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Transition matrix elements for electron-phonon scattering are discussed. The approximate expression for the
matrix element derived by the combination of a phenomenological theory of electronic and ionic screening of
the electron-electron interaction with a microscopic perturbation theory for the matrix element is compared with
unscreened matrix elements from the ab initio electron theory. The matrix elements calculated in these two ways
differ very strongly. A situation is investigated (ultrafast demagnetization of a ferromagnetic film after excitation
with a femtosecond laser pulse) in which nevertheless both types of matrix elements yield similar results for the
demagnetization rate.
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I. INTRODUCTION

Many phenomena in solid state physics are determined
by the scattering of electrons at phonons. Examples are the
electrical and thermal conductivity, the lifetime of excited
electron states [1], and a possible contribution to the ultrafast
demagnetization after irradiation of a ferromagnetic film by a
femtosecond laser pulse (see below). For a monatomic crystal
the transition rate Wλ

jk,j ′k′ from an electronic state |jk〉 with
energy εjk to a state |j ′k′〉 with energy εj ′k′ (j , j ′ denote the
band indices, k, k′ the wave vectors, and λ is the index of the
three polarization vectors pqλ of a phonon) is given by Fermi’s
golden rule,

Wλ
jk,j ′k′ = 2π

�

∣∣Mλ
jk,j ′k′

∣∣2{nqλδ[εj ′k′ − (εjk + �ωqλ)]

+ (n−qλ + 1)δ[εj ′k′ − (εjk − �ω−qλ)]}. (1)

The phonon with wave vector q has the frequency ωqλ,
and nqλ = [exp (�ωqλ/kBTp) − 1]−1 is the Bose distribution
function with the phonon temperature Tp. Absorption of
phonons and both induced and spontaneous emission of
phonons are included in Eq. (1). Mλ

jk,j ′k′ is the transition matrix
element

Mλ
jk,j ′k′ = 〈�j ′k′ |Vph|�jk〉, (2)

where Vph is the electron-phonon scattering operator and
q = ±(k′ − k + G), where the +(−) sign holds for phonon
absorption (emission) and where G is a reciprocal lattice vector
which brings k′ back to the first Brillouin zone if k′ = k + q
is outside. Equation (2) includes spin-flip transitions although
the spin does not explicitly occur in the wave functions �jk.
The reason is that the dominant spin character of the state is
determined by j and k, and it may well be different for �jk and
�j ′k′ . The operator Vph has two contributions [2], one resulting
from the phonon-induced distortion of the lattice potential
(which is often called Elliott part, standard part, or Fröhlich
part) and one resulting from the phonon-induced distortion
of the spin-orbit coupling (Yafet part). In the Elliott part

*faehnle@is.mpg.de

only the phonon-induced modifications of the spin-diagonal
part of the effective potential which the electrons feel enters,
which is called deformation potential. Elliott has shown [3]
that this spin-diagonal part nevertheless leads to spin-flip
scatterings in systems with spin-orbit coupling. Yafet has
shown [2] that one must take into account both contributions
to get the correct q = |q| → 0 limit for the behavior of the
matrix element, and this has been confirmed by Grimaldi and
Fulde [4].

It is well known that the modification of the lattice potential
and of the spin-orbit coupling due to the phonon is changed
by the reaction of the electrons (mainly the valence electrons)
and the ions on the displacement of the ions by the phonon,
i.e., there is electronic and ionic screening of the electron-
phonon transition matrix element, especially for small |q|.
The screening of the Elliott part has been discussed by Kittel
[5] within a complicated perturbation theory and in the book of
Giuliani and Vignale [6] with Green function based methods.
A simplified version of a phenomenological screening theory
is given in the textbooks of Ashcroft and Mermin [7] and
of Czycholl [8]. In this simplified version it is assumed (see
Sec. II) that the matrix element (which is in general Mλ

jk,j ′k′ ,
see above) depends only on q and on the phonon frequency
ωq, yielding the approximation

|M(q)|2 = 4πe2

V
(
q2 + k2

TF

) 1

2
�ωq. (3)

Here V is the volume of the system, and kTF is the Thomas-
Fermi wave vector of the system.

