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Universal spatial correlations in the anisotropic Kondo screening cloud: Analytical insights
and numerically exact results from a coherent state expansion
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We analyze the spatial correlation structure of the spin density of an electron gas in the vicinity of an
antiferromagnetically coupled Kondo impurity. Our analysis extends to the regime of spin-anisotropic couplings,
where there are no quantitative results for spatial correlations in the literature. We use an original and numerically
exact method, based on a systematic coherent-state expansion of the ground state of the underlying spin-boson
Hamiltonian. It has not yet been applied to the computation of observables that are specific to the fermionic
Kondo model. We also present an important technical improvement to the method that obviates the need to
discretize modes of the Fermi sea, and allows one to tackle the problem in the thermodynamic limit. As a result,
one can obtain excellent spatial resolution over arbitrary length scales, for a relatively low computational cost,
a feature that gives the method an advantage over popular techniques such as the numerical and density-matrix
renormalization groups. We find that the anisotropic Kondo model shows rich universal scaling behavior in
the spatial structure of the entanglement cloud. First, SU(2) spin-symmetry is dynamically restored in a finite
domain in the parameter space in the vicinity of the isotropic line, as expected from poor man’s scaling. More
surprisingly, we are able to obtain in closed analytical form a set of different, yet universal, scaling curves
for strong exchange asymmetry, which are parametrized by the longitudinal exchange coupling. Deep inside
the cloud, i.e., for distances smaller than the Kondo length, the correlation between the electron spin density
and the impurity spin oscillates between ferromagnetic and antiferromagnetic values at the scale of the Fermi
wavelength, an effect that is drastically enhanced at strongly anisotropic couplings. Our results also provide
further numerical checks and alternative analytical approximations for the Kondo overlaps that were recently
computed by Lukyanov, Saleur, Jacobsen, and Vasseur [Phys. Rev. Lett. 114, 080601 (2015)].
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I. INTRODUCTION

The spin-1/2 Kondo model describes a localized magnetic
moment interacting with an electron gas, via an antiferromag-
netic exchange coupling [1]. Despite a long history, and even
an exact solution, it has not yet surrendered all its secrets. It
is well established that the ground state is a spin singlet in
which the impurity spin is quenched by the electron gas, and
the spatial region where the electron gas is correlated with the
impurity is referred to as the Kondo screening cloud [2]. Even
for an isotropic system, its precise spatial profile is not known
analytically, except asymptotically [3], and it is only in the
past few years that it has been calculated numerically [4–6].
Despite wide-ranging proposals [7–13], it has eluded direct
measurement, partly because of the difficulty in measuring
spin correlations.

In the isotropic case, the screening cloud is characterized by
the ground-state correlation function X(x) = 4〈�S imp · �Sel(x)〉
where �S imp is the impurity spin operator, and �Sel(x) is the
electron spin density at x. When the Kondo temperature
is much lower than the Fermi energy, the screening cloud
can be decomposed into a forward scattering contribution
X0(x) and a backscattering contribution X2kF

(x), so that
X(x) = X0(x) + cos(2kF x)X2kF

(x), where the two functions
X0(x) and X2kF

(x) vary slowly on the scale of the Fermi
wavelength 2π/kF . In the scaling regime and for spin-isotropic
Kondo exchange, the profile of the screening cloud displays a
universal line shape [14,15], which is dependent on the value of

the Kondo coupling J only through an emergent length ξ that is
inversely proportional to the Kondo temperature [16,17]. To be
specific, if Xk(x) and X′

k(x), with k ∈ {0,2kF }, are correlation
functions corresponding to different values J and J ′ of the
Kondo coupling, and ξ and ξ ′ are the corresponding Kondo
lengths, then

X′
k(x) = ξ

ξ ′ Xk(ξ ′x/ξ ), (1)

for all x � 2π/kF .
Recently, we have realized that it may be possible to mea-

sure the longitudinal forward scattering (k = 0) component
of the screening cloud (a precise definition is given below)
in a chain of tunnel-coupled superconducting islands [18].
It turns out that the Hamiltonian describing the charge and
phase degrees of freedom in this system is equivalent to
the spin-anisotropic Kondo model in one dimension [19],
described by two coupling constants: the z components of
the impurity and electron spins couple with a strength J‖,
while the components perpendicular to the z axis couple with
a different strength J⊥. A detailed study of the screening cloud
in the anisotropic Kondo model has to our knowledge not been
performed before, and is therefore timely.

In the anisotropic case, there are four correlation functions
of interest, namely X

‖
k (x), that measures the correlation

between z components of the impurity and electron spins
(both in the forward k = 0kF and backward k = 2kF scattering
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channels), and X⊥
k (x), that measures correlations between

components perpendicular to the z axis (in each channel).
Clearly, an anisotropic Kondo interaction, characterized by
two coupling constants J‖ and J⊥, will affect the universal
scaling picture nontrivially.

The universal scaling of the isotropic model has been
confirmed using the numerical renormalization group (NRG),
a popular method to study the Kondo model [5,6]. However,
there is still room to improve the accuracy of existing results.
For instance, it is predicted analytically [2] that backscattering
dominates forward scattering inside the screening cloud. This
produces oscillations from ferromagnetic to antiferromagnetic
correlations between the impurity and the electron gas, on
the scale of half the Fermi wavelength. The first numerical
calculation of the universal scaling functions were reported
in Ref. [5]. However, the predominance of the backscattering
component over the forward scattering component inside the
cloud was not resolved. This was probably due to the fact that
results were obtained at relatively large Kondo temperatures,
so that there was not a sufficient separation of scales between
the size ξ of the cloud, and the short distance ultraviolet cutoff
scale. In a more recent work [6], the NRG method of Ref. [5]
was refined, and the alternation of ferro- and antiferromagnetic
correlations inside the cloud clearly be seen. However, results
were only presented for distances up to ten Fermi wavelengths
from the impurity. At these scales, the correlation functions
show nonuniversal modulations.

In this paper, we perform numerical calculations that are
sufficiently accurate to investigate the universal scaling behav-
ior in regimes ranging from isotropic to strongly anisotropic
Kondo couplings. At the same time, we can clearly resolve
the predominace of the backscattering component over the
forward scattering component inside the cloud. In precise
terms, we investigate the following questions: let X

j

k (x) and
(Xj

k )′(x), with j ∈ {‖,⊥} and k ∈ {0,2kF }, be correlation
functions at distinct values (J⊥,J‖) and (J ′

⊥,J ′
‖). Under which

conditions are there constants λ1 and λ2 such that (Xj

k )′(x) =
λ1X

j

k (λ2x), for all x � 2π/kF , and what are the line shapes of
these universal scaling curves? Our general numerical findings
show that scaling is typically obeyed for fixed values of J‖.
In other words, correlators at the same J‖ but different J⊥
can be scaled onto each other. This statement holds as long
as J⊥ � 1 (in dimensionless units of the inverse density of
states), while for transverse couplings of order one, the Kondo
temperature becomes comparable to the Fermi energy, and
universality is lost. For J‖ � J⊥, we find that the line shapes
of the cloud correlation functions acquire a J‖ dependence
that cannot be scaled away. However, as J‖ approaches J⊥,
the J‖ dependence rapidly becomes very weak. One thus
find a sizable region of parameter space, located around the
strict spin-isotropic line J‖ = J⊥ � 1, in which the universal
curves have little discernible J‖ dependence. In this region,
correlators calculated at J⊥ 
= J ′

⊥ and J‖ 
= J ′
‖ can to a very

good approximation be scaled onto the unique universal curve
of the isotropic model. These conclusions are consistent with
poor man’s scaling arguments [20] at small J⊥, as we will
explain in detail.

Our work also elaborates on a different but related topic,
that was raised very recently by Lukyanov et al. in Ref. [21],

where the overlap between two Kondo wave functions with
different Kondo couplings was computed analytically using
integrability techniques, and numerically with the density
matrix renormalization group. We complement these inter-
esting results, by providing a simpler (approximate) analytical
expression for the Kondo overlaps in the spin-anisotropic limit.
We also show that our numerical method reproduces the full
analytical result, as it should.

Regarding methodology, our approach combines both
analytics and numerically exact calculations. In the case of
strong spin-anisotropy, J‖ � J⊥, we provide asymptotically
exact formulas, that were not discussed in previous literature,
for the fermionic Kondo cloud. For a general choice of
parameters, we employ a recent approach using a coherent
state expansion of the wave function [22,23] that has not
yet been applied to the computation of purely fermionic
observables that pertain to the Kondo model. This method
relies on a variational ansatz, formulated in the language of the
spin-boson model, which describes a two-level system coupled
to a multimode ohmic bosonic bath [24,25]. This spin-boson
model is known to be equivalent to the anisotropic Kondo
model [26], with bosonization providing an exact mapping
between the two [27,28]. We exploit this mapping to apply the
coherent-state expansion to the Kondo model. In addition, the
flexible structure of the ansatz allows one to add progressively
more contributions to it, so that the method converges rapidly
to the exact ground state with arbitrary accuracy.

Historically, the systematic coherent state expansion pro-
posed by Bera et al. [22,23] builds on seminal works of
Emery and Luther [29] and of Silbey and Harris [30,31], in
the language of the spin-boson model, and on independent
works by Anderson [32,33] and Bergmann and Zhang [34]
in the language of the Kondo model. The approach of Emery
and Luther, Silbey and Harris, and Anderson corresponds to
the lowest-order approximation, involving a single coherent
state, and provides quantitatively accurate results only in
the limit J‖ � J⊥. Bergmann and Zhang took a step in the
direction of a two coherent-state ansatz by adding an extra
term to the lowest-order approximation, but constrained its
form suboptimally compared to the full solution with two
coherent states. We stress that this type of approach differs
from the well-known method pioneered by Yosida [35] that
takes as starting point a state in which a single electron binds
into a singlet with the impurity, while the rest of the Fermi sea is
unaffected. The wave function of the bound electron is chosen
to maximize the binding energy. The relationship between the
Yosida approximation and the single-coherent state ansatz is
reminiscent of the relationship in superconductivity between
the single Cooper pair on top of a Fermi sea on the one hand,
and the full BCS wave function on the other. Yosida’s approach
gives qualitatively correct results, but even when the effect
of additional particle-hole excitations are included [36,37], it
cannot yield arbitrarily accurate results for the correlations
inside the Kondo screening cloud.

In this paper, we also contribute an important innovation to
the coherent-state expansion methodology. In previous imple-
mentations, the bosonic bath was limited to a finite number of
modes, because the number of variational parameters in the
ansatz scaled linearly with the number of bath modes. Here,
we first partially solve the variational problem analytically, so
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that the number of remaining variational parameters that have
to be determined numerically is independent of the number
of bath oscillators. This allows us to take the thermodynamic
limit before we optimize the energy numerically, and probe
arbitrarily large distances. In the Kondo language, this means
that we work directly with an infinite conductor.

With NRG, probing large length scales comes at the cost
of losing information about shorter lengths scales. In order
to maintain good spatial resolution, one has to introduce
a fictitious impurity at the position where correlators are
evaluated. Each position considered then requires the solution
of a given two-channel Kondo impurity problem, so that a high-
resolution computation of the Kondo cloud with NRG is quite
expensive numerically. Our method remarkably deals with all
length scales on an equal footing, so that the Kondo cloud can
be calculated in a single step, once the many-body ground
state is known. The coherent state expansion thus nicely
complements the existing tools for studying the Kondo model.

The rest of the Article is structured as follows. In Sec. II,
we define the anisotropic Kondo Hamiltonian. We also state
the equivalent spin-boson model, and the relation between the
parameters of the two models. The precise mapping between
them is reviewed in Appendix A. In Sec. III, we define the
spatial correlation functions, that contain information on the
entanglement cloud around the spin impurity, and that we
will study. We first consider the correlations in the fermionic
language of the Kondo model and then in the bosonic language
of the spin-boson model. The bosonic observables are derived
from the fermionic ones in Appendix B. Section IV introduces
the systematic coherent state expansion. The innovation we
mentioned in the previous paragraph, that reduces the number
of variational parameters to solve for numerically, is presented
in Sec. V. In Sec. VI, we take the thermodynamic limit
for the energy, and express it in terms of the remaining
variational parameters. The correlation functions that we study
are expressed in terms of the remaining variational parameters
in Sec. VII. Next, we find the optimal values for the variational
parameters by minimizing the energy, and we present our
results in Sec. VIII. We first confirm the accuracy of the
method and then study in great detail the various correlation
functions describing the Kondo cloud, as well as the Kondo
wave-function overlaps. Finally, in Sec. IX, we summarize our
main findings and, where applicable, compare them to results
in the literature.

