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Layered organic superconductors of the BEDT family are model systems for understanding the interplay
of the Mott transition with superconductivity, magnetic order, and frustration, ingredients that are essential
to understand superconductivity also in the cuprate high-temperature superconductors. Recent experimental
studies on a hole-doped version of the organic compounds reveals an enhancement of superconductivity and
a rapid crossover between two different conducting phases above the superconducting dome. One of these
phases is a Fermi liquid, the other not. Using plaquette cellular dynamical mean field theory with state-of-the-art
continuous-time quantum Monte Carlo calculations, we study this problem with the two-dimensional Hubbard
model on the anisotropic triangular lattice. Phase diagrams as a function of temperature T and interaction strength
U/t are obtained for anisotropy parameters t ′ = 0.4t , t ′ = 0.8t and for various fillings. As in the case of the
cuprates, we find, at finite doping, a first-order transition between two normal-state phases. One of theses phases
has a pseudogap while the other does not. At temperatures above the critical point of the first-order transition,
there is a Widom line where crossovers occur. The maximum (optimal) superconducting critical temperature
T m

c at finite doping is enhanced by about 25% compared with its maximum at half filling and the range of U/t

where superconductivity appears is greatly extended. These results are in broad agreement with experiment. Also,
increasing frustration (larger t ′/t) significantly reduces magnetic ordering, as expected. This suggests that for
compounds with intermediate to high frustration, very light doping should reveal the influence of the first-order
transition and associated crossovers. These crossovers could possibly be even visible in the superconducting
phase through subtle signatures. We also predict that destroying the superconducting phase by a magnetic field
should reveal the first-order transition between metal and pseudogap. Finally, we predict that electron doping
should also lead to an increased range of U/t for superconductivity but with a reduced maximum Tc. This
work also clearly shows that the superconducting dome in organic superconductors is tied to the Mott transition
and its continuation as a transition separating pseudogap phase from correlated metal in doped compounds,
as in the cuprates. Contrary to heavy fermions for example, the maximum Tc is definitely not attached to an
antiferromagnetic quantum critical point. That can also be verified experimentally.
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I. INTRODUCTION

In organic charge transfer salts, such as
κ-(BEDT-TTF)2X[κ-(ET)2X ] or EtnMe4−nPn[Pd(dmit)2]2

[Pd(dmit)2], a first-order phase transition between a
superconductor and a Mott insulator is induced by pressure
[1–5]. These materials also present a wide range of intriguing
phenomena such as unconventional superconductivity,
magnetic ordering [5], pseudogap [6], and valence-bond solid
phases [3], and some of them are even spin-liquid candidates
[7,8]. Excellent reviews are available [9,10].

The presence of the Mott transition and of spin-liquid
states in the phase diagram suggests that strong electronic
correlations and electronic frustration are key to the physics of
the organics. The one-band Hubbard model on an anisotropic
triangular lattice near half filling is the simplest model that
captures this physics [9–11], although consensus has not yet
been completely reached [12,13] on this point.

Unraveling the physics of these layered materials should
also be helpful to shed light on cuprate high-temperature
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superconductors. Indeed, these two classes of materials give
a complementary perspective on the crucial role of the Mott
transition. In the organics, the Mott transition is bandwidth-
controlled whereas it is doping-controlled in the cuprates
[14,15]. The analogy between these two classes of materials
has been reinforced through recent experimental studies [16]
of doped organics [17,18] that show a superconducting dome
[19] as a function of pressure as well as a rapid change
from non-Fermi-liquid (pseudogap) to Fermi-liquid-like metal
at a critical pressure in the normal state [16,20]. These
analogies motivate our work. In short, our calculations explain
these different features just as calculations performed with the
same methods explain many of the key features of the cuprate
phase diagram [21]. In particular a first-order transition at finite
doping and its associated Widom line play a crucial role as in
the cuprates [22,23]. We define superconductivity as strongly
correlated when it arises in the presence of interactions larger
than, or on the order of, those necessary to lead to a Mott
transition at half filling.

Some of the striking experimental results that we address
and understand theoretically in this paper come from recent
work on κ-(ET)4Hg2.89Br8 by Oike et al. [16]. That compound
is considered as a 10%-doped analog of κ-(ET)2Cu2(CN)3.
The main observation is that maximally enhanced
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superconductivity and a normal-state crossover to a non-
Fermi-liquid phase appear concomitantly around a pressure
where mobile carriers decrease rapidly. Also, the range
of pressures spanned by the superconducting dome in κ-
(ET)4Hg2.89Br8 is about six times the range where it appears
in the half-filled analog κ-(ET)2Cu2(CN)3.

We work with the Hubbard model on the anisotropic
triangular lattice as a function of temperature, interaction
strength U/t , and filling n, for different values of frustration
characterized by the ratio of near-neighbor hopping t ′/t in
different directions. Values for t ′/t are inspired from Kandpal
et al. [24] and from Nakamura et al. [25] who found, using ab
initio density functional theory, that κ-(ET)2Cu[N(CN)2]Cl
could be modeled by t ′ = 0.4t and κ-(ET)2Cu2(CN)3 by
t ′ = 0.8t . Comparing the results for two values of t ′/t helps
understand the effect of magnetic frustration on the phase
diagram.

We use a cluster generalization of dynamical mean field
theory [26–29]. This approach has already led to numerous
results that can be confronted with experiments, thus permit-
ting us to address important issues in cuprates, Pd(dmit)2,
and κ-(ET)2X such as the pseudogap, superconductivity, Mott
transition, magnetic ordering, thermodynamic properties, and
unusual criticality in organic compounds [15]. The assumption
inherent in our approach is that the main physics of the
organics originates from strong correlations that occur at
short distances due to on-site repulsion U and near-neighbor
superexchange J that are present in the Hubbard model. This is
the assumption behind the state-of-the-art method that we use
for a 2 × 2 cluster embedded in a self-consistent dynamical
mean field. Larger cluster calculations would be necessary if
this assumption was proven incorrect. The agreement between
our results at low temperature and those obtained recently
through variational Monte Carlo methods helps establish
the validity of the approach [30]. Agreement with several
experimental facts strongly suggests that our approach is
relevant for experiment. We make predictions for experiment
that can falsify the theory. In the absence of an exact solution
to the Hubbard model, we are making a minimum number of
assumptions and suggesting experiments that can falsify them
by disagreeing with the consequences.

The link between the normal state of high-temperature
cuprate superconductors and that of the organics is illustrated
schematically [31] in Fig. 1. Disregarding temperature, the
relevant variables are interaction strength U/t , doping δ, and
frustration as measured by the ratio of second to first nearest-
neighbor hopping t ′/t . Cuprate superconductors, in the red
region, are easily doped but are little influenced by pressure
and the range of t ′/t varies little between different compounds.
Layered organic compounds on the other hand are half filled,
with a broad range of possible values of frustration t ′/t from
compound to compound, and their bandwidth-to-interaction
ratio is strongly influenced by pressure. A pseudogap appears
through a second-order transition when doping is increased
from the yellow region containing the Mott-insulating phase
at half filling. The pseudogap phase ends in a first-order
manner on the magenta surface in Fig. 1. The latter first-order
transition extends from the first-order Mott insulator-metal
transition occurring at half filling at the boundary of the yellow
region.
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FIG. 1. (Color online) Schematic generalized normal-state phase
diagram for the cuprates and the layered organics, in the limit of low
temperature neglecting broken-symmetry phases. The yellow surface
represents the Mott-insulating phase at zero hole doping δ = 0, or
half filling n = 1. Leaving the Mott-insulating phase by increasing
doping yields a second-order transition to a pseudogap phase up
to the magenta surface where a first-order transition to a correlated
metal occurs (at least close to half filling). That first-order transition
extends from the first-order Mott metal-insulator transition that occurs
at the boundary of the yellow region. Cuprate superconductors are
found in the red region at negative t ′/t . The half-filled layered
organics are found for different t ′/t along the blue regions in the
zero-hole-doping plane. They are strongly influenced by pressure,
whose effect is represented vertically, although the ratio t ′/t will
generally also be influenced by pressure. A doped layered organic is
found in the green region. It allows one to expand the analogy between
organics and cuprates. The organic and cuprate lattices are different,
as illustrated respectively by the left and right insets. Nevertheless,
the physics of interactions, frustration, and doping is present in
both types of compounds. Superconductivity and antiferromagnetism
are broken-symmetry phases that are strongly influenced by the
underlying normal state illustrated by this figure. In particular, the
superconducting phase has a maximum Tc in the vicinity of the
boundary of the magenta region.