The screening of the Yafet part has been discussed for
paramagnetic systems by Yafet [2] using an a priori screened
lattice potential, and by Grimaldi and Fulde [4] within a
self-consistent Hartree approximation. For magnetic systems
Rajagopal and Mochena [9] have discussed screening effects
beyond the theory of Grimaldi and Fulde for paramagnetic
systems. However, no explicit results for the screened electron-
phonon matrix element have been given which could be
used in electron-theoretical treatments of electron-phonon
scattering. To get a simple phenomenological approximation
for the screened matrix elements Mλ

jk,j ′k′ which can be used
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in such treatments, one must try to find explicit results of the
theory of Ref. [9] and to approximate them as strongly as
possible. In the literature on electron-theoretical treatments
of electron-phonon scattering, the matrix elements Mλ

jk,j ′k
have been calculated on the one hand by the ab initio density
functional electron theory and on the other hand by using
phenomenological approximations based on Eq. (3).

II. AB INITIO TREATMENT AND PHENOMENOLOGICAL
APPROACH

A. Ab initio treatment

These treatments included the Elliott and the Yafet part (see,
e.g., Refs. [10–12]). Part of these treatments, e.g., Ref. [12],
used the rigid-ion approximation which neglects the screening
and which is a good approximation for transition metals
[11,13]. Thereby the atoms which build the effective potential
(which an electron at position r and with spin orientation
α = ↑,↓ feels)

V (r,{Rn}) =
N∑

n=1

(
v

↑
0,n(r − Rn) 0

0 v
↓
0,n(r − Rn)

)
(4)

are rigidly displaced upon a deformation, without a reaction
of electrons and ions on a displacement. Here N is the number
of atoms in the system and Rn = R0,n + δRn is the position
of the nth lattice atom, where R0,n is the equilibrium position
and δRn is the displacement (in the present paper caused by
the phonon). In this approximation one gets

Vph = −
N∑

n=1

√
�

2NMωq,λ

exp (iq · R0,n)(pqλ · ∇r)

×
(

v
↑
0,n(r − R0,n) 0

0 v
↓
0,n(r − R0,n)

)
, (5)

where M is the atomic mass. In contrast to this the papers of
Carva et al. [11,14] determine the effective potential of the
system with phonons not just in rigid-ion approximation but
also by a supercell calculation for phonons with wavelengths
compatible with the supercell geometry, i.e., they take into
account the screening in a self-consistent manner. The spin-flip
Eliashberg functions calculated by the rigid-ion approximation
thereby agreed well with those obtained by the supercell
calculation, demonstrating that the rigid-ion approximation
works rather well.

In Sec. III we compare the ab initio calculated matrix
elements for the Elliott part with those from the phenomeno-
logical approximations using Eq. (3). The ab initio matrix
elements are determined in rigid-ion approximation, Eq. (5),
i.e., they neglect screening effects. Because these effects are
important especially for small |q|, we test whether there is
an agreement of the two approaches for not too small |q|.
As mentioned above, there are so far no explicit simple
phenomenological approximations for the screened Yafet part,
therefore we cannot compare phenomenology and ab initio
approach for the Yafet part.

Grimaldi and Fulde [4] have shown that there are long-range
and short-range contributions to the matrix element. We will
see in Sec. III that the electronic screening is described in

the phenomenological approach by Thomas-Fermi screening
which is valid only for small |q|. In the ab initio matrix
elements based on Eq. (5) there are long-range and short-range
contributions. The short-range contributions arise from the
fact that (pqλ · ∇r)vα

0,n is not constant within an atomic shell
around atom n, so that a Fourier transform of this would
require large wave vectors, even for small phonon wave vectors
|q|. Unfortunately, it is not possible to disentangle these
contributions in the ab initio matrix elements (2), because
the calculations are done in a real-space representation of
�jk and Vph. The neglect of short-range contributions in
the phenomenological matrix elements based on Eq. (3) will
be one reason for the deviations of the phenomenologically
calculated matrix elements from the ab initio calculated ones.

