the derivatives
under TRS: 	∂j	

−1 = −∂j , for j = 1,2,3, and 	∂s	
−1 =

∂s . The proof goes as follows:


α(	γ ) = 1

2
εi1...i4

∫ 1

0
ds

∫
�

dω
∑

α

×〈0,α|Pω(	ξ s)∂i1Pω(	ξ s) . . . ∂i4Pω(	ξ s)|0,α〉.
(52)

Recall that

Pω(	ξ s) = 	P	−1ω(ξ s)	
−1. (53)

Then, after a change of variable ω → 	ω,

. . . = −1

2
εi1...i4

∫ 1

0
ds

∫
�

d(	ω)
∑

α

×〈0,α|	Pω(ξ s)∂i1Pω(ξ s) . . . ∂i4Pω(ξ s)	
−1|0,α〉.

(54)

Then the statement follows from the explicit action of 	 given
in Eq. (21) and the compatibility between TRS and disorder,
d(	ω) = dω.

Lastly, given a path γ between two TRS fixed points, ξ 0 =
	ξ 0 and ξ 1 = 	ξ 1, one can close this path into a loop by
augmenting with its TRS mirrored image −	γ , taken with
opposite orientation. Note that this argument will not work if
the end points of γ are not TRS fixed points. Then,


α(γ ) = 1
2 [
α(γ ) + 
α(−	γ )] = 1

2
α(γ − 	γ ). (55)

For the periodic TRS case, it is well known [4] that the variation
of the magnetoelectric response function along a closed loop is
equal to a second Chern number. As demonstrated in Ref. [28],
this remains true in the disordered case, in which case the
connection is with the noncommutative second Chern number
introduced in Ref. [29]. More precisely,


α(γ − 	γ ) = C2[(γ − 	γ ) × T̃
3
], (56)

where on the right we have the second Chern number of the
Fermi projection Pω(ξ ) over the manifold (γ − 	γ ) times the
3-dimensional noncommutative torus:

C2 = εi1...i4

∫
γ−	γ

dξ T (Pω(ξ )∂i1Pω(ξ ) . . . ∂i4Pω(ξ )). (57)

This is a strong topological invariant which is known [29] to
take only integer values. Note that the constant in front differs
from the usual constant because some of the derivatives are
taken in k space and some in real space.

In conclusion, when 3-dimensional insulators are deformed
between fixed points of the time-reversal operation, the change
in the isotropic magnetoelectric response function is quantized
in units of 1

2 , even thought TRS applies only for disorder
averages. Recall that the existence of a spectral gap is required
by our argument. The numerical simulations of 
α performed
for Ref. [30] indicate that, as in the previous case, the
quantization does not survive beyond the spectral gap closing.

IV. CONCLUSIONS

The present work dealt exclusively with the bulk invariants,
while the invariants formulated in Ref. [1] can be regarded
as boundary invariants since they are computed from the
boundary states. We can already foresee a connection between
these invariants, which we would like to sketch briefly. The
bulk-boundary principle developed in Ref. [31] provides an
equality between the bulk first Chern number and a certain
spectral flow of the boundary states. The latter has a self-
averaging property similar to that of the first Chern number.
When applied to the variation of the electric polarization

P (γ − Iγ ) of a 1-dimensional system with an edge, this
bulk-boundary principle seems to lead precisely to the count-
ing of the spectral features of the edge states performed in
Ref. [1]. It will definitely be interesting to make this connection
more precise and see it in action for concrete models.

The principle described in the present work seems to apply
to any symmetry-stabilized topological invariant which can be
formulated in a real-space representation. Unfortunately, there
are important instances where a real-space representation is
not yet available, such as the Kane-Mele Z2 invariant [32] or
the bulk topological invariants for point-symmetry-stabilized
topological insulators [33]. For this reason, we have nothing
to say about these invariants at this moment, but we hope
our findings will spur a renewed effort in this direction.
Nevertheless, the strategy does apply to the Loring-Hastings
invariants [34,35], or to the spin-Chern numbers [36,37].
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