II. KONDO AND SPIN-BOSON HAMILTONIANS

In this section, we write down the two related models that
we study, and make explicit the deep connection between them.
The first Hamiltonian is the anisotropic spin-1/2 Kondo model
in one dimension, that describes a spin-1/2 impurity coupled
to a Fermi sea. The Fermi sea does not necessarily represent
electrons confined to one dimension. If the electron gas is
higher dimensional, but the impurity is a pointlike scatterer,
it only interacts with electronic s waves. Such s waves in the
electron gas can then be described by a one-dimensional Kondo
Hamiltonian, where the spatial coordinate is the radial distance
from the impurity. The second Hamiltonian is the ohmic
spin-boson model, that appears in many area of physics, from
superconducting nanocircuits to biological systems. Below

an ultraviolet energy scale set by the Fermi energy, the two
models are equivalent [26–28]. The full mapping is reviewed
in Appendix A.

The anisotropic spin-1/2 Kondo model in one dimension
reads H = H0 + H‖ + H⊥, where

H0 =
∑
kσ

(εk − μ)c̃†kσ c̃kσ ,

H‖ = JB
‖
4

σz[ψ̃
†
↑(0)ψ̃↑(0) − ψ̃

†
↓(0)ψ̃↓(0)], (2)

H⊥ = JB
⊥
2

[ψ̃†
↑(0)ψ̃↓(0)σ− + ψ̃

†
↓(0)ψ̃↑(0)σ+].

Here, c̃kσ annihilates an electron of wave number k and spin di-
rection σ on a ring of length L, and ψ̃σ (x) = ∑

k eikx c̃kσ /
√

L.
We denote these operators with tildes, because we will denote
the useful slow modes (defined below) without tildes. We
assume εk = ε−k , so that there are both left and right movers at
the Fermi energy. The superscript B indicates the bare values
of the coupling constants JB

‖ and JB
⊥ .

Integrating out high-energy degrees of freedom towards the
Fermi surface, we end up with a linear dispersion relation, and
an effective low-energy Hamiltonian:

H0 =
∑
kσ

k(c†kσ ckσ + c̄
†
kσ c̄kσ ),

H‖ = J‖
2

σz[ψ
†
↑(0)ψ↑(0) − ψ

†
↓(0)ψ↓(0)], (3)

H⊥ = J⊥[ψ†
↑(0)ψ↓(0)σ− + ψ

†
↓(0)ψ↑(0)σ+],

in units where the Fermi velocity vF = 1. We have defined
slow modes

ckσ = 1√
2

(c̃kF +k,σ + c̃−kF −k,σ ),

c̄kσ = 1√
2

(c̃kF +k,σ − c̃−kF −k,σ ), (4)

ψσ (x) = 1√
L

∑
k

eikxe−a|k|/2ckσ ,

and a similar relation between ψ̄σ (x) and c̄kσ . Here, 1/a is
the ultraviolet cutoff energy. Operators without overbars are
associated with even-parity single-particle wave functions, so
that c

†
kσ creates an electron in the state

√
2/L cos[(kF + k)x].

In D > 1 dimensions, an equivalent role is played by s waves.
For negative x, ψ†

σ (x) creates an electron in an even-parity
state consisting of two wave packets centered around ±x

and propagating in opposite directions towards the impurity.
For positive x on the other hand, it creates an electron in a
state consisting of two wave packets propagating away from
the impurity. Because ψ†

σ (x) and ψ†
σ (−x) create electrons

localized to the same physical regions in space, we refer to
(3) as the unfolded representation. Operators with overbars are
associated with odd-parity single particle wave functions, so
that c̄

†
kσ creates an electron in the state i

√
2/L sin[(kF + k)x].

Since the even and odd modes decouple, and only the even
modes couple to the impurity, we focus on electrons in even
orbitals and drop the c̄†c̄ terms in H0.
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In the process of linearizing the spectrum (integrating out
fast modes), the bare couplings JB

‖ and JB
⊥ are renormalized to

new values J‖ and J⊥ that depend on the ultraviolet scale 1/a.
Note however that SU(2) symmetry, if present, is preserved
under renormalization. Thus, if JB

⊥ = JB
‖ (isotropic limit), then

J⊥ = J‖.
In this work, we will make extensive use of the well-known

fact, reviewed in Appendix A, that the Kondo Hamiltonian (3)
can be mapped onto an ohmic spin-boson model:

HSB =
∑
q>0

qb†qbq −
∑
q>0

gq

2
(b†q + bq)sz + �

2
sx. (5)

Here, bq are bosonic operators such that [bq,bq ′ ] = 0 and
[bq,b

†
q ′ ] = δq,q ′ , while sx and sz are Pauli matrices. These

pseudospin operators are not the physical angular momentum
operators of the Kondo impurity, but are related to them. The
parameters of the spin-boson model are related to those of the
Kondo model by

gq = 2

√
απq

L
e−aq/2, α =

(
1 − J‖

2π

)2

, � = J⊥
πa

. (6)

III. SCREENING CLOUD OBSERVABLES

Having defined the system we investigate, we now write
down the observables that we will study. We are interested
here in ground-state correlation functions between the
impurity spin and the electron spin density at a distance x

from the impurity, which we refer to collectively as the Kondo
screening cloud (or cloud for short) [2]. We give equivalent
expressions for the cloud correlators as ground state
expectation values in both the fermionic and the bosonic
pictures. In Appendix B, the bosonic expressions are derived
starting from the fermionic expressions.

In the fermionic picture, the cloud correlation functions is
defined as

X‖(x) = 4
〈
S imp

z Sel
z (x)

〉
K,

(7)
X⊥(x) = 4

〈
S imp

x Sel
x (x) + S imp

y Sel
y (x)

〉
K
,

where S
imp
j = σj/2 is the j ∈ {x,y,z} component of the

impurity spin operator, and

Sel
j (x) = 1

2

∑
σσ ′

ψ̃†
σ (x)[σj ]σσ ′ψ̃σ ′(x) (8)

is the j component of the electron spin density at x. The sub-
script K indicates that the expectation value is with respect to
the fermionic Kondo ground state. We refer to X‖ as the longi-
tudinal and X⊥ as the transverse cloud. Both consist of a com-
ponent X

j

0 that varies slowly on the scale of the Fermi wave-
length, and a component that oscillates with wave vector 2kF ,
and has an amplitude X

j

2kF
. The former is the result of scatter-

ing events that change the electron momentum by an amount
that is small compared to kF , while the latter results from
scattering between the Fermi points at ±kF . Explicitly, one has

X⊥(x) = X⊥
0 (x) + cos(2kF x)X⊥

2kF
(x),

(9)

X‖(x) = X
‖
0(x) +

[
cos(2kF x) − a

2x
sin(2kF x)

]
X

‖
2kF

(x).

For x � a, both the transverse and longitudinal 2kF

components are proportional to cos(2kF x). In the bosonic
language, and in the thermodynamic limit |x| � L, one finds
using standard bosonization identities:

X⊥
0 (x) = a

π (x2 + a2)
Re〈s−eϕ†(x)−i�†(x)e−ϕ(x)+i�(x)〉

+ (x → −x),

X⊥
2kF

= 2a

π (x2 + a2)
Re〈s−eϕ†(x)e−ϕ(x)〉, (10)

X
‖
0(x) = ∂x

2π
〈sz[�

†(x) + �(x)]〉 − a

π (x2 + a2)
,

X
‖
2kF

(x) = 2x

π (a2 + 4x2)
Im

〈
sz

(
a + ix

a − ix

)sz

ei�†(x)ei�(x)

〉
,

with the bosonic fields:

ϕ(x) = 2
∑
q>0

√
π

Lq
e−aq/2[cos(qx) − 1]bq,

(11)

�(x) = 2
∑
q>0

√
π

Lq
e−aq/2 sin(qx)bq.

At x < a, the behavior of these expressions depend strongly
on ultraviolet physics that our model does not attempt to
represent accurately. The regime of physical significance is
x � a where the behavior of the cloud is insensitive to
ultraviolet details of the model. None the less, we delay taking
the a/x → 0 limit until the end of the calculation, reasoning
that it is of some interest to see how a particular cutoff scheme
regularizes ultraviolet singularities.

We presented expressions for a one-dimensional cloud.
However, the generalization to a higher-dimensional electron
gas is trivial, assuming a point impurity that therefore only
scatters s waves [2]. In this case, one interprets the coordinate x

as a radial distance and divides the one-dimensional correlator
by the area of a spherical shell of radius x. One also reverses
the sign of the 2kF components, because the radial part of the
higher dimensional problem is defined on the half-line, with a
π phase shift between left- and right movers.

To make further progress in the computation of the cloud
observables, we need an accurate approximation for the ground
state of the spin-boson model. That is the topic of the next
section.

IV. COHERENT-STATE EXPANSION OF THE SPIN-BOSON
GROUND STATE

We will use here a systematic coherent-state decomposition
[22,23] of the many-body ground state of the Ohmic spin-
boson model. Physically, coherent states appear as natural de-
grees of freedom, because, in the absence of spin tunneling �,
the two spin configurations are associated with a displacement
of the bath modes from 0 to ±fq = ±√

πα/Lq. Indeed, at
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� = 0, there are two degenerate ground states:

|f+〉 ⊗ |↑〉, |f−〉 ⊗ |↓〉, (12)

where

|f±〉 = exp

⎡
⎣±

∑
q>0

fq(b†q − bq)

⎤
⎦|0〉, (13)

|0〉 is the bosonic vacuum, and {|↑〉,|↑〉} are the spin
eigenstates of sz. The single coherent-state ansatz (usually
dubbed the Silbey-Harris state) includes the effect of tunneling
by promoting fq to a variational parameter and taking as
trial state the linear combination |f 〉 = (|f+〉 ⊗ |↑〉 − |f−〉 ⊗
|↓〉)/√2. This results readily in the simple expression f SH

q =√
παq/Lgq/(q + �R) with the self-consistency condition

�R = �〈f+|f−〉 = �〈f |−f 〉. This trial wave function pro-
vides an excellent approximation to the true ground state pro-
vided the shifted equilibrium positions f SH

q of most oscillators
are not too far apart, i.e., if α is small compared to unity.

For larger α, the overlap 〈f |−f 〉, with fq determined vari-
ationally, becomes exponentially small, and this strongly un-
derestimates the tunneling energy �〈σx〉/2. The coherent-state
expansion addresses this issue by extending the Silbey-Harris
form to a more general linear superposition of coherent states:

|ψ〉 =
M∑

m=1

cm

|f (m)〉 ⊗ |↑〉 − |−f (m)〉 ⊗ |↓〉√
2

, (14)

with the set of displacement f (m)
q parametrizing a family of

Silbey-Harris states:

|f (m)〉 = exp

⎡
⎣∑

q>0

f (m)
q (b†q − bq)

⎤
⎦|0〉. (15)

Here, M is the maximal number of allowed coherent states in
the decomposition (14), and sets the level of approximation.
The displacements f (m)

q and coefficients cm are determined
by minimizing

E = 〈ψ |HSB|ψ〉 − λ〈ψ |ψ〉, (16)

where λ is a Lagrange multiplier that is used to enforce
normalization. These parameters are generically found to be
real in the ground state.

The coherent-state expansion already dramatically im-
proves the estimate for the tunneling energy �〈ψ |σx |ψ〉/2 for
M = 2, by allowing for cross-terms 〈f (m)|σx |f (n)〉, in which
the displacements f (m)

q and f (n)
q are anticorrelated at low q.

Such cross-terms are therefore not exponentially small in α,
and allow a sizable energy gain compared to the Silbey-Harris
approximation.

It is important to note that an arbitrary state of the spin-
boson Hamiltonian can be written as an infinite but discrete
sum of the form (14), at least if the bosonic bath contains a
finite number of modes. This follows from a theorem, proved
by Cahill [38], that for a single bosonic mode, countable sets
{|f (m)〉,m = 1, 2, . . .} of (real) coherent states exist, that form
a complete basis. For a finite number of bosonic modes, a
general state can therefore be approximated to any required
accuracy, by making M sufficiently large. It is in this sense that

the coherent state expansion is numerically exact, provided
in practice that good convergence to the true many-body
ground state occurs. Previous investigations [23], as well as the
extensive comparisons made in Sec. VIII, demonstrate indeed
that the expansion (14) rapidly approaches the exact ground
state of the spin-boson model as M is increased to moderate
values, also for an infinite bath.