In the present paper we calculate the ab initio matrix
elements by a relativistic version [15] of the linear-muffin-tin-
orbital theory [16] (LMTO) in atomic-sphere approximation
(ASA) and the spin-density functional electron theory [17,18].
We are convinced that the test of the phenomenological
approximation (3) for the Elliott matrix element is of great
interest for the community of people who deal with problems
related to electron-phonon scattering but who do not want to
perform ab initio calculations.

B. Phenomenological approximations

Examples for the use of phenomenological approximations
for the Elliott part of the screened matrix elements are (among
others), e.g., Refs. [19,20]. There are various steps in the
derivation of Eq. (3). In Refs. [7] and [8] in part different argu-
ments have been used, but the final result is the same. We just
will summarize the various steps in the derivation of Eq. (3).
The phenomenological theory starts with the matrix element
Vk,k′ for the Coulomb interaction between two free electrons
which are approximated for valence electrons in a crystal with
wave vectors k and k′. Considering this Coulomb potential as
being an “external potential,” there is a screening (described by
the use of dielectric constants) of Vk,k′ due to the reaction of the
other electrons (which is approximated by the Thomas-Fermi
screening for a homogeneous and isotropic system of free
electrons) and by the ions leading to an effective screened
matrix element V eff

k,k′ = V el
k,k′(q,kTF) + V ion

k,k′ (q,kTF,ωq,ω) with
q = |k − k′|, the phonon frequency ωq, and �ω = εk − εk′

with the energies εk, εk′ of the free electrons. In a second step,
the used approximation for V ion

k,k′ is represented as a matrix
element for the transition between an initial state |n〉 to a
final state |m〉 of a system of free electrons and ions. Thereby,
the electrons interact mutually via Coulomb interaction, and
they interact with the ions. Thereby, the transition is done by
exciting two electrons with wave vector k and k′ and energies
below the Fermi energy εF to electrons with k + q and k′ − q
and energies above εF, and the ions remain in the same state.
The idea is that V ion

k,k′ is for a real system better approximated
by a matrix element including the single-electron crystal states
|k〉, |k′〉, |k + q〉, |k − q〉 instead of free electron states.
The eigenstates |n〉 and m〉 are calculated in second-order
perturbation theory where the perturbation is given by the
electron-phonon interactions and by the Coulomb interaction
between the electrons. Thereby a simple electron-phonon
scattering operator is used which describes only intraband
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transitions and which contains transition matrix elements M(q)
which do not depend on k and on the phonon polarization.
Equating the so obtained V

ion,perturb
k,k′ to the phenomenological

expression V ion
k,k′ from above yields Eq. (3).

III. COMPARISON OF THE APPROXIMATED MATRIX
ELEMENTS WITH AB INITIO MATRIX ELEMENTS

We now compare the approximated electron-phonon tran-
sition matrix elements of Eq. (3) with electron-phonon matrix
elements calculated from Eqs. (2) and (5) with crystal wave
functions �jk,�j ′k′ determined by the ab initio density
functional electron theory in local-spin-density approximation
and the LMTO-ASA method. In Eq. (3) the volume of the
crystal may be written as V = N	, where N is the number
of elementary cells in a crystal and 	 is the volume of the
elementary cell. The ab initio matrix elements are already
normalized to N , i.e., they contain 1