The range of parameters that could be relevant for the doped
organic compound κ-(ET)4Hg2.89Br8 is indicated by the green
region in Fig. 1. This compound then offers the interesting
possibility to investigate the pseudogap to correlated metal
transition in the normal state by cutting the first-order magenta
surface along a direction different from that of the cuprates.
The effect of this transition on the superconducting state is
also a key question that we address here.

The Hubbard model and the cellular dynamical mean field
theory on a plaquette with continuous-time quantum Monte
Carlo impurity solver are presented in Sec. II. This work would
not have been possible without recent improvements of this
solver related to sign problem minimization [32], ergodicity
[33], and speedup [34]. We begin in Sec. III with a short
summary of some previous results for the cuprates. We then
present in Sec. IV results for the normal state, showing the
Widom line that emerges from the first-order transition [35,36]
between a pseudogap phase and a metal [22]. This plays a
crucial role for the cuprates [21]. The results in Sec. V are for
two different lattice anisotropies, t ′/t , or equivalently, frustra-
tion. We investigate the Néel antiferromagnetism (AFM) and
d-wave superconductivity (SC) on the same footing but the
relative stability of the phases is not studied. For t ′/t = 0.4,
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half filling, 1%, 10% hole doping, and 10% electron doping are
investigated. We find for a 1% hole doping that the maximum
(optimal) superconducting critical temperature (T m

c ) as a
function of pressure or (interaction strength) is enhanced
by approximately 25% and the range of superconductivity
is multiplied by a factor of six on the pressure axis (t/U ).
The range of pressure where superconductivity exists for
10% doping is similar. We also obtain the T m

c line in the
T-U-n phase diagram. The case t ′/t = 0.8 is considered only
for the 10%-hole-doped case and at half filling due to a
worse sign problem. Discussions in Sec. VI include the role
of long-wavelength fluctuations on broken-symmetry phases,
the role of antiferromagnetic quantum critical points and of
the Mott transition on the superconducting dome, contact
with experiment, predictions, limitations of the approach, and
perspectives. The most important conclusions are summarized
in Sec. VII.

II. MODEL AND METHOD

We consider the single-band Hubbard Hamiltonian on the
anisotropic triangular lattice in two dimensions

H =
∑
i,j,σ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓ − μ
∑
i,σ

ni,σ , (1)

where tij is the hopping amplitude between neighboring sites,
ciσ and c

†
iσ respectively destroy and create an electron of spin

σ at site i, niσ is the density of electrons of spin σ at site
i, μ is the chemical potential, and U is the on-site Coulomb
repulsion. This model was proposed several decades ago for
the organics [11]. Its validity has been revisited recently for
specific compounds [25]. In particular, it has been argued
that near-neighbor repulsion V was important. Since previous
studies for the cuprates have shown that V does not influence
the phase diagram in a dramatic way in the strong-correlation
limit [37], we neglect this term in this initial study.

As illustrated in Fig. 2, we take tij = t for nearest-neighbor
bonds, and tij = t ′ for the diagonal bond. The isotropic triangle
is recovered for t ′ = t . The ratio t ′/t is both an anisotropy
parameter and a measure of magnetic frustration. The two
expressions are used interchangeably. In the figures, inverse
temperature β is given in units of 1/t .

Tc stands for the superconducting critical temperature. It
was called T d

c in Ref. [38] to emphasize that it is the dynamical
mean field transition temperature, which differs from the true
superconducting transition temperature. We use T m

c for the
maximum value that this quantity takes at a given doping as a
function of pressure or interaction strength.

A. CDMFT

In two dimensions, momentum dependence of the self-
energy is important. Cellular dynamical mean field theory
[39] (CDMFT) for the Hubbard model takes into account
short-range correlations in addition to interaction-induced dy-
namical correlations; single-site DMFT [26] is not appropriate
to study the momentum dependence associated with d-wave
superconductivity. The key approximation is to restrict the
self-energy to a local cluster and neglect its spatial dependence
beyond the cluster [28,29,40,41].

t

t t'

3

21

4

FIG. 2. (Color online) Periodic partitioning of the anisotropic
triangular lattice into 2 × 2 frustrated square clusters for this work
using CDMFT.

In practice, CDMFT embeds a cluster of finite size in a
noninteracting electronic bath. The impurity problem (cluster
and bath) is then solved and the bath is determined self-
consistently by demanding that the lattice Green’s function
projected on the cluster equal the Green’s function obtained
from the impurity problem.

To be more specific, the lattice Green’s function in
Matsubara frequencies is obtained from

Ĝ−1
latt (iωn,

∼
k) = (iωn + μ)Î − t̂(

∼
k) − �̂cl(iωn), (2)

where
∼
k is the wave vector associated with translational

invariance from cluster to cluster, μ is the chemical potential,

t̂(
∼
k) the full hopping matrix (including intracluster and

intercluster hoppings), and �̂cl(iωn) is the self-energy of the
cluster, imposed to be equal to the self-energy of the lattice in
the CDMFT approximation. The hat on symbols specifies that
they are matrices in the basis of cluster Wannier states.

The self-energy is related to the Green’s function of the
cluster through Dyson’s equation

Ĝ−1
cl = Ĝ−1

0 − �̂cl, (3)

where the free propagator on the cluster is defined by

Ĝ−1
0 (iωn) = (iωn + μ)Î − ĥ0

loc(iωn) − �̂cl(iωn), (4)

with ĥ0
loc the one-body part of the Hamiltonian and �̂cl the

hybridization function that defines the bath and its coupling to
the cluster.

The projection of the lattice Green’s function on the cluster
leads to the self-consistent equation for the hybridization
function

Ĝcl(iωn) = Ncl

∫
dk̃

(2π )2
Ĝlatt (iωn,

∼
k), (5)

where Ncl is the number of sites on the cluster and the integral is
over the reduced Brillouin zone. A high-frequency expansion
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of both sides of this equation proves that ĥ0
loc is the hopping

matrix within the cluster [42].
The uniform spin susceptibility, or Knight shift, is defined

by

Sz = 1

2
(N↑ − N↓),

(6)

χz(q = 0,ω = 0) =
∫ β

0
〈Sz(τ )Sz(0)〉dτ,

with N↑ and N↓ the total number of up and down spins,
respectively, on the cluster.

The calculation starts from a guess for the hybridization
function �̂cl . This gives the so-called dynamical mean field,
Eq. (4), namely the free propagator for the cluster. Assuming
that the impurity problem can be solved, Dyson’s Eq. (3) then
gives the self-energy which is needed to obtain the lattice
Green’s function, Eq. (2), entering the right-hand side of the
self-consistency Eq. (5). Using Dyson’s equation again on the
left-hand side of that self-consistency equation leads to a new
guess for the hybridization function. This process is iterated
until convergence.

Calculating the cluster impurity Green’s function Ĝcl is the
difficult problem. This is done here using a continuous-time
quantum Monte Carlo method (CTQMC).

B. Hybridization-expansion continuous-time
quantum Monte Carlo

CTQMC provides a statistically exact solution of the
impurity problem exempt from imaginary-time discretization
error. The large values of U/t , low temperatures, and large
frustration that we need can be attained only with the
hybridization expansion algorithm (CT-HYB) [43]. Extensive
reviews of CTQMC solvers are available [44–46].

The cluster that tiles the infinite anisotropic triangular
lattice is illustrated in Fig. 2. It allows a singlet ground state.
To speedup the calculations, one chooses a single-particle
basis that transforms as the irreducible representations of
the cluster-Hamiltonian symmetries [46]. The point group
symmetry C2v of the anisotropic cluster as well as charge and
spin conservation lead to the following single-particle basis:

cA1σ = 1√
2

(c1σ + c3σ ), c′
A1σ

= 1√
2

(c2σ + c4σ ),

(7)

cB1σ = 1√
2

(c1σ − c3σ ), cB2σ = 1√
2

(c2σ − c4σ ),

where the indices are those of Fig. 2 and where A1, B1, B2

are irreducible representations of C2v , A2 being empty. In
this basis, the hybridization function �̂ and cluster Green’s
function are both block diagonal. The largest block is 2 × 2
because the A1 representation occurs twice. The calculations
presented here are possible only if the angle defining rotations
in this 2 × 2 block is chosen to minimize the sign problem
[32]. In addition it is necessary to use a modification of the
original algorithms to ensure ergodicity in the presence of d-
wave superconductivity [33]. We also speedup the calculation
with the lazy skip list algorithm [34].