V. REDUCING THE NUMBER OF VARIATIONAL
PARAMETERS

In previous implementations of the coherent expansion
[Eqs. (14) and (15)], the bosonic bath was restricted to a
large but finite number N of modes, and each of the M × N

displacements f (m)
q was treated as an independent variational

parameter. In this work, we want to calculate the Kondo
screening cloud, which requires a high spatial resolution from
short to possibly exponentially large distances, so that a huge
number of bath modes needs to be included. It is therefore
desirable to have an implementation of the method in which
the number of variational parameters does not depend on the
number of included modes. Such an implementation would
also allow for computations for a continuous spectral density
(thermodynamic limit), which numerical techniques like NRG
are not able to perform. In this section, we derive such an imple-
mentation, which is the main technical innovation of our work.

We show that the algebraic structure of the variational
equations constrains the functional dependence of the dis-
placements f (m)

q with respect to momentum q to such an extent
that there are in fact only M2 + M − 1 variational parameters,
independently of the number of modes N of the bosonic bath.
To stress that the argument does not require a linear bath
spectrum, we replace the term

∑
q>0 qb

†
qbq in the spin-boson

Hamiltonian, with the more general kinetic energy expression∑
q>0 ωqb

†
qbq for the remainder of this section. In subsequent

sections, we will specialize again to the linear bath spectrum.
Exploiting the coherent state structure of the ansatz, we can

express the total energy E in terms of f (m)
q and cm as

E =
M∑

m,n=1

cmcn

⎧⎨
⎩〈f (m)|f (n)〉

∑
q>0

[
ωqf

(m)
q f (n)

q

− gq

2

(
f (m)

q + f (n)
q

)− λ

]
− �

2
〈f (m)| − f (n)〉

⎫⎬
⎭, (17)

where

〈f (m)| ± f (n)〉 = exp

⎡
⎣−1

2

∑
q>0

(
f (m)

q ∓ f (n)
q

)2

⎤
⎦. (18)

Considering the minimization condition ∂E/∂f (m)
q = 0 with

the use of (17) and (18), this leads to

M∑
n=1

{Umnωq + Vmn}f (n)
q = Wmgq, (19)
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where the entries of the M × M matrices U and V , and the
M-dimensional column vector W are

Ulm = 2cm〈f (l)|f (m)〉,
Vlm = Plm + Qlm − δlm

∑
n

(Pln − Qln),

Plm = cm〈f (l)|f (m)〉 (20)

×
∑
k>0

[
ωkf

(l)
k f

(m)
k − gk

2

(
f (l)

q − f (m)
q

)− λ

]
,

Qlm = cm

�

2
〈f (l)| − f (m)〉, Wl = 1

2

∑
m

Ulm.

It is crucial to note that U , V , and W in Eq. (19) do not
depend on the value of the momentum q labeling the displace-
ment f (m)

q that we consider within the variational equation.
These matrices and vectors however depend nonlinearly on
the complete set of displacements, through summations over a
dummy momentum index as in Eq. (18). From (19), it readily
follows that f (m)

q is given by

f (m)
q = gq

M∑
n=1

[(Uωq + V )−1]mnWn. (21)

Since Uωq + V is linear in ωq ,

M∑
n=1

[(Uωq + V )−1]mnWn = N (m)(ωq)

D(ωq)
, (22)

where N (m)(z) is a polynomial of order M − 1 in z and D(z) =
det(Uz + V ) is a polynomial of order M in z. Note that the
denominator D(z) is common to all sets of displacements f (m)

for m = 1, . . . ,M . Using the expression (20) for W in terms
of U , we see that for large z, N (m)(z)

D(z) → 1/2z independent of
m. Thus we arrive at the form

f (m)
q = gq

2
hm(q), hm(q) =

∑M−1
n=0 μmnω

n
q∏M

n=1(ωq − ωn)
, (23)

where μmM−1 = 1, and in general μmn is real. The poles ωn

that are not real come in complex conjugate pairs. The optimal
state |ψ〉 can be obtained by numerically minimizing the
energy with respect to the M × (M − 1) unknown coefficients
μmn, the M poles ωn, and the M − 1 weights cm (accounting
for wave-function normalization), so that there are M2 + M −
1 parameters to be found in total, independently of the number
of bosonic modes in the problem.

Since the dimension of the search space does not depend
on the number of bath modes, the main obstacle in considering
a bath with a very large number of modes has been removed.
The next question is whether the energy, which involves sums
over all bath modes, can be calculated efficiently for a large
number of modes. Only single sums over the momentum have
to be computed in the energy functional, and in the worst
case, the total numerical cost is linear in the number of modes.
This is a major improvement with respect to a brute force
diagonalization of the model, where scaling of the Hilbert
space dimension is exponential with the number of degrees of
freedom. In order to reach the continuum limit, the discrete

momentum sums are replaced by integrals, which fortunately
can be performed analytically rather than numerically, as we
now demonstrate.

VI. THERMODYNAMIC LIMIT AND THE ANALYTICAL
EVALUATION OF MOMENTUM INTEGRALS

In this section, we specialize again to the case of a
linear bath spectrum ωq = q, and analytically perform the
momentum integrals involved in the calculating the energy
for given set of variational parameters μmn, ωm, and cm.
We do so for the smooth ultraviolet cutoff gq ∝ e−aq/2 that
the bosonization of the Kondo model naturally introduces.
Although we do not work out the details here, we note that
the momentum integrals can also be performed analytically in
the case of a sharp cutoff gq ∝ θ (1/a − q). In the L → ∞
(thermodynamic) limit, momentum sums are replaced by
integrals according to

2π

L

∑
q>0

→
∫ ∞

0
dq. (24)

With f (m)
q of the form (23), and gq of the form (6) dictated by

the mapping from the Kondo model, the energy

E = 〈ψ |HSB|ψ〉
〈ψ |ψ〉 (25)

can be written as a functional of the variational parameters as

E =
∑M

mn=1 cmcn

(
αI 0

mne
− α

4 I−1
mn − �e− α

4 I+1
mn

)
2
∑M

mn=1 cmcne
− α

4 I−1
mn

, (26)

which involves the Laplace transforms

I λ
mn =

∫ ∞

0
dk e−akJ λ

mn(k) (27)

of the rational functions

J±1
mn (k) = k[hm(k) ± hn(k)]2,

(28)
J 0

mn(k) = [khm(k) − 1][khn(k) − 1].

Note that we have omitted here a constant term,

E0 = − α

2a
, (29)

that does not depend on the variational parameters. The
functions J λ

mn(k) have M second-order poles of the type
(k − ωl)−2. For large k, the behavior is

J λ
mn(k) � k−2+λ. (30)

The Laplace transforms can be performed analytically,
using the following method. In general, we consider integrals
of the form

I =
∫ ∞

0
dk e−akR(k), (31)

where the function R(k) is a ratio of polynomials, and all poles
are of second order, i.e.,

R(k) = p(k)∏M
n=1(k − ωn)2

. (32)
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Re k

Im k

FIG. 1. Chosen deformation of the contour for the integral (31).

This excludes the possibility of poles on the positive real line,
which yields E = +∞. Furthermore, the numerator p(k) is a
polynomial of at most order 2M − 1.

It would be useful if we could replace the integration
contour in Eq. (31) by a closed contour such as the one in
Fig. 1. We can do so, provided we multiply the integrand by
a function F(k) with a branch cut along the positive real line
such that F(k + i0+) − F(k − i0+) ∝ θ (k). Furthermore, F
must be such that the contribution to the integral that comes
from closing the contour at large k is negligible. A function that
exactly meets these requirements is �(0,−ak), where �(0,z)
is the incomplete Gamma function of order zero [39]. It is
defined as

�(0,z) =
∫ ∞

z

dt
e−t

t
, (33)

where the integration path does not intersect the negative real
line and excludes the origin. Its main relevant properties are

�(0,−(x + i0+)) − �(0,−(x − i0+)) = 2πi, (34)

for x > 0, and

�(0,−z) ∼ −ez

z
, (35)

for large |z|. Furthermore, �(0,−z) is analytical except in the
neighborhood of the positive real line. Thus we find∫ ∞

0
dk e−akR(k) =

∫
C

dk

2πi
R(k)e−ak�(0,−ak)

=
∑

n

Res{R(k)e−ak�(0,−ak),ωn}. (36)

In the first line, C is the contour depicted in Fig. 1.
Returning to the integrals Iλ

mn, one then has

I λ
mn =

M∑
l=1

Res
{
J λ

mn(k)e−ak�(0,−ak),ωl

}
. (37)

Setting

F (z) = e−z�(0,−z) (38)

and noting that

d

dz
F (z) = −

[
F (z) + 1

z

]
, (39)

evaluation of the residues yield

I λ
mn =

∑
l

K̇λ
mnlF (ωla) − Kλ

mnl

(
aF (ωla) + 1

ωl

)
, (40)

where

Kλ
mnl = lim

k→ωl

(k − ωl)
2J λ

mn(k),

(41)

K̇λ
mnl = lim

k→ωl

d

dk

[
(k − ωl)

2J λ
mn(k)

]
.

To relate the K parameters to the coherent state displacements
explicitly, we define

hmn = lim
k→ωn

(k − ωn)hm(k) =
∑M−1

l=0 μmlω
l
n∏M

l=1
=n(ωn − ωl)
(42)

and

ḣmn = lim
k→ωn

d

dk
[(k − ωn)hm(k)]

=
∑M−1

l=1 lμmlω
l−1
n∏M

l=1
=n(ωn − ωl)
− hmn

∑
l=1
=n

1

ωn − ωl

. (43)

This gives

K±1
mnl = ωl(hml ± hnl)

2, K0
mnl = ω2

l hmlhnl,

K̇±1
mnl = (hml ± hnl)

2 + 2ωl(hml ± hnl)(ḣml ± ḣnl), (44)

K̇0
mnl = ωl(hml + ωlḣml − 1)hnl + ωlhml(hnl + ωlḣnl − 1).

Substitution of (44) into (40), and (40) into (26) yields an
explicit expression for the energy in terms of the variational
parameters.

As a consistency check, we can work out the single coherent
state theory (M = 1) to make sure that we recover the results
of Silbey and Harris. This approximation is accurate for
α � 1, which, in the Kondo language, corresponds to the
strongly anisotropic J‖ � J⊥ regime. For M = 1, there is only
one variational parameter, which is conventionally defined
as �R = −ω1. This translates to h11 = 1 and ḣ11 = 0 [see
Eqs. (42) and (43)]. The energy of the Silbey-Harris state then
reads

E = − 1
2

[
α�2

R∂�R
F (−�Ra) + �〈f |−f 〉], (45)

with

〈f |−f 〉 = exp
{−α

[
F (−�Ra) + �R∂�R

F (−�Ra)
]}

, (46)

and we have used the identity (39) to relate F and its derivative.
Minimizing E with respect to �R , we recover the known
self-consistency condition

�R = �〈f |−f 〉. (47)

Assuming than �R � 1/a, and using the fact that for small z,

F (−z) = −ln(z) − γE + O(z), (48)
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where γE = 0.577 is the Euler-Mascheroni constant, one can
solve the self-consistency condition for �R to obtain

�R = �(e1+γE a�)
α

1−α . (49)

Up to a pre-factor, �R corresponds to the Kondo temperature
in the regime of small α, where the single coherent state ansatz
is accurate.

In general, it is far more efficient to evaluate the energy
analytically, as was done in this section, than to do the integrals
in Eq. (26) numerically. There are however small regions of
the search space where the analytical evaluation of the energy
is not stable. These are regions in which two or more of the
poles ωm lie close to each other. In these regions, there are
large cancellations between individual terms in the sum over
residues in Eq. (37), and this leads to large numerical errors
when individual residues are calculated separately before they
are summed. We circumvent the problem as follows. When
the minimization algorithm searches a dangerous region of the
search space, it does not try to evaluate the residues at the
offending poles individually. It rather takes the slow but safe

option of numerically integrating around a loop that circles all
closely spaced poles at a safe distance. Fortunately, one does
not have to fall back on this contingency plan too often, as the
problematic regions of the search space are small and do not
seem to be particularly favored in the actual optimal solution.