N
as prefactor [see Eq. (20)

of Ref. [12]], therefore they have to be divided by 	 for a
comparison with the approximated matrix element, Eq. (3).
Equations (2) and (5) show that the ab initio matrix elements
do not depend just on the phonon wave vector q but both on
k and k′ from which q = ±(k′ − k + G) can be calculated.
Furthermore, they depend on band indices j and j ′ whereas
for the derivation of Eq. (3) it has been assumed (see Sec. II B)
that there are only intraband transitions (j = j ′). The matrix
elements also depend on the index λ which denotes the
three polarization vectors pqλ of the phonon, whereas this
dependence has been neglected in Eq. (3). This is of course
a very strong approximation, because according to Eq. (5)
Vph contains the scalar product between pqλ and the gradient
of the potential vα

0,n, and this leads for the case of free
electrons to a scalar product q · pqλ [see Eq. (6.14) of Ref. [8]].
For high-symmetry wave vectors q the polarization vectors
are longitudinal (pqλ ‖ q) and transversal (pqλ ⊥ q)—for
arbitrary q the polarization vectors are pseudolongitudinal or
pseudotransversal. This clearly demonstrates that the transition
matrix element depends strongly on q. Finally, in systems with
spin-orbit coupling the electronic states �jk are no pure spin
states but spin-mixed states according to [12]

�jk = [ajk(r)|↑〉 + bjk(r)|↓〉] exp (ikr), (6)

where ajk(r) and bjk(r) are lattice periodic functions and
|↑〉, |↓〉 are the two spinor eigenfunctions of Ŝz. The wave
function is denoted as “dominant spin up” or “dominant spin
down” if |ajk|2 = ∫ |ajk(r)|2d3r is larger or smaller than
|bjk|2 = ∫ |bjk(r)|2d3r . Usually one denotes the dominant
spin character by m̃s , and this index (which is determined
by jk) is added to the wave function �

m̃s

jk . In ab initio
theories of electron-phonon scatterings, one distinguishes

between spin flip transitions if in �
m̃s

jk and �
m̃′

s

j ′k′ we have
m̃s �= m̃′

s and non-spin-flip transitions for m̃s = m̃′
s . In Eq. (3)

the dominant spin character is not considered, i.e., it gives
the same result independent of the question of whether the
considered electron-phonon interaction is a spin-flip transition
or a non-spin-flip transition. In many materials, however, there
is a big difference between these two types of transitions,
because spin mixing is small for most �jk. To estimate the
difference between the two types of transitions we assume that

we can write approximately

�
m̃s

jk (r) = ϕjk(r)[am̃s |↑〉 + bm̃s |↓〉] exp (ikr)

= ϕjk(r)|χm̃s 〉 exp (ik · r), (7)

with

|χdominant up〉 =
(√

1 − b2

b

)
,

(8)

|χdominant down〉 =
(

b√
1 − b2

)
.

Thereby b2 is the averaged spin-mixing factor calculated by the
average 〈|bjk|2〉 over all states involved in the electron-phonon
scattering processes [21]. Therefore the square of the transition
matrix element is for m̃s �= m̃′

s∣∣〈�m̃′
s

j ′k′
∣∣Vph

∣∣�m̃s

jk

〉∣∣2 = ∣∣2b
√

1 − b2〈ϕj ′k′ |Vph|ϕjk〉
∣∣2

≈ 4b2|〈ϕj ′k′ |Vph|ϕjk〉|2, (9)

whereas for m̃s = m̃′
s we have∣∣〈�m̃′

s

j ′k′
∣∣Vph

∣∣�m̃s

jk

〉∣∣2 = |〈ϕj ′k′ |Vph|ϕjk〉|2, (10)

i.e., the squares of spin-flip transition matrix elements are
typically a factor of 4b2 smaller than the squares of non-spin-
flip transition matrix elements. For Ni, which we consider in
the following, the ab initio calculated value is [21] b2 = 0.025.