In normal phase studies, this basis respects the symmetries
of the lattice that are compatible with the partitioning. In

broken-symmetry phases, such as magnetically ordered or
d-wave SC, symmetry breaking is allowed only for the
hybridization function. The cluster continues to respect the
original Hamiltonian symmetries. There is no mean-field
factorization on the cluster.

Other popular continuous-time quantum Monte Carlo im-
purity solvers involve expansion in powers of the interaction.
They have better scaling than CT-HYB with cluster size.
However, they need very large order expansion at large U/t ,
which makes them converge slowly, and they have a severe
sign problem at large interaction strengths U/t and frustration
t ′/t [44].

C. Broken-symmetry phases

The Green’s function for superconductivity is written in
Nambu notation as

− 〈Tτ��†(τ )〉 =
(

Ĝ↑(τ ) F̂(τ )

F̂†(τ ) −Ĝ↓(−τ )

)
, (8)

with �† = (c†↑,c↓), where c†↑ and c↓ are row vectors as defined
by Eq. (7). The d-wave superconducting order parameter
transforms as the A2 representation of the C2v symmetry group.
Hence only entries in the Gork’ov function F̂(τ ) transforming
as A2 can be finite, e.g., for singlet pairing

FB1,B2 (τ ) : = −〈Tτ cB1↑(τ )cB2↓〉
= −〈Tτ cB2↑(−τ )cB1↓〉
=: FB2,B1 (−τ ).

(9)

To determine the region where the SC phase is allowed we
calculate the order parameter

dSC := FB1,B2 (0+). (10)

Since antiferromagnetism does not break C2v symmetry, no
additional entry is needed in the Green’s function matrix. We
only need to let up and down spins take independent values.

III. A BRIEF REVIEW OF QUANTUM CLUSTER RESULTS
FOR THE CUPRATES

In this section we only briefly summarize some of the main
results obtained with cluster generalizations of DMFT for the
cuprates and give a few representative references. A more
detailed but not exhaustive review can be found in Ref. [15].

There are two cluster generalizations [28,29,40] of DMFT.
We described CDMFT above. In the dynamical cluster approx-
imation (DCA) [47] the clusters are built in momentum space.
Whatever the method used, all groups have found a pseudogap
in the normal state near half filling [22,48–53]. The Mott transi-
tion at half filling is first order [54,55], and large cluster studies
find [27] a d-wave superconducting transition temperature Tc

at finite doping. The zero-temperature order parameter has a
dome shape instead of increasing monotonically towards half
filling when the interaction strength is large enough that there
is a Mott insulator at half filling or when antiferromagnetism
is allowed to compete with superconductivity [56–62]. The
larger cluster studies [61] find that the dome ends at a finite
doping away from half filling.
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All methods agree with the existence of crossovers at high-
temperature associated with the opening of a pseudogap as
doping is reduced towards half filling. On 2 × 2 clusters with
the CT-HYB solver it was possible to reach lower temperatures
than previous studies. Scanning chemical potential over a very
fine mesh allowed the discovery of a first-order transition in
the normal state at finite doping [22]. That first-order transition
ends at a critical point that is continued as a Widom line in the
supercritical region. That first-order transition with its Widom
line then becomes an organizing principle for the observed
crossovers and for the superconducting dome. The Widom
line is described in more detail in the following section that
begins our discussion of organics. Earlier work on normal-state
first-order transitions at finite doping is discussed at the end of
that section.

IV. NORMAL-STATE PSEUDOGAP, FIRST-ORDER
TRANSITION, AND WIDOM LINE

The first-order Mott transition at half filling is well
documented [63,64]. The blue shaded region in Fig. 5(a)
identifies the region of parameter space where normal-state
hysteresis is found. Metallic and insulating states there can
coexist. The results are similar to those obtained at half filling
in the unfrustrated case t ′ = 0 [54,55]. The positive slope of the
transition in the T-U plane (negative in the T -t/U plane) comes
from the smaller entropy of the insulating phase compared
with the metallic phase, as deduced from Clausius-Clapeyron
arguments [1,36]. Indeed, from dG = −SdT + DdU + μdn,
where G is the Gibbs free energy, S the entropy, D double
occupancy, and n the filling, we find that the slope of the
transition line is

dT

dU
= DI − DM

SI − SM

, (11)

where index I is for the insulating phase and M for the metallic
one. The smaller entropy of the insulating phase comes from
the tendency to form local singlets [1,22,35,36].

In this section, we focus on the less familiar first-order
transition found at finite doping. Consider the case t ′ =
0.4t at 1% doping, namely n = 0.99. Figure 3 shows two
jumps of double occupancy delimiting a coexistence region
at low temperature, and a smooth dependence on U/t at
high temperature. The jumps at low temperature define the
hysteresis region of a first-order transition. The low-pressure
phase exhibits a pseudogap while the high-pressure phase is a
more standard metal. The inflection point at high temperature
defines a crossover. The locus of these inflection points is
associated with the so-called Widom line of the first-order
transition.

In the theory of fluids, the Widom line is defined as the
line where the maxima of different thermodynamic response
functions touch each other asymptotically as one approaches
the critical point of the first-order transition [65]. Investigations
on the phase diagram of fluids have shown drastic changes
in the dynamics upon crossing the Widom line [65,66]. By
analogy, in the cuprates the Widom line has been identified as
the organizing principle for the pseudogap and resulting phase
diagram of the high-temperature superconductors [21–23,67].
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FIG. 3. (Color online) Double occupancy Docc as a function of
pressure (bottom horizontal axis) or interaction strength U/t (top
horizontal axis) for fixed filling, n = 0.99. The value t = 0.044 eV
is used to convert to physical units [63]. The lower horizontal axis
is labeled t/U to suggest the pressure dependence, but the numbers
on that horizontal axis are given by the value of 1/U expressed in
electron volts using the above conversion factor. At T = t/60 there
is a first-order hysteresis region: the brown squares are obtained
from the insulating solution and the blue squares for the conducting
solution. At T = t/12, there is no hysteresis, only an inflection point
that determines the Widom line.

In the present context, along the Widom line a crossover
from a metallic state to a pseudogap metal is also seen. This
is illustrated by the frequency dependence of the imaginary
part of the local Matsubara Green’s function Im[G(iωn)] in
Fig. 4 at T slightly above the critical point of the first-
order transition. For large values of U/t , Im[G(iωn)] aims
upwards as frequency decreases, indicating a small density
of states at the Fermi level, consistent with a pseudogap. By
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FIG. 4. (Color online) The imaginary part of the Matsubara
Green’s function Im G(iωn) plotted as a function of Matsubara
frequency gives information about the density of states at the
Fermi level, −2 Im G(iωn → iη) with η → 0. The behavior differs
depending on the value of U/t . The decrease towards zero of the
density of states at larger U/t indicates a pseudogap, while its increase
at smaller U/t indicates a metallic phase.

195112-5
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FIG. 5. (Color online) Phase diagrams for the Hubbard model on the anisotropic triangular lattice with t ′ = 0.4t for various fillings. The
antiferromagnetic state has been studied for the half-filled case and for 10% doping. The value t = 0.044 eV is used to convert to physical
units [63]. The lower horizontal axis is labeled t/U to suggest the pressure dependence, but the numbers on that horizontal axis are given by
the value of 1/U expressed in electron volts using the above conversion factor. The same convention is used throughout the paper. Lines are
guides to the eye. (a) Phase diagram for the half-filled case. In the blue region, the Mott insulator and the metallic state coexist. At the blue
points, we find a first-order jump in the normal-state double occupancy. The lines between the points can be identified as the spinodal lines.
d-wave superconductivity occurs in the orange region: Decreasing pressure, we find a first-order jump of the SC order parameter to zero at the
orange points while upon increasing pressure we find a second-order transition. The AFM phase occurs below the red line that interpolates
between the triangles where we find the Néel second-order transition. (b) Phase diagram for the 1%-hole-doped case. The colors have the
same meaning as for the half-filled case, except that in the blue region two different conducting states are found instead of a metallic and an
insulating state like at half filling. First-order jumps are observed at the blue points. There is coexistence in the blue region. Also, the red dots
connected to the blue region indicate a strong crossover (Widom line) between a pseudogap state at small pressure (large U/t) and a metallic
state at large pressure (small U/t). Orange points denote where we detect a second-order transition from the SC state to the normal state.
(c) Phase diagram for the 10%-hole-doped case. The transitions between the normal and SC state (orange circles) are second order. The AFM
phase is between the red lines. These lines interpolate between the second-order Néel transition that we find where the triangles are located.
(d) Phase diagram for the 10%-electron-doped Hubbard model. The brown dot and line are extrapolations. The transitions between the normal
and SC state (orange circles) are second order.

contrast, for smaller values of U/t , Im[G(iωn)] extrapolates
to a finite density of states at the Fermi level, consistent
with an ordinary metal. We suggest that this crossover
corresponds to the one seen experimentally in doped organics
[16,20]. At lower temperature, the transition between the
pseudogap metal and the more ordinary metallic phase occurs
discontinuously through the first-order transition illustrated in
Fig. 3.