VII. EXPRESSING THE CLOUD
WITH COHERENT STATES

In the previous section, we obtained an analytical ex-
pression for the energy in terms of M2 + M − 1 variational
parameters. This result allows for a significant speed-up of
the numerical minimization of the energy. In this section, we
apply the same analytical technique to evaluate the momentum
integrals involved in the calculation of the Kondo screening
cloud, in terms of bosonic displacements. Evaluating the four
different cloud correlators (10) for the M-coherent state wave
function can be done using straightforward coherent-state
algebra:

X⊥
0 (x) = − a

π (x2 + a2)

M∑
m,n=1

e
√

α[A(0)mn−A(x)mn] cos(
√

αB(x)mn)cmcn〈fm|−fn〉,

X⊥
2kF

(x) = − a

π (x2 + a2)

M∑
m,n=1

e
√

α[A(0)mn−A(x)mn]cmcn〈fm|−fn〉,

(50)

X
‖
0(x) = −(1 − √

α)
a

π (x2 + a2)
+

√
α

2π

M∑
m,n=1

C(x)mncmcn〈fm|fn〉,

X
‖
2kF

(x) = 2x

π (4x2 + a2)
Im

[
a + ix

a − ix

M∑
m,n=1

ei
√

αD(x)mncmcn〈fm|fn〉
]
,

together with the normalization condition

M∑
m,n=1

cmcn〈fm|fn〉 = 1. (51)

The matrices A, B, C, and D are defined as

A(x)mn =
∫ ∞

0
dq cos(qx)e−aq [hm(q) + hn(q)], B(x)mn =

∫ ∞

0
dq sin(qx)e−aq [hm(q) − hn(q)],

(52)

C(x)mn =
∫ ∞

0
dq cos(qx)e−aq [qhm(q) + qhn(q) − 2], D(x)mn =

∫ ∞

0
dq sin(qx)e−aq [hm(q) + hn(q)].

Note that B, C, and D remain finite if the limit a → 0 followed by x → 0 is taken, while A diverges logarithmically. The method
we used to evaluate 〈fm|±fn〉 = exp(−αI∓1

mn/4) analytically can be extended to evaluate the above integrals as well. The detail
of the calculation can be found in Appendix C. The resulting expressions are

A(x)mn = Re
M∑
l=1

(hml + hnl)F (ωl(a − ix)), B(x)mn = Im
M∑
l=1

(hml − hnl)F (ωl(a − ix)),

(53)

C(x)mn = Re
M∑
l=1

ωl(hml + hnl)F (ωl(a − ix)), D(x)mn = Im
M∑
l=1

(hml + hnl)F (ωl(a − ix)),

where F (z) is defined in Eq. (38).
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For future reference, we now consider the large (compared
to the Kondo length) x asymptotic behavior of the expressions
(50) for the screening cloud. At |z| � 1,

F (z) � −1

z
− 1

z2
. (54)

The residue theorem can be used to derive the identities
M∑
l=1

hml = 1,

M∑
l=1

hml

ωl

= −hm(0). (55)

With the aid of the above equations, the cloud correlators (50)
are found to decay like 1/x2 at large x. Explicitly, one finds
for x � ξ‖:

X⊥
2kF

(x) = X⊥
0 (x) = −2ξ⊥

x2
,

(56)

X
‖
2kF

(x) = X
‖
0(x) + a

πx2
= − ξ‖

x2

where the lengths ξ⊥ and ξ‖ are given by

ξ⊥ = a

2π

M∑
m,n=1

e
√

α
∑M

l=1(hml+hnl )Fl (a)cmcn〈fm|−fn〉,

(57)

ξ‖ =
√

α

2π

M∑
m,n=1

[hm(0) + hn(0)]cmcn〈fm|fn〉.

The above expression establishes a very direct connection
between the q = 0 behavior of the coherent state displace-
ments and the large x behavior of the longitudinal cloud. The
small contribution O(a/x2) to X

‖
0 is a feature of the smooth

ultraviolet cutoff ∼e−aq , and will be ignored in what follows.
Note that the 0kF and 2kF components of the cloud become
equal at large x. Furthermore, there are two emergent length
scales ξ⊥ and ξ‖ in the problem, which are in general not equal,
unless spin-isotropy is restored.

In the single coherent-state approximation, which is ac-
curate for small α, the cloud correlators can be explicitly
computed:

X⊥
0 (x) = X⊥

2kF
(x)

= − a�R

π�(x2 + a2)
e2

√
α[F (−�Ra)−Re F (−�R (a−ix))],

X
‖
0(x) = −(1 − √

α)
a

π (x2 + a2)
(58)

−
√

α�R

π
Re F (−�R(a − ix)),

X
‖
2kF

(x) = 2x

π (a2 + 4x2)
Im

[
a + ix

x − ix
e2i

√
αIm F (−�R (a−ix))

]
,

where, as noted in Sec. VI, �R = −ω1 is the Kondo energy
scale. The two correlation lengths ξ⊥ and ξ‖ [cf. (57)] are in
this anisotropic limit

ξ⊥ = a�R

2π�
e2

√
αF (−�Ra), ξ‖ =

√
α

π�R

. (59)

These simple analytical expressions for the Kondo cloud, valid
in the limit of strong spin-anisotropy, have not appeared in the

literature before. We will analyze them further in the next
section, along with numerical results obtained for larger α

values from the systematic coherent state expansion.

VIII. RESULTS

In Secs. VI and VII, we have collected the tools to calculate
the average energy and the components of the screening cloud,
for an M coherent-state wave function, in terms of only
O(M2) variational parameters. In order to find the variational
parameters, the energy must be minimized, and for this purpose
we use a standard simulated annealing algorithm [40,41].
Clearly, the quality of the approximation is limited by the
maximum number of coherent states that can be handled
with the available computational resources. Using a single
personal computer and simulated annealing minimization, we
have found it possible to go up to M = 7 coherent states,
which is enough for our purposes here, although an improved
algorithm combining global and local optimization [23] can
reach values as large as M = 24. In fact, the required number
of numerical operations is not a limitation per se here. Rather
the main difficulty is that the energy landscape in the space
of variational parameters is very shallow and contains several
low-lying minima.

This section is divided into three extended subparts. First,
we benchmark the coherent state method, both against previous
results, and also by studying the convergence properties of the
coherent state expansion, establishing its domain of validity for
the computation of the screening cloud. Then, we consider the
Kondo overlaps proposed in Ref. [21], which we compute both
analytically in the spin-anisotropic regime, and numerically
for the nearly spin-isotropic case. Our results quantitatively
agree with recent field theoretic calculations [21]. We finally
perform an extensive study of the Kondo cloud correlators
over a wide range of parameter values by a combination of
analytical arguments and extensive coherent state simulations.
This allows us to uncover the precise universal features of the
screening cloud of the anisotropic Kondo model.

A. Convergence properties of the coherent state expansion

In this section, we present strong evidence for the rapid
convergence of the wave function (14) as the number M of
coherent states increases, using various observable quantities.
In Refs. [22,23], convergence was established only for a spin-
boson model containing a large but finite number of modes,
and we demonstrate here that fast convergence also occurs for
a continuous bath spectrum.

We start by plotting in Fig. 2 the fractional improvement
(EM − EM−1)/EM−1 in the minimum energy EM obtained by
adding an extra coherent state in the ansatz, as a function of
M . Note that, as in Sec. VI, we do not include the constant
E0 = −α/2a in the definition of EM . This convention leads to
a denominator in (EM − EM−1)/EM−1 that is closer to zero,
and therefore to a more stringent measure of convergence.
Figure 2 shows results for three points in parameter space. One
of the points (α = 0.3,� = 0.05/a) corresponds to a strongly
anisotropic situation where convergence is very rapid. Another
curve (α = 0.6,� = 0.05/a) corresponds to a less anisotropic
situation, where the convergence is slower. The remaining
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=0.85, Isotropic

3 4 5 6 7

0.00

0.02

0.04

0.06

0.08

0.10

M

(E
M

−E
M

−1
)/E

M
−1

FIG. 2. (Color online) Fractional improvement (EM − EM−1)/
EM−1 in the minimum energy EM as the number of coherent
states M is increased, at three different points in parameter
space. Circles correspond to a strongly spin-anisotropic point (α =
0.3,� = 0.05/a), triangles to a moderately spin-anisotropic point
(α = 0.6,� = 0.05/a), and diamonds to a perfectly spin-isotropic
point (α = 0.85,� = 0.156/a), associated to equal Kondo exchange
couplings J⊥ = J‖ = 0.49.

point (α = 0.85,� = 0.156/a) corresponds to the isotropic
coupling J⊥ = J‖ = 0.49, or a Kondo temperature TK =
exp(−π/J )/a � 1.6 × 10−3/a. For (α = 0.3,� = 0.05/a),
the minimum energy changes by an amount comparable to
the accuracy goal of the minimization module, by the time
that M reaches 6. For the other two points in parameter space,
the marginal change in the minimum energy is a fraction of a
percent at M = 7. All the results that we present below are at
least as converged as these last two cases.

As a complementary test, we can also verify that the
multiple coherent state |ψ〉 converges to an eigenstate of H as
the number of coherent states increases. To do so, we calculate
the energy uncertainty

�E =
√

〈ψ |H 2|ψ〉 − 〈ψ |H |ψ〉2, (60)

for the optimal coherent states ansatz |ψ〉, as a function of M .
For this purpose, an expression for the overlap 〈f (m)|H 2|f (n)〉
is needed. It turns out that the same integrals Iλ

mn as in
Sec. VI are involved. In terms of these integrals, the overlap is
expressed analytically as

〈f (m)|H 2|f (n)〉

=
[(

α

2

)2(
I 0
mn − 1

a

)2

+
(

�

2

)2

− α

2
∂aI

0
mn

]
e− α

4 I−1
mn

+ α�

8
e− α

4 I+1
mn ∂a

(
I+1
mn − I−1

mn

)
. (61)

The rest of the calculation can then proceed with the tech-
nology developed in Sec. VI for evaluating the integrals I λ

mn.
Note that derivatives ∂aI

λ
mn, refer to partial derivatives with

respect to the explicit a dependence of the integrals, and not
to total derivatives involving the implicit a dependence of the
variational parameters. The energy uncertainty �E is showed
in Fig. 3, as a function of coherent state number M , for the same
three points in parameter space for which we have investigated

2 3 4 5 6 7
5×10−4

5×10−3

5×10−2

M

E
[1

/a
]

FIG. 3. (Color online) Energy uncertainty �E as a function of
the number M of coherent states, for the same three points in
parameter space as the data in Fig. 2.

the energy convergence above. In all three cases, the energy
uncertainty decreases monotonically, and roughly as a power
law ∝M−1.7. The fact that the uncertainty clearly tends to
zero as M increases, shows that the trial wave function (14)
converges to the true ground state as the number of coherent
states is increased.

Next, we investigate the convergence of the screening cloud
itself. In Fig. 4, we show an instance of very rapid convergence
in the case of strong spin-anisotropy, and in Fig. 5, an example
where there is a noticeable change between M = 1 and 7
coherent states (note also that this data set is one of the
least converged ones included in this work). In both figures,
we plot the 0kF transverse correlator X⊥

0 (x), as we found
this component to show the most dramatic change as M is
increased. Figure 4 corresponds to α = 0.1 and � = 0.05
(strong spin-anisotropy), and the comparison to a M = 6
coherent state calculation shows that the single coherent state
(Silbey-Harris ansatz) is nearly exact in this limit. The results
in Fig. 5 were obtained at α = 0.85 and � = 0.156/a, which
corresponds to an isotropic Kondo coupling J⊥ = J‖ = 0.49,

FIG. 4. (Color online) The 0kF transverse component X⊥
0 of the

screening cloud, versus distance x from the impurity, for α = 0.1,
� = 0.05/a. The black dashed curve is the (fully converged) result
of a six coherent state calculation. The solid blue curve corresponds
to the single coherent state result (58). In the spin-anisotropic limit
α � 1, the single coherent state approximation is thus very accurate.
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FIG. 5. (Color online) Convergence of the cloud for the 0kF

transverse component X⊥
0 vs distance x, for α = 0.85 and � =

0.156/a. This parameter choice corresponds to an isotropic Kondo
coupling J⊥ = J‖ = 0.49. The black dashed line represents the result
of a M = 7 coherent state calculation, while solid curves represent
results for M = 2, 3, and 5 coherent states.

for M = 2, 3, 5, and 7 coherent states. Good convergence
is clearly ensured by the computation with M = 7 coherent
states.

B. Comparison to exact results based on integrability:
ground-state energy and Kondo overlaps

In this section, we give further evidence that ground state
properties of the Kondo model can be calculated accurately
using the coherent state expansion. In particular, we focus here
on several physical quantities that can be computed exactly via
the Bethe ansatz or related integrability techniques.