In the following we do not consider transition matrix
elements from all conceivable �jk to all conceivable �j ′k′ ,
but we make a preselection of �jk and �j ′k′ in such a way that
only transitions are considered which contribute significantly
[12] to the ultrafast demagnetization of a ferromagnetic film
after excitation with a fs laser pulse (see Introduction). These
are states �jk (or �j ′k′ , respectively) with energies εjk close
to the Fermi energy εF and for which |εjk − εj ′k′ | is not too
large. We consider matrix elements with |εjk − εF| < 10 mRy
and |εjk − εj ′k′ | < 3.5 mRy, whereby k and k′ are points from
a 20 × 20 × 20 Monkhorst-Pack k-point grid [22].

As discussed above it is difficult to compare the ab initio
matrix elements with Eq. (3), because one must be careful
not to compare the incomparable. First, we compare the ab
initio results for a situation which resembles most closely the
situation described by Eq. (3). Thereby we use for kTF two
different values for Ni. The Thomas-Fermi wave vector is
generally defined by [7]

k2
TF = 4πe2 ∂ne

∂μ
, (11a)

where ne(μ) is the density of valence electrons

ne(μ) =
∑

j

∫
d3k

8π3

1

exp [(εjk − μ)/kBTel] + 1
, (11b)

with the chemical potential μ which depends on the tempera-
ture Tel of the electronic system. For Tel = 0, Eq. (11a) yields
k2

TF = 4πe2Z(EF), where Z(EF) is the density of states at the
Fermi energy. For a free electron gas this gives for Tel = 0

k2
TF = 6πe2ne

εF
, (11c)
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where εF is the Fermi energy of free electrons with density ne.
This gives for Ni a value of kTF = 1.15 2π

a
, where a = 3.521 Å

denotes the lattice constant of the fcc lattice in Ni. For real Ni
with an electronic density of states Z(ε), Eq. (11a) gives at
arbitrary temperature Tel

k2
TF = 4πe2

∫
dε Z(ε)

∂f (ε,Tel,μ)

∂μ

∣∣∣∣
μ=εF(Tel)

(11d)

with the chemical potential εF(Tel) which has to be calculated
from Eq. (11b). This expression is of course more accurate
than the free electron expression (11c), because it takes into
account band-structure effects of the real material. For an
electron temperature of Tel = 300 K this yields kTF = 6.67 2π

a

(see Table I of Ref. [23], where, however, kTF is given in
other units). The two values differ a lot, and we will see
that only for the second value we get some agreement of the
phenomenological theory with the ab initio theory.

We then consider only non-spin-flip intraband transitions
(in the ab initio calculations from dominant up to dominant
up), which are caused by nearly longitudinal phonons (with
angles between pqλ and q smaller than π

4 ). Furthermore we
consider only values of |q| which are not too small (|q| >

0.8 · 2π
a

), so that the screening is not very strong, because
the ab initio matrix elements are unscreened matrix elements
whereas Eq. (3) describes screened matrix elements. Figure 1
is a histogram showing the absolute occurrence of squared
matrix elements with magnitude |M|2 for the above discussed
k-point grid. Thereby we consider the above preselected wave
vectors k and k′ which give different values of q and therefore
also different values of the approximated |M(q)|2.

Figure 2 shows the histogram for a situation in which in
the ab initio calculations’ non-spin-flip matrix elements from
dominant down to dominant down are considered, which are

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

10-9 10-8 10-7 10-6 10-5 10-4

ab
so

lu
te

 o
cc

ur
en

ce

|M|2 (Ry2)

FIG. 1. (Color) Comparison of the magnitudes of the squares of
the matrix elements between the ab initio calculated results (red)
and results according to Eq. (3) with kTF = 1.15 · 2π

a
(green) and

with kTF = 6.67 · 2π

a
(blue). Thereby the ab initio calculations are

for intraband, quasilongitudinal, large q, non-spin-flip transitions
(dominant up to dominant up).
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FIG. 2. (Color) Same as Fig. 1, but now with non-spin-flip
transitions from dominant down to dominant down in the ab initio
calculations.

more frequent than dominant up to dominant up transitions in
Ni. It becomes obvious that the values for the ab initio matrix
elements are considerably smaller than the results according
to Eq. (3).