Figure 5(b) displays the normal-state phase diagram at 1%
doping. There is a coexistence region, in blue, coming from

the first-order transition and a Widom line that extends above
the critical point of that first-order transition. There is also a
Widom line in the half-filled case (not shown). In the context of
the cuprates, this first-order transition was found at fixed U/t

as a function of doping [22,35,36]. The results in those papers
[22,35,36] clearly show a surface of first-order transitions that
is continuously connected to the Mott transition at half filling
[68]. The results of Fig. 5(b) are in a way a constant doping cut
of the finite t ′ version of that first-order surface. The critical
point in Fig. 5(b) occurs at a temperature about 60% lower
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than the corresponding temperature at n = 1. That rapid drop
is also observed in the square-lattice results.

We end this section with brief comments on early work
on the doping-induced Mott transition of the Hubbard model.
In single-site DMFT [69], it was found for t ′ = 0 that upon
doping there is a first-order transition between a half-filled
Mott insulator and a finite-doping metal. Essentially the same
result was found with DCA for the square lattice and various
positive t ′/t (electron-doped case in the language of cuprates)
[70]. Later work with the same methods [71] suggested
that at t ′ = 0 there is a quantum critical point instead of a
first-order transition but the lowest temperature reached was
large compared to those where the first-order transition was
found in CDMFT with CTQMC solver [22,35,36]. CDMFT
studies with an exact-diagonalization solver [51] also found
a clear first-order transition for positive t ′/t on the cuprate
square lattice. As in Refs. [22,35,36], that first-order transition
separates a pseudogap phase and a metal instead of separating
a Mott insulator and a metal as found in the above early DCA
study [70]. In that study [70], it was noted that the phase
transition appeared only for U/t larger than the bandwidth.
However, it was in the work of Refs. [22,35,36] that the critical
end line of the finite-doping surface of first-order transitions
in the (U,T ,δ) space of parameters was shown to be connected
to the critical end point of the Mott transition at half filling.
This is an important step to differentiate strong and weak
correlation effects [15]. The pseudogap phase appears at finite
doping only if there is a Mott insulator at half filling. At zero
temperature the transition between the Mott insulator and the
pseudogap phase is second order [35,36]. The pseudogap is
then different from the Mott gap even though they both appear
in the generalized phase diagram [22]. The significance and
existence of the Widom line was noted in Refs. [22,23,67].

V. PHASE DIAGRAM, INCLUDING
SUPERCONDUCTIVITY AND ANTIFERROMAGNETISM

We present phase diagrams for the normal state, Néel
antiferromagnetism (AFM), and d-wave superconductivity
(SC). In CDMFT, AFM and SC fluctuations are treated on
equal footing both on the cluster and in the bath but we only
allowed one symmetry breaking at a time. Values for t ′/t

are inspired from Kandpal et al. [24] and from Nakamura et
al. [25]. Using ab initio density functional theory, they found
that κ-(ET)2Cu[N(CN)2]Cl could be modeled by t ′ = 0.4t and
κ-(ET)2Cu2(CN)3 by t ′ = 0.8t . However, extensive Hückel
calculations had previously found higher frustration (t ′/t)
values for these compounds [72]. We have to keep in mind
these uncertainties when we make contact with real materials.

We present first the case t ′ = 0.4t , then t ′ = 0.8t . The
intermediate frustration t ′ = 0.4t results are presented first
because the sign problem is less severe in that case, allowing
a more thorough investigation of the SC phase diagram.
Even though the SC phase would be mostly hidden by
antiferromagnetism in this case, we find that the results for
the pure SC phase (forbidding AFM) are qualitatively similar
to the results we discuss for larger frustration t ′ = 0.8t . In
the later case, AFM is generally sufficiently suppressed that
its neglect is justified. We are restricted to commensurate
antiferromagnetism. We also did not allow noncollinear spin

order. A more in-depth discussion of magnetic order and its
impact on the presence of SC in real compounds can be found
in Secs. V B and VI A.

A. t ′ = 0.4t

Our results for the phase diagrams at different dopings are
summarized in Fig. 5. A few more properties for the SC phase
are displayed in Fig. 8. Let us discuss the various phases in
turn.

The phase diagram at half filling. Figure 5(a) depicts
the phase diagram at half filling. The blue region delimits
the metal-insulator coexistence region associated with the
first-order Mott transition in the normal phase. The critical
value of U/t agrees within error bars with previous results
[12,73]. The d-wave SC phase is observed in proximity to
the normal-state first-order Mott transition. When pressure is
increased in the SC phase (interaction strength is decreased),
it disappears in a second-order manner. The zero-temperature
results obtained previously [73] suggest that in that limit the
SC phase in Fig. 5(a) will extend beyond the phase boundary
for AFM. When pressure is decreased, SC gives way to the
insulating phase through a first-order jump. The maximum
SC critical temperature (T m

c ) is attained close to the Mott
transition to the insulator. All the qualitative results agree
with previous theoretical studies on the unfrustrated square
lattice at finite temperature [38] as well as with experimental
observations in various organic compounds of the κ-(ET)2X
family and of the Pd(dmit)2 family [1–3].

Note that the low-pressure boundary (spinodal line) where
the metastable metallic phase disappears discontinuously in fa-
vor of a stable insulator does not coincide with the low-pressure
boundary where the SC phase disappears discontinuously. The
two boundaries are however in very close proximity. There is
no reason for the regions of metastability of the normal and
superconducting phases to exactly coincide.

When AFM order is permitted, it dominates a wide area
in the temperature-pressure (T-P) plane. The maximum of the
SC dome does not coincide with an AFM quantum critical
point, as can be seen for example in Fig. 5(c). Further results
on AFM appear in Fig. 9(a) and are discussed in Secs. V B and
VI A. Zero-temperature studies obtained with CDMFT [73]
and with other methods [74,75] do suggest that for this value
of t ′/t AFM is the most stable magnetic phase.

Phase transition between pseudogap phase and metallic
phase. For small hole doping [1% in Fig. 5(b)] one finds the
first-order transition discussed in Sec. IV. The region where
hysteresis is found is indicated by the blue region in Fig. 5(b).
Comparison with half filling in Fig. 5(a) demonstrates that
this transition is continuously connected to the first-order
metal-insulator Mott transition and that it occurs at larger
interaction strength as doping is increased, as suggested by
the border of the magenta region in Fig. 1. In other words,
upon doping, the Mott insulator evolves continuously into a
conducting pseudogap phase different from the metallic phase
at larger pressure. This is in complete analogy with the results
found previously [35,36] for the unfrustrated square lattice
[76]. Our results are qualitatively similar to those of Fig. 1 of
Ref. [35] for the square lattice. We indeed also find that the
first-order transition occurs at lower temperatures as doping
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HÉBERT, SÉMON, AND TREMBLAY PHYSICAL REVIEW B 92, 195112 (2015)

TABLE I. Filling dependence of UN/t for T/t = 1/20. For
U/t > UN/t the AFM phase is stable at that temperature.

n 1.10 1.00 0.99 0.90

U/t 3.20 ± 0.05 4.465 ± 0.005 4.60 ± 0.05 6.9 ± 0.1

is increased and is not accessible to our simulations for hole
dopings as small as 4% for temperatures down to T/t = 1/60
and interaction strength up to U/t = 20.