In Fig. 6, we compare the multiple coherent state estimate
for the ground state energy to results obtained via the exact
Bethe ansatz [42], at � = 0.05/a and various α values. The
high-energy cutoff 1/a corresponds to the parameter ωc in
Ref. [42], and we used from this reference expression (C9)
for the ground-state energy and equation (8) for the Kondo
temperature TK , with the relationship between D and ωc given
in (C8). Although our calculation is variational, the energy
is typically converged to about 0.1% (see Fig. 2). One has to

0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.020

−0.015

−0.010

−0.005

0.000

aE

FIG. 6. (Color online) Ground-state energy vs α as obtained via
the multiple coherent state approximation (dots) and the exact Bethe
ansatz solution (solid line), for � = 0.05/a.

bear in mind however that, in the ultraviolet, the model for
which the Bethe ansatz yields the exact solution differs from
the model we consider here. The Bethe ansatz result is only
valid if all relevant energy scales in the problem are much
smaller than the ultraviolet cutoff scale. For finite �a, the
Bethe ansatz expressions even present spurious divergences
around α = (2n + 1)/(2n + 2), for n = 1, 2, . . . . As a result,
exact agreement can only be expected at |Ea| � 1, and this
explains why our variational result is slightly off the Bethe
ansatz result for small α, although the variational approach
presents better convergence in this regime. In general, the
numerical data agrees so closely with the Bethe ansatz result
that it is impossible to distinguish between errors resulting
from truncation of the coherent state expansion at M = 7 and
errors due to ultraviolet differences between the models.

Another interesting quantity for which an exact analytical
result has recently been obtained [21], and which gives some
indirect information on the Kondo cloud, is the overlap
〈ψ(J⊥)|ψ(J ′

⊥)〉 of two Kondo ground states with different
transverse exchange couplings, as a function of the Kondo
temperature ratio TK (J⊥)/TK (J ′

⊥). Here |ψ(J⊥)〉 and |ψ(J ′
⊥)〉

denote the full many-body ground states obtained at different
J⊥ but for the same J‖, while TK (J⊥) and TK (J ′

⊥) are
the associated Kondo temperatures. With the definition z =
ln[TK (J ′

⊥)/TK (J⊥)], the exact result reads

〈ψ(J⊥)|ψ(J ′
⊥)
〉 = 1

1 − α

sinh[(1 − α)z/2]

sinh(z/2)
gα(z),

(62)

gα(z) = exp

[∫ ∞

0

dt

t

sin2(zt/π )

sinh(2t) cosh(t)

sinh
(

αt
1−α

)
sinh

(
t

1−α

)
]
.

When comparing our numerical results to this analytical
formula, a subtle issue arises. The Kondo temperature is
certainly related to the inverse of the size of the screening
cloud, but the exact relation may well involve an O(1)
factor that is J⊥ dependent. We have therefore tried various
definitions of the Kondo temperature. For small to moderate
α, we find that TK ∝ 1/ξ‖, as defined in Eq. (56), with a
J⊥-independent proportionality constant, works well. Indeed,
in the Silbey-Harris regime, this correspondence is exact
(see below). For larger α, however, this definition seems to
incur a systematic error. For J‖ and J⊥ relatively small, as is
exemplified by the data we collected at α = 0.8, we have found
it better to estimate the Kondo scale from direct integration of
the standard weak-coupling in J⊥ and J‖ poor man’s scaling
equations,

dJ⊥
dl

= 1

π
J‖J⊥,

dJ‖
dl

= 1

π
J 2

⊥, (63)

which lead to an expression of the Kondo scale for the spin-
anisotropic Kondo model that is valid for J‖ � 1 and J⊥ � 1:

TK = 1

a
exp

⎡
⎣− π√

J 2
⊥ − J 2

‖
arctan

⎛
⎝
√

J 2
⊥ − J 2

‖
J‖

⎞
⎠
⎤
⎦. (64)

Let us first consider the regime of small α. Here we
have seen that single coherent state results are already well-
converged. In the single coherent state approximation, the
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FIG. 7. (Color online) Kondo overlap 〈ψ(J⊥)|ψ(J ′
⊥)〉 between

ground states at different and varying values of J⊥, but with the same
fixed value of J‖, versus the ratio TK (J⊥)/TK (J ′

⊥). Here, the strongly
spin-anisotropic regime is considered with α = 0.1, i.e., J‖ = 4.30.
The solid line shows the single coherent state formula (65), whereas
the dashed line is the exact analytical result (62). The dotted line is
the small α, small |z| approximation (66).

overlap is given by

〈ψ(J⊥)|ψ(J ′
⊥)
〉 = exp

α

2

[
1 − z̄

2
coth(z̄/2)

]
, (65)

where z̄ = ln [�R(J ′
⊥)/�R(J⊥)]. For small α, Ref. [21] quotes

the “semiclassical” result,

〈ψ(J⊥)|ψ(J ′
⊥)
〉 = 1 + α

2

[
1 − z

2
coth(z/2)

]
, (66)

which can be obtained by expanding the exact result (62)
to first order in α. Since z coth(z/2) grows linearly in z for
large z, the semiclassical result can at best only be valid for
z sufficiently smaller than 1/α. Referring back to the single
coherent state result (59) for the correlation lengths, we see that
if we make the identification TK ∝ 1/ξ‖, the single coherent
state approximation (65) is nothing but a resummation of
the small α result in Ref. [21], in which ln 〈ψ(J⊥)|ψ(J ′

⊥)〉
is calculated to second order in the impurity interaction, and
then exponentiated. In Fig. 7, we compare the single coherent
state approximation to the exact result (62). We see that,
unlike the semiclassical formula (66), the single coherent state
approximation remains valid up to large ratios of the Kondo
temperatures, because the ground state is well captured for any
value of the Kondo temperature (provided α is small enough).

We now turn to the regime of larger dissipation, and in
Fig. 8, we show multiple coherent state results for the Kondo
overlap at α = 0.3 and 0.6, again using the (now approximate)
identification TK ∝ 1/ξ‖, together with the exact result (62).
Data points of the same color were obtained by keeping J⊥
fixed and varying J ′

⊥ < J⊥. If two data points have different
colors, they correspond to distinct J⊥ and J ′

⊥. It is therefore
already nontrivial that the differently colored points fall on
the same curve, confirming the universality predicted by the
exact analytical expression (62). Generally, a good agreement
with the analytical result (62) is seen, with only a small
systematic error pushing the numerical curves slightly below
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FIG. 8. (Color online) Kondo overlap 〈ψ(J⊥)|ψ(J ′
⊥)〉 at interme-

diate α values. Open symbols in various colors show the M = 6
coherent state results for J‖ = 0.905 (i.e., α = 0.3) for several values
of J⊥ and J ′

⊥ ∈ [0.016,0.346] (i.e., � ∈ [0.005/a,0.110/a]). Closed
symbols show the M = 7 coherent state results for J‖ = 0.451 (i.e.,
α = 0.6) for several values of J⊥ and J ′

⊥ ∈ [0.016,0.346] (i.e.,
� ∈ [0.236/a,0.785/a]). Solid curves represent the exact analytical
result (62). The Kondo temperature was taken from the approximate
identification TK = 1/ξ‖.

the analytical ones, which increases as α increases. A small
part of the error is likely due to an error of a few percent
in the numerical estimation of ξ‖, and to TK being only an
order of magnitude or so less than the ultraviolet scale 1/a

at large J⊥. These errors would be reduced if we could use
more coherent states and smaller J⊥. However, as pointed
out earlier, the main discrepancy comes from the chosen
definition of the Kondo temperature in Ref. [21], which is
not exactly equivalent to 1/ξ‖ at larger α. Indeed, Fig. 9
shows the multiple coherent state results for the overlap at
α = 0.8, using both the naive identification TK ∝ 1/ξ‖ (inset)
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0.95

1.00

TK(J )/TK(J ')

<
(J

)|
(J
')>

4 16

0.90

0.95

1.00

FIG. 9. (Color online) Kondo overlap 〈ψ(J⊥)|ψ(J ′
⊥)〉 at α = 0.8

(J‖ = 0.663). Open symbols in various colors show the M = 7 coher-
ent state results for several values of J⊥ and J ′

⊥ ∈ [0.377,0.880] (i.e.,
� ∈ [0.12/a,0.28/a]). Solid curves represent the exact analytical
result (62). In the main panel, the improved renormalization group
estimate (64) was used for TK . In the inset, the less accurate value
TK = 1/ξ‖ was used.
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FIG. 10. (Color online) The longitudinal 0kF component of the
screening cloud at the Toulouse point α = 1/2. Five different values
of � ranging from 0.02/a to 0.1/a were used. The symbols
correspond to results obtained with the coherent state expansion
(truncated at M = 7 terms) for a choice of discrete positions, while
the solid lines represent the exact result (67). Also indicated for
each curve is the associated Kondo length ξ‖, ranging from 18.2a at
� = 0.1/a to 456a at � = 0.02/a.

and the renormalization improved estimate (64). The latter
choice leads clearly to a substantial reduction of the error. Our
conclusion is that the actual Kondo overlap 〈ψ(J⊥)|ψ(J ′

⊥)〉
is calculated quite accurately in the coherent state expansion,
and that the (modest) observed errors are associated with the
extraction procedure of the Kondo temperature from the size
of the cloud.

C. Comparison to the exact longitudinal forward-component
of the cloud at the Toulouse point

This section provides strong evidence that the coherent
state expansion (14) captures the full spatial structure of
the Kondo cloud, using an exact analytical result at the
so-called Toulouse point. Indeed, at J‖ = 2π (1 − 1/

√
2) or

equivalently, α = 1/2, the Kondo model is equivalent to
a fermionic noninteracting resonant level model [43]. An
exact result for the longitudinal 0kF component of the
screening cloud can be obtained following the route set out in
Refs. [44–46]. We review this calculation in Appendix D. The
result is given by the simple formula

X
‖
0(x) = −

√
2

π2

J 2
⊥

4πa
F

(
−J 2

⊥|x|
4πa

)2

, (67)

with F as defined in Eq. (38). From the point of view of
the coherent state expansion, there is nothing special about
the Toulouse point. In the coherent state expansion, X

‖
0 is

expressed as a linear combination of F functions with different
position dependent arguments, cf. Eq. (53), and an infinite
number of terms are required to approximate F 2 exactly. In
Fig. 10, we compare the exact expression to results obtained
with the coherent state expansion, truncated at M = 7 terms.
For clarity, we show here results of the coherent state expansion
only for a discrete set of x values, because the complete

curves would have completely covered the exact result. We
clearly find near perfect agreement between the coherent
state expansion and the exact result. Since the coherent state
expansion does not exploit any special features of Toulouse
point, we expect similar accuracy at a similar cost (M = 7) to
be achievable at other values of α.

D. Detailed analysis of the screening cloud

Having thoroughly established the accuracy of the coherent
state approximation for the Kondo ground state, we now
proceed to investigate the physical features of the Kondo
screening cloud, both for isotropic and anisotropic regimes.

1. Summary of known results

We first briefly recall the available analytical results
regarding the isotropic screening cloud. In the isotropic case
(J⊥ = J‖), the transverse components of the screening cloud
equal twice the longitudinal components, i.e.,

X
‖
0 = X⊥

0 /2 ≡ X0, X
‖
2kF

= X⊥
2kF

/2 ≡ X2kF
. (68)

For x � a, both X0(x) and X2kF
(x) are expected to be

universal scaling functions

ξXk(x) = X̃k(x̃), x̃ = x/ξ, k = 0, 2kF . (69)

Here, X̃k is independent of J , and all parameter dependence is
contained in the Kondo length ξ . The Kondo length is expected
to be inversely proportional to the Kondo temperature, but
the exact relation may contain a J -dependent proportionality
factor of order unity, as we discussed previously. The following
asymptotic results for X̃0 and X̃2kF have been derived
analytically [2]:

X̃0(x̃) ∝ − 1

x̃(ln x̃)2
, X̃2kF

(x̃) ∝ 1

x̃ ln x̃
, for x̃ � 1;

(70)

X̃0(x̃) � X̃2kF
(x̃) � − 1

x̃2
for x̃ � 1.

The regime of small x̃ is perturbatively accessible with a calcu-
lation using renormalization group techniques, while the large
x̃ regime is treated using Fermi liquid theory. Note that at small
x̃, the 2kF -oscillatory component of the cloud dominates the
0kF component slightly. This implies that the total correlation
function X(x) = X0(x) + cos(2kF x)X2kF oscillates between
positive and negative values, with wavelength π/kF at small
x. In other words, close to the impurity, the spin correlations
between the electron gas and the impurity alternate between
being ferromagnetic and being antiferromagnetic, on the scale
π/kF . The crossover from slower than 1/x̃ decay inside the
cloud to 1/x̃2 decay at large x is expected to occur at x ∼ ξ , i.e.,
x̃ ∼ 1. Our goal in the next paragraph is to confirm these results
for the isotropic cloud, and to compute the full crossover curve
from the coherent state expansion. In a second step, we will
examine how the cloud correlations change when the Kondo
couplings are not isotropic (J⊥ 
= J‖).