Second, we give a histogram (Fig. 3) for a situation which
differs from the first situation just because now only spin-flip
transitions are considered. For each �jk, �j ′k′ which gives a
preselected ab initio matrix element corresponding to a spin-
flip transition, we calculate |M(q)|2 according to Eq. (3) and
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FIG. 3. (Color) Comparison of the magnitudes of the squares of
the matrix elements between the ab initio calculated results (red)
and the results according to Eq. (3) with kTF = 1.15 2π

a
(green) and

kTF = 6.67 2π

a
(blue). The ab initio calculations are for intraband,

quasilongitudinal, large q, spin-flip transitions, and |M(q)|2 of Eq. (3)
is multiplied by 4b2 ≈ 0.1 (see text).
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FIG. 4. (Color) Comparison of the magnitudes of the squares of
the spin-flip matrix elements between ab initio calculated results (red)
and results (blue) according to |M(q)|2 from Eq. (3) multiplied by
4b2, whereby in Eq. (3) kTF is set to zero.

multiply it with 4b2 ≈ 0.1, see Eq. (9). Again the values for
the ab initio matrix elements are considerably smaller than
those according to the unscreened case of Eq. (3).

Third, we consider all spin-flip matrix elements (Fig. 4),
whereby we switch off the electronic screening in Eq. (3) by
setting kTF = 0. Again the results of the two calculations differ
strongly; the values for the ab initio matrix elements are con-
siderably smaller than those according to the modified Eq. (3).

Fourth, we try to take into account approximate electronic
screening also for the ab initio matrix elements. To do this,
we multiply in Eq. (5) vα

0,n(r − R0,n) by exp (−kTF · r). For
the Coulomb potential V ∝ 1

r
, this would account for the

electronic screening for free electrons in real space. For the
more complicated position dependence of vα

0,n(r − R0,n), this
is certainly an approximation. The corresponding histogram
is shown in Fig. 5. Again, the results of the two calculations
differ strongly. Now the ab initio matrix elements are larger
than those calculated from the modified Eq. (3), which seems
to be surprising. The reason is that in Eq. (5) we now have

∇r
(
exp(−kTF · r)vα

0,n(r − R0,n)
)

= exp(−kTF · r)

[
∇rv

α
0,n(r−R0,n) − r

|r|kTF vα
0,n(r−R0,n)

]
.

(12)

A nonzero kTF has two effects. First, it reduces the matrix
element via the exponential in Eq. (12); second, it enhances
the matrix element via the second term in the square bracket
which for Ni has the same sign as the first term. Taking into
account that in the matrix element there are also position-
dependent wave functions �j ′k′(r) and �jk(r), it is conceivable
that, depending on kTF, either the exponential prefactor or the
second term in the square bracket dominates.

Altogether, we see that the single matrix element calculated
either by ab initio or by the use of Eq. (3) differs very much.
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FIG. 5. (Color) Comparison of the magnitudes of the squares of
the spin-flip matrix elements between ab initio calculated results and
results according to |M(q)|2 from Eq. (3). In the ab initio calculations
electronically screened atomic potentials are used (see text) with
kTF = 1.15 2π

a
(red) and kTF = 6.67 2π

a
(violet). The results according

to |M(q)|2 from Eq. (3), multiplied by 4b2, are also for kTF = 1.15 2π

a

(green) and kTF = 6.67 2π

a
(blue).