The type of pseudogap discussed here is a strong-
correlation effect as follows from the fact that it appears in
a phase that exists only for values of U/t large enough for
a Mott insulator to exist at half filling. This pseudogap is
however very different from the Mott gap [15,22,49].

AFM. We did not systematically study the effect of doping
on the AFM phase. Nevertheless, Table I is suggestive. Hole
doping pushes the AFM phase to lower pressures (higher
interaction strengths U/t). For example, at 10% hole doping,
the critical pressure for the Néel transition at T/t = 1/20 is
decreased by about 35% [Fig. 5(c)] compared to the half-filled
case. By contrast, electron-doping brings the Néel transition
to higher pressure values (to lower interaction strengths U/t)
(not shown here). A calculation of the Lindhard function
shows that this can in part be attributed to better nesting in
the electron-doped case.

The SC state. Figure 5 illustrates the dramatic effects of
doping on the SC phase. For 1% hole doping [Fig. 5(b)],
the SC dome is extended by a factor of six on the pressure
axis at T/t = 1/60 compared with the half-filled case shown
in Fig. 5(a), while T m

c (the maximum Tc) is enhanced by
approximately 25%. Suppressing the Mott-insulating phase
by doping allows the SC state to extend its stability far beyond
the critical interaction strength for the Mott transition at half
filling (UMIT ). Comparison of Fig. 5(b) and Fig. 5(c) reveals
that increasing hole doping moves T m

c to lower pressures.
At 10% hole doping, T m

c decreases slightly (by about 1%)
compared to the half-filled case. By contrast, Fig. 5(d) shows
that electron doping (10%) displaces T m

c to significantly lower
temperature compared to half filling (about 15%). The value of
T m

c as a function of doping appears in Table II. As suggested
by this table and Figs. 5(b) and 5(c), the maximum doping for
T m

c is found for intermediate hole doping at a value of U/t that

TABLE II. Estimated CDMFT values of the maximum supercon-
ducting transition temperature and corresponding interaction strength
(U m

c /t ; β m
c ) (T m

c = 1/β m
c ) for various fillings and two values of

frustration t ′/t .

n (U m
c /t ; β m

c ), t ′ = 0.4t (U m
c /t ; β m

c ), t ′ = 0.8t

1.10 (8.3 ± 0.2; 29.0 ± 0.2)
1.00 (6.15 ± 0.02; 25.0 ± 0.5) (7.78 ± 0.02; 35.0 ± 0.5)
0.99 (6.6 ± 0.2; 20.5 ± 0.5)
0.98 (6.8 ± 0.2; 18.9 ± 0.1)
0.97 (7.2 ± 0.3; 19.2 ± 0.5)
0.96 (7.3 ± 0.2; 19.5 ± 0.5)
0.94 (8.0 ± 0.5; 20.8 ± 0.3)
0.92 (9.0 ± 0.5; 22.5 ± 0.5)
0.90 (10.5 ± 0.5; 25.2 ± 0.2) (14.5 ± 0.5; 37.0 ± 0.5)

FIG. 6. (Color online) Superconducting T m
c as a function of

filling and U/t projected in the T-n plane. The actual values of T ,U,n

are listed in Table II.

is doping dependent. This is illustrated in Figs. 6 and 7. Too
much hole doping (10%) or electron doping (10%) effectively
reduces T m

c . Nevertheless, every doping that we studied
exhibits an enhancement of the range where the SC state
appears on the pressure axis when compared with half filling.

The general aspect of the dome near the triangular right
part of Figs. 5(a) and 5(b) shows that this section of the SC
state for the 1%-hole-doped case is continuously connected
to the SC phase at half filling. For the range of U/t that
is insulating at half filling, the SC transition temperature as
a function of doping at fixed U seems however to vanish
extremely steeply between 1% and 0% doping, by analogy
with cuprates [33,38,62]. Larger cluster calculations for the
cuprates [61] suggest the existence of a smooth maximum.
The overall qualitative shape of the SC phase diagram as a
function of T-U-n shown in Fig. 7 combines the results of
Fig. 5. The line of T m

c from Fig. 6 also appears on this plot.
The constant doping scans of this plot are complementary to
the constant U/t scans of Refs. [35,36].

The order parameter and the uniform susceptibility in
the SC state (discussed below) illustrate in more detail the
evolution from half filling to finite doping.

Order parameter and magnetic susceptibility in the SC
state. Figure 8 displays the d-wave SC order parameter (dSC)
calculated using Eq. (10) for t ′ = 0.4t . As seen in Fig. 8(a) for
half filling, dSC is largest near the first-order transition to the

FIG. 7. (Color online) Superconducting phase diagram combin-
ing in T-U-n space the constant-doping T-U planes of Fig. 5. The line
of T m

c in Fig. 6 also appears on this plot.
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FIG. 8. (Color online) Order parameter (dSC) and uniform susceptibility (χz) for the superconducting phase of the Hubbard model on the
anisotropic triangular lattice with t ′ = 0.4t . Each filling has its specific color and plot marker in the various panels of this figure and those of
Fig. 11. Lines are guides to the eye. (a) dSC for the half-filled case. Two different temperatures are plotted. (b) dSC for various fillings. The
temperature is T/t = 1/60. The dashed purple line is an extrapolation. (c) dSC (green diamonds) and χz (blue squares) for the 1%-hole-doped
case. χz is divided by 100 to fit on the same vertical axis. UMMT denotes the vicinity of interaction strengths where the pseudogap to metal
first-order transition discussed in Sec. IV is found. U m

c stands for the critical interaction strength associated with T m
c , the maximum Tc. (d) dSC

(orange triangles) and χz (blue squares) for the 10%-hole-doped case. χz is divided by 100 to fit on the same vertical axis. U m
c has the same

significance as in (c). The orange curve for dSC is the same as in (b).

insulating phase. This confirms previous T = 0 results [73].
Also, as one would expect, as the temperature is raised, the
magnitude of dSC and the range of pressure where it is nonzero
decrease. Furthermore, dSC obtained at T = 0 in Ref. [73] and
at low T in Fig. 8(a) follows qualitatively the same pressure
dependence as Tc obtained here.

Figure 8(b) indicates that the pressure dependence of dSC

at low temperatures also follows qualitatively that of Tc for
all other fillings studied, except for the 1%-hole-doped case,
where an anomaly is present near the pseudogap to metal
transition [Fig. 8(c)]. This is analogous to the unfrustrated
square lattice where the doping dependence of the low-T
value of dSC does not follow that of Tc in the underdoped
regime [23,38].

The pseudogap to metal transition leaves some traces in
the SC state at 1% doping through signatures in certain

observables, such as the uniform susceptibility, χz(q = 0,

ω = 0) = χz [Eq. (6)]. Indeed, as shown in Fig. 8(c), near the
value U = UMMT where the transition between pseudogap
and metal phases occurs in the normal state, the uniform
susceptibility in the SC phase (blue squares) shows a large
variation, suggesting a crossover in the fundamental metallic
properties of the system, even in the SC state: over a small
range of U/t (0.3), χz varies by a factor of 4.3 when UMMT is
crossed. Upon decreasing pressure, dSC (green diamonds) also
starts to weaken. This last characteristic is reminiscent of the
half-filled case, where dSC dies out at the first-order transition
to the insulating phase [Fig. 8(a)]. Note by comparing Fig. 5(b)
and Fig. 8(c) that Tc does not change as drastically as
χz(q = 0,ω = 0) or dSC upon crossing U = UMMT . The value
U m

c , corresponding to the maximum Tc, differs slightly from
the value where dSC is maximum.
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For the 10%-hole-doped case (and 10%-electron-doped
case, not shown), dSC is anticorrelated to χz. This is illustrated
in Fig. 8(d). This behavior is expected since it becomes more
difficult to align the spin of the electrons along a magnetic
field when more singlet pairs are formed. By contrast with the
1%-doping case, for 10%, the first-order pseudogap to metal
transition is not found at accessible T and U/t , so χz shows
no peculiar behavior.

The T = 0 extrapolations of our results are consistent
with the variational Monte Carlo results of Watanabe et al.
[30] for the same model. In the normal state they find a
rapid crossover between two different metallic states at finite
doping. They also find that the SC phase for t ′ = 0.4t is stable
between U/t = 5 and U/t = 30 for a hole doping of 8.3%.
Our numbers are U/t = 6.70 and U/t = 30 for 10% hole
doping at T/t = 1/60.