2. Kondo cloud in the isotropic case

As a first step, we present results in Fig. 11 for the screening
cloud calculated for several parameters on the isotropic line
J⊥ = J‖, or equivalently α = (1 − a�/2)2. The correlation
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FIG. 11. (Color online) The four components of the isotropic
screening cloud: the top panel represents the longitudinal (black) and
transverse (gray) 0kF components, while the bottom panel represents
the longitudinal (black) and transverse (gray) 2kF components. The
calculation was performed for the choice of Kondo couplings J =
0.42, 0.49, 0.66, and 0.84, which correspond to α = 0.87, 0.85, 0.8,

and 0.75. The various curves can be identified from the fact that the
crossover to faster 1/x2 decay occurs on an increasing length scale
ξ as α is increased (or equivalently J is decreased). For α = 0.75,
convergence was achieved with M = 5 coherent states, while for the
other values of α, M = 7 was required.

functions are plotted in units of 1/a on the vertical axis and in
units of a on the horizontal axis. When considering the small x̃
regime numerically, one must remember that x has to remain
sufficiently larger than the short distance ultraviolet cutoff
a, since the limits a → 0 and x → 0 do not commute. This
restriction is implied whenever we consider the asymptotic
x̃ → 0 limit. The transverse and longitudinal components
are plotted in the same panel, and we expect X

‖
k = X⊥

k /2
for both the k = 0kF and k = 2kF components due to strict
spin-isotropy. The numerical results of Fig. 11 reveal this
isotropy to a high degree, and this is a nontrivial check of
our method, since rotational symmetry in the bosonic model is
only emergent. It is violated by the ultraviolet regularization
(see Appendix A). This fact also explains the small differences
that are still visible between the transverse and longitudinal
components.

In Fig. 12, we plot the same data as in Fig. 11, but now in
rescaled units, according to (69). We ignored small differences
between the large distance behavior of the transverse and
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FIG. 12. (Color online) The isotropic correlation functions of
Fig. 11, in rescaled units 1/ξ on the vertical axis and ξ on the
horizontal axis. The Kondo length ξ = ξ‖ was estimated from
Eq. (57).

longitudinal components, and scaled all components with
ξ = ξ‖, where the Kondo length ξ‖ was calculated using
Eq. (57). We clearly see that it is possible to scale correlation
functions calculated at different J onto universal curves. As
expected, we observe that the cross-over from slower than
1/x decay inside the cloud to 1/x2 decay at large x occurs
around x ∼ ξ . The precise behavior of the Kondo length ξ as
a function of J will be analyzed further in the next subsection.
At this point, we note that it varies from 11a at J = 0.84 to
366a at J = 0.42. Such a large variation in the spatial scale
implies that the observed scaling is nontrivial and reflects the
universality of the Kondo problem.

In Fig. 13, we compare the universal scaling functions for
the 0kF and the 2kF components of the cloud, by plotting them
on top of each other. We determined the single universal scaling
functions by fitting high-order polynomials through the scaled
data set of Fig. 12. We clearly see that the 2kF component
dominates the 0kF component at small x̃, consistent with the
known small x asymptotics of Eq. (70).

3. Kondo cloud in the anisotropic case

Having confirmed that the cloud displays the expected
universal scaling for isotropic couplings, we move on to the
general anisotropic case. The existence of two independent
couplings J‖ and J⊥, or equivalently α and �, implies that
the universal scaling picture is less straightforward. To guide
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FIG. 13. (Color online) Universal scaling curves on the isotropic
line: the black curve represents the longitudinal component X̃0, and
the gray curve represents the transverse component X̃2kF

. These two
single curves were obtained by fitting high-order polynomials through
the rescaled data set of Fig. 12. Thinner straight lines indicate the pure
power laws X(x) ∝ 1/x and X(x) ∝ 1/x2.

our investigation, let us review known results obtained by
an improved poor man’s scaling argument, applicable with
greater generality in the anisotropic case. (Standard poor man’s
equations (63) can only be trusted when both Kondo exchange
couplings are small [20].) In the language of the spin-boson
model, it is known that to leading-order in �, but arbitrary α,
increasing the short-distance scale a by a dl is approximately
equivalent to changing α to α + dα and � to � + d�, where

dα

dl
= −(a�)2α,

d

dl
(a�) = (1 − α)(a�). (71)

Integration of these flow equations yields scaling trajectories

(a�)2

2
− α + ln(α) = constant, (72)

or equivalently, in the language of the Kondo model

J 2
⊥ − J 2

‖ + (2π )2

[
ln

(
1 − J‖

2π

)
+ J‖

2π
+ 1

2

(
J‖
2π

)2]
= constant. (73)

A few of these trajectories in the J‖ - J⊥ plane are plotted in
Fig. 14. We stress that the standard weak coupling renormal-
ization equations (63) cannot be trusted in the regime where
J‖ � 1, and that is why we have to work nonperturbatively
in α. It is also important to remember that these trajectories
are only meaningful at J⊥ sufficiently smaller than π . Always
bearing this proviso in mind, the following statement holds:
screening clouds associated with two Kondo Hamiltonians,
whose parameters lie on the same scaling trajectory, can be
scaled onto the same universal line shape.

Below, our work will be guided by two qualitative features
of Fig. 14. The first is that the flow trajectories intersect the
J‖ axis at 90◦. For large J‖, the parts of the trajectories that
may reasonably be trusted, run nearly parallel to the J⊥ axis.
Going beyond the small J⊥ regime of the figure, we know
that, at the Toulouse point J‖ = 2π (1 − 1/

√
2), the scaling

||

FIG. 14. Scaling trajectories that derive from the improved poor
man’s scaling equations (71), that are correct to leading order in J⊥.
In order to emphasize that only the small J⊥ part of trajectories are
to be trusted, dashed lines are used for J⊥/2π > 0.1.

trajectory runs exactly parallel to the J⊥ axis (see Appendix D).
Universality at fixed J‖ is also an obvious feature of the exact
analytical expression for the Kondo overlap (62). For J �
0.45π (α � 0.6), we will therefore try to scale clouds at fixed
J‖, but different J⊥, onto each other.

The second pertinent feature of Fig. 14 is that for
J⊥,J‖ � π/2, the trajectories are approximately hyperbolas
J 2

‖ − J 2
⊥ = c. In other words, the isotropic line J‖ = J⊥ is

an attractor for the renormalization flow. This implies that
at sufficiently large distances x > xiso, the cloud must tend
to the isotropic cloud. However, for x < xiso, the poor man’s
scaling picture of Figure 14 indicates pronounced anisotropic
behavior. This short distance region corresponds to the scales
that have to be integrated out for an anisotropic point (J‖,J⊥)
to flow close to the isotropic line. Note, furthermore, that
the above discussion only applies to points that are in the
general vicinity of the isotropic line, and are associated
with a Kondo temperature sufficiently lower than 1/a. If
a point is too far from the isotropic line to start with,
or if the initial Kondo temperature is too large, the size
of the cloud renormalizes down to the ultraviolet scale,
before the renormalized couplings become isotropic. At this
point, the notion of flow trajectories in a two-dimensional
parameter space breaks down, and Kondo physics mixes with
ultraviolet physics. Based on these observations, we will
compare the cloud calculated at J‖,J⊥ � π/3 (i.e., reasonably
close to the isotropic line and with a decent Kondo length)
with the isotropic cloud.

We start the presentation of our results in the regime of small
α (large J‖). This regime does not overlap with the isotropic
Kondo regime, because the size of the screening cloud flows to
the short distance cutoff a before the renormalized couplings
come close to the isotropic line. For small α, the single
coherent state (Silbey-Harris) approximation is accurate (see
Fig. 4), and we have derived simple analytical expressions
(58) for the cloud correlation functions, that reveal the
following universality. By appropriately rescaling the four
cloud components and the coordinate x, clouds calculated at
different J⊥ � π but fixed J‖ (i.e., fixed α) have the same line
shape; for the longitudinal components X

‖
j , j ∈ {0,2kF }, one
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FIG. 15. (Color online) Map of the parameter space of the Kondo
model, where dots indicate points where we have collected data
to investigate the scaling behavior of the screening cloud. Below
the lower solid curve, TK � 10−3/a and we generally find that
more than M = 7 coherent states are required for a converged
result. Above the upper solid curve, TK � 1/a and the screening
cloud is poorly resolved because of nonuniversal ultraviolet effects.
At the points included in the shaded region, we find that the
screening cloud is nearly isotropic down to distances deep inside the
cloud.

defines

X̃
‖
j (α,x̃) = ξ‖Xj (x), x̃ = x/ξ‖, (74)

and finds from the Silbey-Harris result the simple analytical
formulas

X̃
‖
0(α,x̃) = −Re F

(
i
√

αx̃

π

)
,

(75)

X̃
‖
2kF

(α,x̃) = − 1

2πx̃
sin

[
2
√

αIm F

(
i
√

αx̃

π

)]
.

In the small α regime, the two transverse components X⊥
j ,

j ∈ {0,2kF }, are equal. One defines

X̃⊥
j (α,x̃) = ξ 2

‖ Xj (x)/ξ⊥, x̃ = x/ξ‖, (76)

and finds the analytical expression

X̃⊥
j (α,x̃) = − 2

x̃2
exp

[
−2

√
αRe F

(
i
√

αx̃

π

)]
. (77)

The expression for X̃
‖
0(x) could suggest a further rescaling

x̄ = √
αx̃ that would lead to an α independent line shape

for X
‖
0. However, one cannot simultaneously get rid of the α

dependence in the other components of the cloud. Furthermore,
it turns out that X̃‖(α,z/

√
α) is no longer α-independent

beyond α � 0.4 (as shown by our numerical simulations
below).

The two pertinent facts to emerge from this discussion are
the following. Firstly, the coordinate x is always rescaled
by ξ‖, whereas the magnitudes of the longitudinal and
transverse components of the cloud have to be rescaled by
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FIG. 16. (Color online) Onset of spin-isotropy in the 0kF component of the Kondo cloud, black curves corresponding to the longitudinal
correlator a|X‖

0| and gray curves to the transverse correlator a|X⊥
0 |/2. Top left panel is α = 0.3, top right panel is α = 0.45, bottom

left panel is α = 0.6, and bottom right panel is α = 0.8. In each panel, different curves of the same shade correspond to a few selected
values of �.
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FIG. 17. (Color online) The ratio 2X
‖
0/X⊥

0 of longitudinal and
transverse cloud components plotted against the scaled distance
x/ξ‖. Perfect isotropy corresponds to 2X

‖
0/X⊥

0 = 1. Solid curves
correspond to α = 0.85 and various values of � ranging from 0.156/a

to 0.305/a. Dashed curves correspond to α = 0.75 and various values
of � ranging from 0.120/a to 0.268/a. The Kondo length ξ‖ was
calculated for each curve from Eq. (57). For the set of data at α = 0.85,
ξ‖ varies from 18.0a to 158a, while for α = 0.75, ξ‖ varies from 12.6a

to 108a.

different inverse lengths 1/ξ‖ and ξ⊥/(ξ‖)2. In other words, the
longitudinal and transverse clouds have different characteristic
magnitudes 1/ξ‖ and ξ⊥/(ξ‖)2, but the same characteristic size

ξ‖. Secondly, the universal scaling curves depend in general
on α. Thus, as expected from poor man’s scaling, clouds at the
same J‖ but different J⊥ have the same shape, whereas clouds
at different J‖ in general have different shapes.

The differences in scaling behavior between the small α

and isotropic clouds are thrown into sharp relief when one
considers the small x asymptotic form of the cloud correlators.
At x̃ � 1, the small-α results (75) and (77) lead to an
asymptotic behavior:

X̃⊥
0 = X̃⊥

2kF
∼ −x̃−2(1−√

α),
(78)

X̃
‖
0 ∼ ln x̃, X̃

‖
2kF

∼ −x̃−1.

The X̃
‖
0 component diverges much more slowly in the x̃ → 0

limit than is the case at isotropic couplings (ln x̃ versus
−1/x̃(ln x̃)2), whereas the X̃

‖
2kF

component diverges more
rapidly than in the isotropic case (−1/x̃ versus 1/x̃ ln x̃). Thus
the alternation between ferro- and antiferromagnetic corre-
lations close to the impurity is enhanced in the longitudinal
direction. This is not surprising, as small α implies J‖ � J⊥.
Furthermore, we see that the small x asymptotic behavior of the
transverse cloud is explicitly α-dependent, displaying power-
law behavior with an exponent −2(1 − √

α) = −J‖/π , imply-
ing a divergence as x̃ → 0 that is closer to 1/x2, than to 1/x.