In the expression for macroscopic observables the matrix ele-
ments enter in a weighted way. For instance, the contribution of
electron-phonon scatterings (which transfer angular momen-
tum from the electrons to the lattice) to the demagnetization
rate dM

dt
(which is the rate of the magnetic moment change per

atom) of a ferromagnetic film after irradiation with a fs laser
pulse is given within Elliott-Yafet theory [2] by [12]

dM

dt
= 1

	2
BZ

∑
j,j ′,λ

∫
BZ

d3k

∫
BZ

d3k′mjk↑,j ′k′↓

× {
ft (ε

↑
jk)[1 − ft (ε

↓
j ′k′)]Wλ

jk↑,j ′k′↓

− ft (ε
↓
j ′k′)[1 − ft (ε

↑
jk)]Wλ

j ′k′↓,jk↑
}
. (13)

mjk↑,j ′k′↓ keeps track of the spin magnetic moment change
for every spin-flip transition. For pure spin states, mjk↑,j ′k′↓
equals 2 μB , but for spin-mixed states it is a bit less than
2 μB . 	BZ is the volume of the Brillouin zone, and ft (ε

m̃s

jk ) is
the time-dependent Fermi distribution function

ft

(
ε

m̃s

jk

) =
[

exp

(
ε

m̃s

jk − ε
m̃s

F (t)

kBTel(t)

)
+ 1

]−1

(14)

with the time-dependent chemical potential ε
m̃s

F (t) and the
time-dependent electron temperature Tel(t). Thereby it is
assumed that the electrons which are excited by the laser beam
thermalize extremely quickly via electron-electron scatterings
so that their occupation numbers ft (ε

m̃s

jk ) at time t can be
described by the time-dependent Fermi distribution function
ft (ε

m̃s

jk ) of Eq. (14). The electron temperature Tel(t) depends
on time because during demagnetization energy is transferred
from the electronic system to the lattice by electron-phonon
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scatterings. Because the expression (13) for dM/dt contains
via Eq. (14) the time-dependent electron temperature, the
demagnetization rate also depends on t . In principle it is
desirable to characterize the ultrafast demagnetization by one
quantity which does not depend on time. Commonly, the
demagnetization time T1 is used for that purpose. However,
it can be calculated only if the full time dependence of M

is known, i.e., its calculation requires much more effort. T1

cannot be uniquely determined by dM/dt directly after the
laser pulse only. Tel(t) is not calculated ab initio, but it is taken
from experimental fits to the three-temperature-model (see
Ref. [24] and references therein). The electron temperature
directly after the laser pulse and the thermalization depends
on the laser fluence; it is typically between 350 and 1000 K.
For the calculation of the transition rates Wλ

jk,j ′k′ according to
Eq. (1), it is assumed that the phonon temperature Tp directly
after the laser pulse is equal to the temperature at which the
experiment is performed (we use room temperature).

The demagnetization rate dM
dt

directly after the laser pulse is
calculated for Ni for Tel = 1000 K and Tp = 300 K on the one

hand with ab initio matrix elements |Mλ
jk,j ′k′ |2 in Eq. (1) and on

the other hand with the values of |M(q)|2 of Eq. (3) multiplied
by 4b2 ≈ 0.1. For the quantities εjk and mjk↑,j ′k′↓ occurring
in Eq. (13), we use in both cases the ab initio calculated
values. Furthermore, for the calculation of dM/dt we consider
states �jk and �j ′k′ for which |εjk − εF| < 500 mRy and
|εjk − εj ′k′ | < 100 mRy, as in Ref. [12]. Thereby we calculate
the ab initio matrix elements according to comparison 2
(Fig. 3), comparison 3 (Fig. 4), and comparison 4 (Fig. 5).
The results are shown in Table I.

Note that we compare dM/dt for two types of calculations
which both consider the contribution of electron-phonon
scatterings to the ultrafast demagnetization after irradiation
of a ferromagnetic film by a femtosecond laser pulse, whereby
we insert in Eq. (13) the Wλ

j ′k′↓,jk↑ as determined from Eq. (1),
with the phenomenological approximation for the transition
matrix elements for electron-phonon scattering on the one hand
and with the ab initio calculated matrix elements on the other
hand. In the experiment there may also be other contributions
(e.g., electron-electron electron-magnon scattering), therefore
it does not make sense to compare in detail with experimental
data.