B. t ′ = 0.8t

We move to the case t ′ = 0.8t , contrasting the results with
the less frustrated case t ′ = 0.4t just considered. We expect
that for larger frustration, both SC and AFM will be negatively
affected, leaving more room to effects related to the Mott tran-
sition. However, as we shall see, the effects of frustration are
much stronger on the AFM than on the SC and normal states.

For compounds with t ′ = 0.4t , Fig. 9(a) shows that T = 0
AFM order would mask the Mott transition, and leave either a
small region of SC at large pressure and very low temperature,
or coexisting AFM and SC phases.

Figures 10(a) and 9(b) at half filling demonstrate that
larger frustration, t ′ = 0.8t , is more detrimental to AFM order
than to SC order. The maximum Néel transition temperature
for the AFM phase occurs at (T/t ∼ 1/3.5, U/t ∼ 8.2) for
intermediate frustration, t ′ = 0.4t [Fig. 9(a)], whereas for t ′ =
0.8t in Fig. 9(b) one finds (T/t ∼ 1/8.25, U/t ∼ 10). Thus,
the maximum AFM transition temperature is decreased by a
factor of about 2.4. By contrast, the maximum Tc decreases by
about only 25%. This is the expected effect of frustration and
it agrees qualitatively with FLEX calculations [77]. However,
FLEX is not valid across a Mott transition. Concerning the
nature of the AFM phase, T = 0 studies with CDMFT [73]
on a 2 × 2 cluster find that between t ′/t = 0.7 and t ′/t = 0.8,
superconductivity at the first-order transition changes from
coexisting with a commensurate AFM phase to coexisting
with a phase that is not magnetically ordered. Variational
Monte Carlo studies find that commensurate AFM is stabilized
for [75] t ′/t < 0.75 or even t ′/t < 0.9 [74], consistent with
our results. The latter early study however finds that magnetic
states are always more stable than superconductivity.

Long-wavelength AFM fluctuations are also detrimental
to long-range order since the Mermin-Wagner-Hohenberg
theorem requires that the Néel transition temperature (TN )
vanish in the absence of coupling to the third dimension. The
TN lines that we find here are only indicators for the onset
of the renormalized classical regime where low-frequency
long-wavelength AFM fluctuations become important.
Furthermore, as discussed in Sec. V A, hole doping also
suppresses TN .

The above considerations suggest that for t ′ = 0.8t our
results for the normal-state pseudogap to metal transition and

FIG. 9. (Color online) Phase diagrams for the Hubbard model on
the anisotropic triangular lattice. β is the inverse temperature in 1/t

units. The value t = 0.044 eV is used to convert to physical units
[63]. Lines are guides to the eye. (a) Phase diagram at half filling for
an anisotropy parameter t ′ = 0.4t . This figure is the same as Fig. 5(a)
except that it shows the complete antiferromagnetic phase. (b) Phase
diagram at half filling for an anisotropy parameter t ′ = 0.8t . This
figure is the same as Fig. 10(a) except that it shows the complete
magnetic phase.

for the SC phase are observable at finite temperature in real
materials. The crossover discussed in Secs. V A and IV also
occurs for t ′ = 0.8t and is thus a fundamental feature of
systems near half filling. For 1% hole doping, we found the
first-order transition at U/t ∼ 8. However, the pseudogap to
metal transition and especially the SC phase were particularly
difficult to study extensively due to a worse sign problem,
hence they are not displayed.

Results for the 10%-doped case are shown in Fig. 10(b).
The SC phase is present for a much broader range of pressure
than in the half-filled case [Fig. 10(a)]. Furthermore, the SC
dome is shifted to lower pressure. These effects of hole doping
for t ′ = 0.8t are very similar to those for t ′ = 0.4t . Again,
the effect of frustration on the superconducting Tc is much
smaller than on TN . Indeed, TN changes from a finite value at
t ′/t = 0.4 (Fig. 5) to zero at t ′/t = 0.8, while the maximum
Tc decreases only by about 30%.
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FIG. 10. (Color online) Phase diagrams for the Hubbard model
on the anisotropic triangular lattice with anisotropy parameter t ′ =
0.8t and two fillings. The antiferromagnetic state was studied at half
filling and also for n = 0.9. In the latter case, no AFM was found
for T down to 1/60 and 8 < U/t < 30. The value t = 0.044 eV is
used to convert to physical units [63]. Lines are guides to the eye.
(a) Phase diagram for the half-filled case. Metallic and insulating
phases coexist in the blue region. A first-order jump in the normal-
state double occupancy is found at the blue points. The value of
the critical point for the Mott transition is (U/t = 7.93, β = 10.00).
With increasing pressure, we find at the red triangles that the Néel
AFM order parameter disappears (to the right of the red line) through
a first-order jump for β > 10 and through a second-order transition
for β < 10. When pressure is decreased, the paramagnetic metal is
unstable to the AFM insulator along the green line through a first-
order jump (β > 10) or through a second-order transition (β < 10).
The orange region is where superconductivity manifests itself. The SC
state gives way to the insulating phase along a first-order jump upon
decreasing pressure, and to the metallic phase along a second-order
transition line upon increasing pressure. (b) Phase diagram for the
10%-hole-doped case. The transition from the SC state to the normal
state is second order.

SC order parameter. Figure 11 displays dSC calculated with
Eq. (10) for half filling and for 10% doping. The qualitative
observations made for t ′ = 0.4t for 10% doping still hold
here at larger frustration; namely, the pressure dependence

FIG. 11. (Color online) The order parameter (dSC) and uniform
susceptibility (χz) in the superconducting phase of the Hubbard model
on the anisotropic triangular lattice with frustration value t ′ = 0.8t .
Each doping has the same specific color and plot marker as in Fig. 8.
Lines are guide to the eye. (a) dSC for the half-filled case. Two different
temperatures are plotted. (b) dSC for various fillings and χz for the
10%-hole-doped case. The temperature is T/t = 1/60. U m

c stands for
the superconducting critical interaction strength associated with T m

c .
The spin susceptibility χz calculated with Eq. (6) in dimensionless
units is divided by 200 to fit on the same vertical axis.

of dSC at low temperatures follows qualitatively that of Tc

and doping increases drastically the range of the SC dome
on the pressure axis. Here too, the uniform susceptibility is
anticorrelated to dSC .

Additional comparisons with earlier results

The range of U/t where the SC phase appears for 10%
hole doping and t ′ = 0.8t , namely 10 < U/t < 26 for T/t =
1/60, is similar to that found [30] with the variational quantum
Monte Carlo method for 8.3% hole doping at T = 0, namely
10 < U/t < 25.
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HÉBERT, SÉMON, AND TREMBLAY PHYSICAL REVIEW B 92, 195112 (2015)

At half filling, the shape of the coexistence region in
our normal-state phase diagram differs from that found on
a three-site cluster with CDMFT with exact-diagonalization
solver by Liebsch et al. [63]. Also, on the doped three-site
cluster the pseudogap is not observed in the isotropic limit [78].
These differences are not surprising since the ground-state
entropy of clusters with an odd or even number of sites is very
different. The four-site-cluster results of Ohashi et al. [64] for
the transition line have a slope of the same sign as us in the
T -U plane but the actual values of U and especially T differ, a
difference that may come from the systematic imaginary-time
discretization errors of the Hirsch-Fye algorithm.

Our results extrapolated to T = 0 are consistent with
earlier CDMFT results obtained with an exact-diagonalization
impurity solver [73]. Here we also find with decreasing
pressure that the system changes from a paramagnetic metal to
a superconductor to an AFM insulator. In Ref. [73], the AFM
phase boundary at sufficiently large frustration coincides with
the Mott transition. This is consistent with the extrapolation to
T = 0 of the coincidence in Fig. 10(a) between two transitions
found with increasing pressure, namely the first-order jump
between the AFM state and the paramagnetic metal and
(when AFM long-range order is forbidden) the first-order
jump between the Mott insulator and the paramagnetic metal.
At smaller frustration, this does not occur: Upon decreasing
pressure (or increasing U ), the AFM transition occurs before
the Mott transition, as can be seen for t ′/t = 0.4 in Fig. 9. Also,
as seen in Fig. 9, the critical value of U/t for the Mott transition
at half filling increases with frustration t ′/t , in agreement
with Ref. [73]. This is reflected in the qualitative shape of the
magenta region in Fig. 1. The Mott transition on the anisotropic
triangular lattice has been studied with many other methods,
for example path-integral renormalization group [79]. The
critical value of U/t found with the latter method is smaller
than that in CDMFT. Note finally that it has been found earlier
in different contexts that depending on frustration t ′/t , AFM
transitions can be of first or second order [80–82].