The next obvious question is how the small α scaling
picture evolves as α increases. In order to investigate this,
we calculated the cloud correlators at the points in parameter
space shown in Fig. 15. The most obvious feature of the
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FIG. 18. (Color online) Scaling curves for the four component of the Kondo cloud computed at fixed α = 0.6 (J‖ = 1.42). Raw data
is shown in the insets, with different curves correspond to eight different values of � collected in the interval � ∈ [0.05/a,0.25/a] (i.e.,
J⊥ ∈ [0.157,0.785]). Excellent scaling behavior is obtained for all components.
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data, is that the cloud becomes more and more isotropic as
α increases. This is revealed in Fig. 16, where we plot X

‖
0(x)

and X⊥
0 (x)/2 on top of each other for respectively α = 0.3,

0.45, 0.6, and 0.8, in separate panels. Each panel contains
curves for several values of J⊥. At α = 0.3, the transverse
and longitudinal clouds are very different. As α increases, the
differences become smaller. By the time we reach α = 0.8, the
cloud is isotropic to a high degree of accuracy for all values
of J⊥ considered. The behavior of the X

‖
2kF

(x) and X⊥
2kF

(x)
components of the cloud (not shown) present very similar
behavior. We find similarly isotropic clouds at all the points in
Fig. 15 inside the shaded region.

Poor man’s scaling suggests that for anisotropic exchange
couplings, there is a scale xiso below which isotropy breaks
down. To investigate this, we plot the ratio 2X

‖
0/X⊥

0 as a
function of x/ξ‖ (Fig. 17). We do so for the data collected at
α = 0.75 and 0.85. In both cases, we see that 2X

‖
0/X⊥

0 reaches
a plateau that is within 10% of unity. This is the same degree of
isotropy as we obtain on the isotropic line itself. In both cases,
the plateau is reached at a distance that is a small fraction of
the Kondo length ξ⊥. In other words, isotropy extends deep
inside the cloud. The ratio xiso/ξ‖ between the scale where
isotropy sets in, and the Kondo length, is more or less constant
at fixed α, while the Kondo length itself varies by an order of
magnitude. From the figure, one can read off that xiso/ξ‖ ∼ 0.2
for α = 0.75 and xiso/ξ‖ ∼ 0.05 for α = 0.85.

Next, we investigate the precise scaling behavior of the
data. For α � 0.6, we take our cue from the small α results
we obtained above, together with the understanding from
poor man’s scaling, and we thus scale correlation functions
according to the ansatz (74) and (76). In Fig. 18, we show raw
and scaled results for α = 0.6. Similar figures for α = 0.3 and
0.45 can be found in Ref. [47]. For all values of α that we
considered, the data nicely scale onto single universal curves.
We conclude that for practical purposes, scaling ansatz of the
form (74) and (76) hold for all values of α < 0.6.

These universal scaling curves are α-dependent and differ
from the isotropic scaling curves. This can clearly be seen
in Fig. 19, where we compare the universal line shapes
of the scaled cloud at α = 0.3 (top panel) and at α = 0.6
(bottom panel) to the universal isotropic line shapes obtained
in Sec. VIII D 2. Although the single coherent state (Silbey-
Harris) approximation underestimates the Kondo length ξ‖ by
50% at α = 0.3, the simple equations (75)–(77) still predict the
universal line shape of the screening cloud very well. Inside
the cloud (x < ξ‖), these universal curves are very different
from the universal isotropic curves. As α increases, deviations
from the Silbey-Harris line-shape set in, and scaling curves
start to resemble the isotropic curves more closely, as can be
seen for α = 0.6 in the bottom panel of Fig. 19.

A prominent feature of the anisotropic scaling curves is that,
at small distances, there is a stronger suppression of the X

‖
0

component over the X
‖
2kF

component, than in the isotropic case.
As a result, the alternation from ferro- to antiferromagnetic
correlations between the impurity and the electron gas inside
the cloud is enhanced in the longitudinal direction. This is
illustrated in Fig. 20, where we compare the full longitudinal
cloud X‖(x) = X

‖
0(x) + cos(2kF x)X‖

2kF
(x) calculated at α =

0.3 with the result on the isotropic line.
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FIG. 19. (Color online) Comparison between the universal line
shapes of the scaled cloud (symbols in color), at α = 0.3 (top
panel) and at α = 0.6 (bottom panel), to the universal isotropic
line shapes (full and dashed black lines). The curves were obtained
by fitting data sets such as those displayed in the main panels of
Fig. 18 to polynomials of high degree. On the vertical axis, the
longitudinal components are plotted in units of 1/ξ‖, while the
transverse components are plotted in units of ξ⊥/ξ 2

‖ . The isotropic
curves are those of Fig. 13.
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FIG. 20. (Color online) The full longitudinal cloud X‖(x) =
X

‖
0(x) + cos(2kF x)X‖

2kF
(x) at α = 0.3 (black) and on the isotropic

line (gray), as shown by full lines (dashed lines are the respective
envelope functions X

‖
0(x) ± X

‖
2kF

(x)). Both curves were normalized
using their magnitude at x = 2π/kF . For the purpose of showing the
oscillations, we took kF = 20π/ξ⊥.
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FIG. 21. (Color online) The screening cloud calculated at all
points inside the shaded region (0.75 � α � 0.9) in Fig. 15. Insets
show the raw data, while the main panels show data in units of ξ‖ on
the horizontal axis and units of 1/ξ‖ on the vertical axis. The top panel
contains the transverse and longitudinal 0kF components plotted
together. The bottom panel contains the transverse and longitudinal
2kF components.

To complete the scaling analysis, we consider the screening
cloud at 0.75 � α � 0.9 (the shaded region in Fig. 15). In this
region, we have seen that the cloud is approximately isotropic.
In Fig. 21, we therefore plot the transverse and longitudinal
components of the cloud on the same graph. Insets show raw
results in units of a on the horizontal and 1/a on the vertical
axes. The main panels show data in rescaled units of ξ‖ on
the horizontal and 1/ξ‖ on the vertical axes. We see that the
scaled data collapse very well onto single scaling curves. As
before, the Kondo length ξ‖ was calculated using Eq. (57),
i.e., no fitting parameters were used to obtain the high degree
of collapse. It is instructive to compare the main panels of
Fig. 21 for all the data collected, to Fig. 12, that shows scaled
data only for the subset of points that lie on the isotropic
line J⊥ = J‖. We see the same degree of collapse onto single
curves in both figures. In other words, within the numerical
accuracy of our calculation, the universal line shape of the
screening cloud is the same for all points in the shaded region
of Fig. 15. To further confirm this conclusion, we fitted a
high-order polynomial through the complete scaled data sets of
Fig. 21. In Fig. 22, we compare this fit to the universal scaling
curves we obtained previously by only considering the cloud
on the isotropic line (Fig. 13). We see nearly perfect agreement.

0.1 1 10 100
10−4

10−2

1

x/

X

FIG. 22. (Color online) The solid gray curves represent the
(isotropic) universal scaling curves inferred using all the data of
Fig. 21, i.e., clouds calculated at all the points inside the shaded
region in Fig. 15. These curves were obtained as the best fit of a
high-order polinomial through the scaled data of Fig. 21. The dashed
black curves are the universal scaling curves inferred using only
clouds calculated at perfectly isotropic couplings (see Fig. 13).

Of course, the screening cloud at an anisotropic value of the
exchange couplings, J⊥ 
= J‖, only follows this universal line
shape for distances larger than xiso, the scale at which isotropy
sets in. However, as we have seen in Fig. 17, there is a sizable
region around the isotropic line where isotropy already sets in
deep inside the cloud.

Finally, we plot in Fig. 23 the Kondo length ξ‖, which
corresponds to the characteristic size of the cloud, for some
of the data we have collected. The large range over which ξ‖
varies for each value of α, confirms that the scaling behavior
we see is nontrivial. We compare the calculated value of ξ‖ to
ξ ∝ 1/TK , with TK the standard poor man’s scaling estimate
(64) of the Kondo temperature. With a logarithmic scale on the
vertical axis, which hides mismatches by factors of order unity,
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FIG. 23. (Color online) The Kondo length ξ‖ as a function of J⊥
for several α values. The solid lines shows ξ = c/TK , with TK the
standard poor man’s scaling estimate (64) and c a fitting parameter.
The same value of c = 0.3 we used for all five curves.
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we find good agreement for the isotropic and the α = 0.8 data
sets. That these sets yield the best agreement is expected, as
they are closer to the point J⊥ = J‖ = 0 in parameter space
than the other sets, and the version of poor man’s scaling that
leads to the estimate (64) for TK assumes small exchange
couplings.

IX. SUMMARY OF RESULTS AND CONCLUSION

This paper has provided a very extensive study of the
Kondo screening cloud for a wide range of parameter values,
including the spin-isotropic and strongly spin-anisotropic
regimes. Methodologically, we derived simple but controlled
analytical expressions in the case of strong anisotropy, and
developed an original and very powerful numerical technique
to tackle the problem in its complete generality. This allowed
us to investigate the 0kF and 2kF component of the Kondo
cloud correlator separately, both for the longitudinal and
transverse response. In addition, we have examined, again both
analytically and numerically, the structure of Kondo overlaps
introduced in recent works [21].

Our main results concern the universal scaling of correla-
tions between the impurity spin and the electron spin density
in the anisotropic Kondo model. They can be summarized
as follows. At large x, transverse correlators equal X⊥

k (x) =
−ξ⊥/x2, while longitudinal correlators equal X‖

k (x) = −ξ‖/x2

(here k = 0, 2kF refer to respectively the forward or backscat-
tering component of the correlator). In general, the two
emergent length scales ξ⊥ and ξ‖ are not equal, and we find
the following universal scaling behavior:

X⊥
k (x) = ξ⊥

ξ 2
‖

X̃⊥
k (α,x/ξ‖),

(79)

X
‖
k (x) = 1

ξ‖
X̃

‖
k (α,x/ξ‖).

The scaling curves are J⊥-independent, but remain α-
dependent (and therefore J‖-dependent). As can be seen
from the scaling equations, the two lengths ξ⊥ and ξ‖ have
fundamentally different roles. The length ξ‖ sets the size of
the screening cloud, whereas the ratio ξ⊥/ξ‖ sets the relative
magnitude of transverse correlations, compared to longitudinal
correlations.

As J‖ decreases, the explicit J‖ dependence of the scaling
curves becomes weaker and weaker. For J‖ � 1, we find no
discernible J‖-dependence anymore, and the universal scaling
curves become those of the isotropic model. In this region
of parameter space, we find that isotropy already sets in deep
inside the cloud. We managed to calculate the universal scaling
curves down to distances x/ξ = 0.1 or less. This far inside the
cloud, the backscattering (2kF ) component of the longitudinal
correlator dominates the forward scattering (0kF ) component.
Inside the cloud, correlations between the impurity spin and
the electron spin density therefore alternate with wave vector
2kF between being ferro- and antiferromagnetic. The effect
is more pronounced in the regime J‖ � J⊥, but we can still
clearly resolve it when the cloud becomes isotropic.

In previous numerical studies, results were obtained using
the numerical renormalization group (NRG). This required

solving a two-impurity problem, where the position of the
second (fictitious) impurity represents the point x where the
correlator is evaluated. An independent two channel Kondo
problem must be solved by NRG at every position where the
correlator is evaluated, making the calculation computationally
expensive. In addition, it proved difficult to resolve in NRG
the dominance of the backscattering components of the cloud
over the forward scattering components inside the cloud.

We have shown that the coherent state expansion, the
method we employed in this paper, complements previous
numerical renormalization group studies, and even offers sim-
ple analytical insights in the regime of strong spin-anisotropy.
Thanks to a technical improvement that dramatically reduces
the number of variational parameters, it offers excellent
accuracy at a reduced computational cost and does not require
one to discretize the bath degrees of freedom. Yet, we note that
the numerical renormalization group was successfully used to
study finite temperature [5] and time-dependent [6] features
of the Kondo cloud. We envisage future work to extend the
coherent state expansion into these domains as well.
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APPENDIX A: MAPPING BETWEEN THE KONDO
AND SPIN-BOSON MODELS

In this Appendix, we review the mapping from the Kondo
Hamiltonian (3) to the spin-boson Hamiltonian (5). The first
step is to express the (even) fermionic degrees of freedom
in terms of bosonic ones bqσ , q = 2πn/L, n ∈ {1, 2, 3, . . .}
with [bqσ ,b

†
q ′σ ′] = δqq ′δσσ ′ . For this purpose, we invoke the

bosonization identities

bqσ =
√

2π

Lq

∫ L/2

−L/2
dx e−iqxψ†

σ (x)ψσ (x), (A1)

and

ψ†
σ (x) = F †

σ√
2πa

e−iφσ (x),

(A2)

φσ (x) = i
∑
q>0

√
2π

qL
e−(a/2+ix)qb†qσ + H.c.