TABLE I. Demagnetization rates in units of μB/(100 fs atom) for
the situation described in the figure captions.

Situation according to

Fig. 3 red Fig. 3 green Fig. 3 blue

0.009 0.2 0.009

Situation according to

Fig. 4 red Fig. 4 blue
0.009 1.1

Situation according to

Fig. 5 red Fig. 5 violet Fig. 5 green Fig. 5 blue
1.4 0.013 0.2 0.009

In Table I we see that the demagnetization rate obtained
by ab initio calculations with unscreened matrix elements is
0.009 μB/100 fs, according to the situation of Fig. 3, red
and of Fig. 4, red. We now want to figure out under what
circumstances the phenomenological matrix elements yield
similar results.

Astonishingly enough, the results for dM
dt

calculated with
the ab initio matrix elements or with the approximated matrix
element 4b2|M(q)|2 are very similar (although the respective
matrix elements differ strongly) if for kTF the value of 6.67 2π

a

is inserted which is obtained by using the ab initio calculated
density of states for Ni. The reason is that in Eq. (13) integrals
over k and k′ are performed and that the matrix elements
appear in a weighted way. This justifies in retrospect the use of
the matrix elements according to Eq. (3) as done in Ref. [19],
in which kTF = 6.67 2π

a
has been used as well, as |M(q)|2

according to Eq. (3) has been used and multiplied by 4b2 (see
above) with a value of b2 = 0.047 (fitted to the experiments,
the ab initio calculated value is 0.025–0.045, depending on
the electron states used for averaging). Of course, this finding
does not mean that the matrix elements (3) can also be safely
used for the calculation of other macroscopic observables for
which the matrix elements enter in another weighted way.

IV. CONCLUSIONS

Transition matrix elements for electron-phonon scatterings
are important for many processes in solid state physics. The
electron-phonon interaction has two contributions, one arising
from the phonon-induced distortion of the lattice potential
(Elliott part) and one resulting from the phonon-induced
distortion of the spin-orbit coupling (Yafet part). In the present
paper the Elliott part is considered.

In the literature the transition-matrix elements are calcu-
lated in two ways. First, there is an approximate expression
for the matrix elements derived (for example in the textbooks
of Ashcroft and Mermin [7] or of Czycholl [8]) by the
combination of a phenomenological theory of electronic and
ionic screening of the electron-electron interaction with a
microscopic perturbation theory for the matrix elements.
Second, the matrix elements are calculated in other papers
by the ab initio electron theory. A comparison shows that
the matrix elements calculated in these two ways differ very
strongly, which in principle does not justify the use of the
approximate expression. However, it is shown that possibly it
can be used for the calculation of macroscopic observables
which involve a weighted summation of matrix elements.
This is shown for the example of the demagnetization rate
of a ferromagnetic film after excitation with a fs laser pulse.
However, this does not mean that the approximated matrix
element can also be used for a calculation of other macroscopic
observables for which they enter in another weighted way.

As a future project we will consider the transition matrix
elements for the Yafet part of the electron-phonon interaction.
In the literature there are already microscopic treatments of the
electronic screening of the Yafet electron-phonon interaction
by the spin-other-orbit interaction [4] or by the spin-same-orbit
interaction [9]. In Ref. [9], a variety of contributions to the
electronic screening of the Yafet part are found, however, no
explicit results are given. We will try to figure out how large
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the various contributions are. In a second step we will try to
figure out whether the unscreened ab initio matrix elements
for the Yafet part can be modified in a way that these electronic
screening effects are approximately taken into account, in the

same sense as we have accounted for the electronic screening
of the ab initio Elliott matrix elements in Sec. III. Finally, we
will investigate whether there are also ionic screening effects
for the Yafet part of the electron-phonon interaction.
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