The T = 0 magnetic phases found for various values
of t ′/t and U/t with the variational cluster approximation
[83–85], exact diagonalization of an effective model [86],
variational Monte Carlo [74,75], and dual fermions [84] are
similar to those found with CDMFT in Ref. [73], except that
here and in Ref. [73] the possibility of spiral order has not
been investigated. Nevertheless, according to Refs. [74,75,87],
commensurate AFM of the type we find can be stable up to
t ′/t ∼ 0.8. In [74] superconductivity is always less stable than
AFM but this is not so in weak-correlation approaches such as
FLEX [77] or functional renormalization group [88]. With the
latter approach, superconductivity is also obtained for t ′/t = 1
but symmetry considerations in this case are different [89]. At
half filling, it has been widely appreciated for a long time
by many methods that superconductivity is stable for a wide
range of values of t ′/t : in variational [90,91], CDMFT [73],
Gutzwiller [92], and resonating valence bond [93] approaches.

VI. DISCUSSION

A. Broken-symmetry phases

Although phase transitions in CDMFT are renormalized
by local dynamical fluctuations, they essentially have a

mean-field character. In particular, they do not satisfy the
Mermin-Wagner-Hohenberg theorem that forbids continuous-
symmetry breaking at finite temperature in two dimensions
[94]. This is especially relevant for AFM order, which
we overestimate. On the other hand, the superconducting
critical temperature Tc found in our phase diagrams physically
represents the dynamical mean field transition temperature
T d

c below which Cooper pairing occurs locally in the cluster
[38]. Long-wavelength quantum and thermal fluctuations in
the amplitude and phase of the order parameter dSC should
lead to an actual Kosterlitz-Thouless transition temperature
smaller than T d

c [95–97]. With increasing cluster sizes, the
dynamical mean field Tc have been shown to converge to a
finite value on the square lattice [27].

B. Strongly correlated superconductivity, superconducting
dome, and AFM quantum critical point

The link between antiferromagnetic quantum critical point
and unconventional superconductivity is well documented,
especially in the field of heavy-fermion materials [98].
Numerical simulations with methods very close to those
used here confirm this intimate connection for the Anderson
lattice model of heavy-fermions [99]. Indeed, one finds
a superconducting dome that systematically surrounds the
antiferromagnetic quantum critical point. The same type of
connection to a quantum critical point has been proposed for
cuprates [100,101]. We suggest that this connection between
AFM quantum critical point and maximum Tc is present when
the interaction strength is not large enough to lead to a Mott
transition. In that case pairing occurs through the exchange of
long-wavelength antiferromagnetic fluctuations [102–105].

The top panel of Fig. 9 shows that for half-filled organics,
where a Mott transition is clearly observed, superconductivity
is near the Mott transition, not near the antiferromagnetic
quantum critical point. And as we dope, Fig. 5(b) shows
that the superconducting dome surrounds the pseudogap to
metal transition that is the finite-doping remnant of the Mott
transition.

A schematic phase diagram is displayed in Fig. 12. In the
normal state, there is a first-order phase transition whose
coexistence region is represented in blue. The maximum
of the superconducting transition temperature is controlled
by the opening of the pseudogap, namely by the position
of the first-order phase transition or its continuation, not by
the antiferromagnetic quantum critical lines at the end of the
antiferromagnetic three-dimensional dome delimited by the
red region: even in the absence of the antiferromagnetic phase,
superconductivity survives, as can be verified from Fig. 10(b).
This is a characteristic of strongly correlated superconductivity
in doped Mott insulators. We stress however that at large
doping we observe crossovers in the normal state, but we
cannot calculate at low enough temperature to confirm whether
the first-order transition survives. It can in principle be replaced
by a T = 0 second-order transition line or disappear at a
critical point.

The mechanism for superconductivity in the organics is thus
clearly different from that associated with an antiferromagnetic
quantum critical point. This type of strongly correlated super-
conductivity is controlled by short-range AFM correlations,
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FIG. 12. (Color online) Schematic phase diagram for layered or-
ganics. Orange planes indicate the three-dimensional region where su-
perconductivity is present. The antiferromagnetic three-dimensional
dome is below the red lines. In the normal state, there is a surface
of first-order transition whose coexistence region is delimited by the
blue lines. This first-order transition separates a pseudogap phase
with small double occupancy from a correlated metal with larger
double occupancy, by analogy with Ref. [35]. At larger U and doping,
the sign problem prevents us from observing directly the first-order
transition or its continuation as a different phenomenon. Frustration
can appreciably displace and eventually completely eliminate the
antiferromagnetic region [73,107].

namely superexchange J = 4t2/U , as found early on in
slave-boson calculations [106] and more recently with
CDMFT [60]. This is reviewed in Ref. [15].

Further studies will be needed to clarify the detailed cause
of the Tc dome. Consider the optimal Tc in Figs. 10(b), 5(b),
5(c), and 5(d). The decrease of Tc from optimal towards low
pressure (on the left) scales like J (i.e., like a straight line). On
the other hand, the opening of a pseudogap could also explain
this decrease because a pseudogap in the density of states at
the Fermi level leaves fewer states to pair.

C. Contact with experiment

Our phase diagrams at half filling [Figs. 5(a), 10(a)] reveal
interesting similarities with the experimental phase diagrams
of the BEDT compounds but even more so with the Pd(dmit)2

compounds [3,4]. In the temperature-pressure plane, the shape
of the region where the SC phase exists and the shape of the
metal-insulator coexistence region are in qualitative agreement
with experiment. The maximum SC transition temperature T m

c

as a function of pressure coincides with the phase transition to
the insulator, also like in experiment.

We find that as frustration is increased, both the maximum
TN and T m

c decrease, the decrease in the tendency to
magnetic order being however much more pronounced. These
observations are consistent with experiments where com-
pounds with higher frustration t ′/t have lower Tc compared
to less frustrated materials. For example, κ-(ET)2Cu2(CN)3

(t ′ = 0.8t) and κ-(ET)2Cu[N(CN)2]Cl (t ′ = 0.4t) display T m
c

of respectively 3.9 K and 13.1 K. Also, as frustration is
increased in real compounds, AFM order is greatly suppressed.
For instance, κ-(ET)2Cu[N(CN)2]Cl has AFM order at low
temperatures and pressures, while κ-(ET)2Cu2(CN)3 is a
spin-liquid candidate [1,7].

Figure 10 at t ′ = 0.8t accounts for the experimental results
on the SC phase both at half filling [2] and at 10% doping [16].

Indeed, in half-filled κ-(ET)2Cu2(CN)3 a superconductor-
insulator phase transition is observed upon decreasing pres-
sure, as in Fig. 10(a). On the other hand κ-(ET)4Hg2.89Br8, the
10%-hole-doped counterpart of κ-(ET)2Cu2(CN)3, presents a
dome shaped [16,20] Tc similar to Fig. 10(b) except that the
dome is more asymmetrical in experiment.

Figure 10 for t ′ = 0.8t also shows that the range of
pressure where SC appears at 10% hole doping and T/t =
1/60 is multiplied by about nine compared to the half-filled
case. Rough extrapolation of the superconducting dome to
T = 0 gives a range of pressure that increases by a factor
of four to six in going from half filling to 10% doping.
Experimentally the dome is extended by approximately six
for the same value of frustration. Indeed, in half-filled κ-
(ET)2Cu2(CN)3, superconductivity occurs over a range of
0.25 GPa according to Ref. [108] while Ref. [16] finds su-
perconductivity for a range of 1.5 GPa in the doped compound
κ-(ET)4Hg2.89Br8.

T m
c for κ-(ET)2Cu2(CN)3 is 3.9 K while it is about 7 K

for the doped counterpart, a factor of 1.8. Our results show
a very slight decrease of T m

c at 10% hole doping. However,
T m

c is increased for intermediate doping (Table II, Fig. 6)
compared to half filling. While that increase for intermediate
doping is proven for an anisotropy parameter t ′ = 0.4t , the
case t ′ = 0.8t should be similar.