Here, F †
σ denotes the unitary Klein factor operator associated

with increasing the number of σ electrons by one.
We separate spin and charge degrees of freedom by

defining:

aq = (bq↑ + bq↓)/
√

2, bq = (bq↑ − bq↓)/
√

2. (A3)

We also define new SU(2) operators, in which fermion number
and impurity degrees of freedom are mixed.

s− = F
†
↑F↓σ−, s+ = (s−)†, sz = σz. (A4)
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In the bosonic representation, the Hamiltonian reads

H0 =
∑
q>0

q(a†
qaq + b†qbq),

H‖ = J‖
2

∑
q>0

√
q

πL
e−aq/2(b†q + bq)sz, (A5)

H⊥ = J⊥
2πa

[e−√
2iφs− + e

√
2iφs+],

where

φ = φ↑(0) − φ↓(0)√
2

= i
∑
q>0

√
2π

Lq
e−aq/2(b†q − bq). (A6)

We note that spin (bq) and charge (aq) degrees of freedom are
decoupled, and that only spin degrees of freedom couple to
the impurity. We restrict the Hamiltonian to the vacuum of the
charge sector and drop the a†a terms in future expressions.

Finally, we bring the Hamiltonian into the standard form of
the (unbiased) spin-boson model, via a unitary transform

U = exp(−iszφ/
√

2). (A7)

Under the action of U ,

UbqU
† = bq −

√
π

Lq
e−aq/2sz, Us−U † = e

√
2iφs−, (A8)

so that UHU † = HSB + const, where HSB is given by (5).

APPENDIX B: CORRELATION FUNCTIONS IN THE BOSONIC REPRESENTATION

In this Appendix, we transform the fermionic cloud correlators (7) onto their bosonic counterparts (10). To do so, we represent
the electron spin density in terms of bosonic degrees of freedom, and subsequently perform the unitary transformation of (A7)
on these operators. To this end, it is useful to note from (4) the following identities:

1√
2

[ψ̃σ (x) + ψ̃σ (−x)] � eikF xψσ (x) + e−ikF xψσ (−x),
1√
2

[ψ̃σ (x) − ψ̃σ (−x)] � eikF xψ̄σ (x) − e−ikF xψ̄σ (−x). (B1)

The “approximately equal” signs in these equations indicate that the operators on the right hand side represent versions of the
point operators on the left, that have been broadened by an amount ∼a, inversely proportional to the ultraviolet cutoff. Now
consider the expectation value X⊥(x), which, from (7), can also be written as

X⊥(x) = 4Re〈σ−ψ̃
†
↑(x)ψ̃↓(x)〉K. (B2)

Because the ground state has good spatial parity, X⊥(x) is an even function, and we may write

X⊥(x) = 2Re〈σ−[ψ̃†
↑(x)ψ̃↓(x) + ψ̃

†
↑(−x)ψ̃↓(−x)]〉K. (B3)

The last expression is manipulated to become

X⊥(x) = Re

⎧⎪⎨
⎪⎩〈σ−[ψ̃†

↑(x) + ψ̃
†
↑(−x)][ψ̃↓(x) + ψ̃↓(−x)]〉K + 〈σ−[ψ̃†

↑(x) − ψ̃
†
↑(−x)][ψ̃↓(x) − ψ̃↓(−x)]〉K︸ ︷︷ ︸

=0

⎫⎪⎬
⎪⎭. (B4)

The term marked with the underbrace is zero because of the following reason: ψ̃
†
↑(x) − ψ̃

†
↑(−x) creates an electron in an odd

parity single particle orbital, and these orbitals do not couple to the impurity, so that

〈σ−[ψ̃†
↑(x) − ψ̃

†
↑(−x)][ψ̃↓(x) − ψ̃↓(−x)]〉K = 〈σ−〉K〈[ψ̃†

↑(x) − ψ̃
†
↑(−x)][ψ̃↓(x) − ψ̃↓(−x)]〉K. (B5)

Since the antiferromagnetic Kondo ground state is a singlet, 〈σ−〉K = 0. Substituting from (B1) into the first line of (B4), we
obtain

X⊥(x) = 2Re〈σ−[ψ†
↑(x)ψ↓(x) + ψ

†
↑(−x)ψ↓(−x) + e−2ikF xψ

†
↑(x)ψ↓(−x) + e2ikF xψ

†
↑(−x)ψ↓(x)]〉K. (B6)

Performing a similar calculation for X‖(x), we find

X‖(x) = 1

2

∑
σ

sgn(σ )〈σz[ψ
†
σ (x)ψσ (x) + ψ†

σ (−x)ψσ (−x) + e−2ikF xψ†
σ (x)ψσ (−x) + e2ikF xψ†

σ (−x)ψσ (x)]〉K, (B7)

where sgn(↑) = + and sgn(↓) = −. We finally manipulate the above expressions as follows. (1) The fermion operators are
bosonized. (2) We apply the unitary transformation that maps the Kondo Hamiltonian onto the spin-boson model. In the
resulting expressions, the expectation values are with respect to the ground state of the spin-boson model, indicated without a
subscript. (3) We normal order the bosonic operators. In the resulting expressions, the operators a

†
q and aq , are replaced by zeros,

since aq annihilates the ground state. Finally, we take the large system limit, which allows us to make replacements such as
1 − e−(a+ix)2π/L → 2π (a + ix)/L. The resulting expressions are those presented in the main text (10).
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FIG. 24. Integration contour used in Appendix C.

APPENDIX C: CONTOUR INTEGRAL
FOR CLOUD CALCULATION

The integrals involved in calculating the cloud are of the
form: ∫ ∞

0
dqe−(a±ix)qr(q), (C1)

where the function r(q) goes to zero as least as fast as
1/q for large q. Furthermore, the only nonanalyticities that
r(q) possesses in the complex q plane are (first-order) poles
at ωn, n = 1, . . . ,M . These integrals can be performed by
extending the method employed in Sec. VI, where the energy
was calculated.

Define z = a ± ix and θ = −arg(z). Integrating around the
shaded area A, whose azimuthal boundary is understood to lie
at |q| → ∞ in Fig. 24, we obtain∫ ∞

0
dq e−zqr(q) = eiθ

∫ ∞

0
dp e−|z|pr(peiθ )

+ 2πi
∑
ωn∈A

Res[e−zqr(q),ωn]. (C2)

The integral on the right-hand side on the first line is of
precisely the same form as those considered in Sec. VI. We
also note that the summation on the second line vanishes if
there are no poles ωn with positive real parts. Using the results
of Sec. VI, we obtain∫ ∞

0
dq e−zqr(q) =

N∑
m=1

Res[e−zqE1(−zq)r(q),ωn]

+ 2πi
∑
ωn∈A

Res[e−zqr(q),ωn]. (C3)

APPENDIX D: EXACT RESULTS
AT THE TOULOUSE POINT

In this Appendix, we review the mapping between the
Kondo model at the Toulouse point α = 1/2 (i.e., J‖ =
2π (1 − 1/

√
2)), and the noninteracting fermionic resonant

level model, following Ref. [43]. We also derive an exact
expression for the longitudinal 0kF component of the screening

cloud. The derivation takes the same route as that set out in
Refs. [44–46].

The starting point is the bosonic representation (A5) of the
Kondo hamiltonian. The fermionic noninteracting resonant
level Hrlm is obtained, by applying the unitary transform
Hrlm = U ′H (U ′)†, where

U ′ = exp

{
iσz

[
π

2
N− −

(
1 − 1√

2

)
φ√
2

]}
. (D1)

The bosonic field φ is defined in Eq. (A6), and the operator

N− = (N↑ − N↓)/2, (D2)

is the z-component of the total spin of the electron gas. New
degrees of freedom

ψ̄(x)† = exp

[
−2πi

L

(
N− − 1

2

)
x − iφ(x)

]
F

†
↑F↓√
2πa

= 1√
L

∑
k

e−ikxe−a|k|/2c̄
†
k

d† = exp

[
iπ

(
N−

1

2

)]
σ+ (D3)

emerge that obey the usual fermionic commutation relations.
Here

φ(x) = φ↑(x) − φ↓(x)√
2

, (D4)

with φ↑(↓)(x) defined in Eq. (A2), and F
†
↑(↓) denote Klein

factors. In terms of these new fermions, Hrlm reads

Hrlm =
∑

q

qc̄†q c̄q + J⊥√
2πa

[ψ̄(x)†d + d†ψ̄(x)]. (D5)

At the Toulouse point, the unitary transformation U ′ maps
the ground state of the Kondo Hamiltonian onto the ground
state of Hrlm. Since Hrlm is a quadratic Hamiltonian, ground-
state correlation functions can be calculated straightforwardly
for transformed observables, provided they are expressed
simply in terms of the new fermionic degrees of freedom. Here
we focus on the longitudinal 0kF component X

‖
0 for which this

is easily accomplished.
Applying the unitary mapping to the z components of the

impurity spin and the electron spin density operators, one finds

X
‖
0(x) =

√
2

〈(
d†d − 1

2

)
[ψ̄(x)†ψ̄(x) + ψ̄(−x)†ψ̄(−x)]

〉

− (2 −
√

2)
a

x2 + a2
, (D6)

where the expectation value on the right hand side of the first
line is with respect to the ground state of Hrlm. This expression
is further simplified using Wick’s theorem and noting that the
occupation probability for the resonant level is one half, i.e.,
〈d†d〉 = 1/2. In terms of the original degrees of freedom, this
corresponds to 〈σz〉 = 0 which is guaranteed by the singlet
nature of the Kondo ground state. Working directly with
Hrlm, this follows from particle-hole symmetry. (Note that the
energy of the resonant level co-incides with the Fermi energy.)
To be more precise, Hrlm is invariant under the combined
action of particle-hole and spatial inversion. Owing to the
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same symmetry, 〈d†ψ̄(x)〉 = 〈d†ψ̄(−x)〉∗. Putting everything
together, one obtains

X
‖
0(x) = −2

√
2|〈d†ψ̄(x)〉|2 − (2 −

√
2)

a

x2 + a2
. (D7)

The expectation value 〈d†ψ̄(x)〉 can be calculated from the
known single-particle Green’s functions of the resonant level
model. In the thermodynamic limit (L → ∞), the exact result
is

〈d†ψ̄(x)〉

= J⊥√
2πa

∫ 0

−∞

dω

2π
eiωx

[
θR(x)

ω − �(ω)
− θR(−x)

ω − �(ω)∗

]
,

(D8)

where θR(x) is a regularized step function

θR(x) = i

∫ ∞

−∞

dk

2π

ei(k−ω)x−a|k|

ω+ − k

= eωa

[
θ (x) + i�(0,ω(ix + a))

2π

]

− e−ωa i�(0,ω(ix − a))

2π
, (D9)

with ω+ = ω + i0+, and �(ω) is the retarded resonant level
self-energy

�(ω) = J 2
⊥

4π2a

∫ ∞

−∞
dk

e−a|k|

ω+ − k
,

= J 2
⊥

4π2a
[eaω�(0,aω+) − e−aω�(0,−aω+)]. (D10)

In general, the integral (D8) has to be evaluated numerically.
However, for |x| � a, the following approximations are valid,
which yields an analytical result. As a function of (negative)
ω, the regularized step function θR(x) is suppressed as eωa for

x > 0. As a result, the integrand of (D8) is strongly suppressed
for −ω � 1/a. As a function of x, the regularized step function
is smoothed at a scale |x| � a. For −ω < 1/a and |x| � a, the
regularized step function can be replaced with the sharp step
function θ (x). For x � a, the rapidly oscillating factor eiωx

then cuts off the integral at ω ∼ 1/x � 1/x, so that the self-
energy �(ω), that varies on the scale of 1/a, can be evaluated
at ω = 0:

�(0) = − iJ 2
⊥

4πa
. (D11)

For |x| � a, one then finds

〈d†ψ̄(x)〉 = J⊥√
2πa

∫ 0

−∞

dω

2π

eiω|x|

ω + i
J 2

⊥
4πa

= − J⊥√
2πa

F
(− J 2

⊥|x|
4πa

)
2π

, (D12)

where F (z) is defined in Eq. (38). We substitute this into (D7)
and also drop the second term in that equation, which is valid
for |x| � a, to obtain

X
‖
0(x) = −

√
2

π2

J 2
⊥

4πa
F

(
−J 2

⊥|x|
4πa

)2

. (D13)

The Kondo length ξ‖ is defined as in Eq. (56) in the main text,
i.e., ξ‖ = limx→∞ x2X

‖
0(x). This yields

ξ‖ =
√

2

π2

4πa

J 2
⊥

, (D14)

and a universal scaling function [cf. Eq. (74)]

X̃
‖
0(α = 1/2,x̃) = − 2

π4
F

(
−

√
2x̃

π2

)2

. (D15)
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