Oike et al. [16] and Taniguchi et al. [20] also found in
the Hall coefficient of κ-(ET)4Hg2.89Br8 a rapid crossover
around 0.5 GPa. This pressure corresponds closely to the
maximum of the superconducting transition temperature [16]
T m

c . Although for t ′/t = 0.8 and n = 0.9 we cannot reach
low-enough temperature to detect the first-order pseudogap to
metal transition, the t ′/t = 0.4 low-doping results of Fig. 5(b)
strongly suggest that T m

c is controlled by that transition.
On the square lattice, one finds analogous results [38]: A
low-temperature first-order transition between a pseudogap
metallic phase and a strongly correlated metal ends at a
critical point above which a line of crossovers appears
[22,23]. This line of crossovers is a Widom line, a general
phenomenon found in the supercritical region of first-order
transitions [65]. Remarkably, T m

c is near the intersection of
the superconducting dome and of the Widom line [21,38].
This leads us to important predictions for experiment.

D. Predictions

The first-order pseudogap to metal transition, observed the-
oretically on the square lattice [22,35,36], has also been seen as
a sharp crossover in larger cluster calculations in the dynamical
cluster approximation [109] and in variational quantum Monte
Carlo [110]. Our work shows that this transition also occurs on
the anisotropic triangular lattice. It had been observed before as
a sharp crossover [30]. The experimental results on the doped
BEDT κ-(ET)4Hg2.89Br8 [16,20] can thus be interpreted as an
observation of the crossovers associated with this pseudogap
to metal transition. Based on our phase diagrams, we predict
that in yet to be synthesized very low-doping organic materials
with pressure-induced transitions, remnants of this transition
could be detectable in the SC state. It would manifest itself via
observables such as the uniform susceptibility, the SC order
parameter, or by a strong crossover of many properties as a
function of pressure near T m

c .
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We also predict that in electron-doped compounds, Tc is
decreased but the range of SC on the pressure axis is still
increased compared to the half-filled case.

Finally, our results also suggest that for frustration high
enough that magnetically ordered phases are absent, the
normal state underlying the SC state of the doped compounds
should display a first-order transition between a pseudogap
and a more metallic state at sufficiently low temperatures. This
is our most important prediction. As usual the normal state
can be revealed by applying a magnetic field. Experiments at
half filling [111] on κ-(BEDT-TTF)2Cu[N(CN)2]Cl suggest
that the magnetic fields necessary to destroy the SC state are
easily accessible.

E. Limitations and perspectives

The broad agreement that we find with experiment and,
in the low-temperature limit, with variational Monte Carlo
methods [30] suggests that the important physics in the
layered organics arises from strong on-site repulsion U and
nearest-neighbor superexchange J . Increasing the cluster size
would allow a better representation of the long-wavelength
fluctuations beyond mean-field theory. It would produce more
quantitative phase boundaries, as discussed in Sec. VI A above.
But since the existence of the superconducting phase itself has
already been established by finite-size studies on the square
lattice [27], it is highly unlikely that larger cluster studies
would change this.

The continuous-time quantum Monte Carlo impurity solver
in the hybridization expansion that we have used here
(CT-HYB) is for now the only Monte Carlo approach that
allows calculations in the range of large U/t and frustration
needed for the layered organics. Recall that U/t = 14 at the
maximum of the superconducting dome for t ′/t = 0.8 and
that U/t is as large as 30 at the lowest temperature end
of the dome. Expansions in power of U/t that are used as
quantum Monte Carlo impurity solvers for larger clusters [44]
fail for such large values of U/t and frustration because of
a sign problem and because of the large expansion orders
that are needed. Even on the 4-site cluster that we use, the
average sign is immeasurably small with Rubtsov’s algorithm
for U/t = 14.5 and T/t = 1/40, namely near the maximum
of the superconducting dome for t ′/t = 0.8 [44]. For high
temperature (T/t � 0.06), the cluster-size dependence has
been shown to be negligible [112]. While CT-HYB provides a
method to access the large values of U/t and t ′/t that we need,
the computation time increases exponentially with system size,
making larger clusters unfeasible with present resources. The
same size limitation applies to exact-diagonalization solvers
[51] that, in addition, rely on a finite bath, by contrast with
CT-HYB where the bath is infinite. A method has recently been
proposed [113] to increase bath size in exact-diagonalization
solvers but extensions to higher temperatures have not been
tested and implementations on clusters have not been done yet.

Although AFM and SC were considered on equal footing,
we neglected the possibility of nonvanishing order parameters
for both AFM and SC simultaneously. This might occur in
some regions at finite doping where we found that both
AFM and SC separately can develop long-range order. The
question of simultaneous nonvanishing order parameters is an

interesting question but it is a detail at this early stage of
investigations. The fact that for the t ′/t = 0.8 model of the
doped organic κ-(ET)4Hg2.89Br8 there is a superconducting
dome far from the AFM phase is one of the crucial proofs
that the maximum of the dome does not come from an AFM
quantum critical point.

So far, studies of the Hubbard model have shown that
they are capable of capturing essential features of materials
such as cuprates, κ-(ET)2X or Pd(dmit)2, even if that model
neglects some physical effects. Additional calculations taking
into account Coulomb interaction between nearest neighbors
(with the extended Hubbard model [37,114]), electron-phonon
interactions [115], or the third spatial dimension [116,117]
would allow one to capture increasing details of these fasci-
nating compounds, but the overall agreement with experiment
that has been found suggests that the local and near-neighbor
superexchange aspects of the Hubbard model capture the
essential physics.

Further investigations of the normal-state pseudogap and
of properties of the strongly correlated superconducting phase
are planned.

VII. CONCLUSION

Based on CDMFT calculations of normal, superconducting,
and antiferromagnetic phase diagrams for the Hubbard model
on the anisotropic triangular lattice, we arrive at the following
conclusions. These phase diagrams are very similar to exper-
imental observations, both at half filling and at finite doping.
Upon doping, superconductivity is enhanced; in particular it
occurs over a much broader range of pressures (U/t). Smaller
anisotropy, or equivalently larger frustration (t ′/t ∼ 1), di-
minishes antiferromagnetic and superconducting transition
temperatures but antiferromagnetism is much more affected.

In the normal state, a first-order pseudogap to metal
transition occurs at finite doping and low temperature. The
transition is continuously connected to the Mott transition at
half filling, as on the square lattice case [35], yet the pseudogap
is different from the Mott gap. The decrease in the density of
states at the Fermi level associated with the pseudogap and the
decrease of superexchange J when pressure decreases can both
contribute to the decrease of Tc with decreasing pressure. We
claim that competing antiferromagnetism is not an explanation
for the dome in the doped organics.

We predict that for very lightly hole-doped compounds,
the pseudogap to metal transition leaves some subtle traces
in the superconducting state. Our most important prediction
is that the normal state that will be revealed by destroying
the superconducting state with a magnetic field in lightly
doped, highly frustrated compounds will show this first-
order transition between two conducting phases, one with a
pseudogap and the other one metallic. It is this transition that
should control the crossovers at finite temperature as well
as the location of the maximal superconducting transition
temperature. Finally, we predict that electron doping should
lead to a reduced maximum Tc.

For a model of heavy fermions solved with the same
set of methods as those used here, the maximum of the
superconducting dome can be correlated with the location
of an antiferromagnetic quantum critical point for interaction
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strengths that are not large enough to lead to a Mott transition
[99]. In our case, the superconducting dome in the doped
organics surrounds the finite-doping extension of the zero-
doping first-order Mott transition (whenever it is directly
observable). It is definitely not attached to an antiferromagnetic
quantum critical point, a conclusion that can also be verified
experimentally. This result should clearly impact understand-
ing of strongly correlated superconductivity in all doped Mott
insulators—not only layered organic superconductors, but also
high-temperature cuprate superconductors.
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E. Koch, and U. Schollwöck (Verlag des Forschungszentrum,
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[49] D. Sénéchal and A.-M. S. Tremblay, Phys. Rev. Lett. 92,

126401 (2004).
[50] B. Kyung, S. S. Kancharla, D. Sénéchal, A.-M. S. Tremblay,
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[83] P. Sahebsara and D. Sénéchal, Phys. Rev. Lett. 100, 136402

(2008).
[84] M. Laubach, R. Thomale, C. Platt, W. Hanke, and G. Li, Phys.

Rev. B 91, 245125 (2015).
[85] A. Yamada, Phys. Rev. B 89, 195108 (2014).
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