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In phonon mediated conventional s-wave superconductors, higher-frequency phonon (or smaller atomic
mass) leads to a higher superconducting transition temperature, known as the isotope effect. However, in
correlated systems, various competing electronic order (such as spin-density-wave, charge-density-wave, and
unconventional superconductivity) arises and the effect of electron-phonon coupling on these orders is a
long-standing problem. Using the functional renormalization group, here we investigated the interplay between
the electron correlation and electron-phonon coupling in the Hubbard-Holstein model on a square lattice. At
half-filling, we found spin-density-wave and charge-density-wave phases and the transition between them, while
no superconducting phase arises. Upon finite doping, d-wave/s-wave superconductivity emerges in proximity to
the spin-density-wave/charge-density-wave phase. Surprisingly, lower-frequency Holstein phonons are either less
destructive or even beneficial to the various phases, resulting in a negative isotope effect. For the superconducting
phases, such an effect is apparently beyond the Bardeen-Cooper-Schrieffer theory.
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I. INTRODUCTION

According to the standard Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity [1], the only possible
instability of a metallic normal state, described by the Landau-
Fermi liquid, is the Cooper pairing toward superconductivity
(SC) upon an attractive interaction [2]. The electron-phonon
coupling (EPC) can mediate a retarded attractive interac-
tion between electrons. This has to withstand the repulsive
Coulomb interaction. Fortunately in conventional metals, the
long-range Coulomb interaction is well screened and can be
effectively replaced by a pseudopotential for quasiparticles
below the energy scale of the Debye frequency ωD [3,4]. The
transition temperature Tc increases (linearly at weak coupling)
with ωD , known as the isotope effect. This has been a guiding
principle in the search of superconductors with higher Tc,
provided that EPC is the pairing glue. However, the simple
BCS scenario could break down in many ways. When the
Fermi surface touches van Hove singularities, or is nested,
density waves in the spin or charge channel would be favorable.
A well-known example is the Peierls instability toward the
charge-density-wave (CDW) phase in one-dimensional (1D)
electron systems with EPC alone [5]. In correlated electrons
systems, the local interactions are poorly screened, leaving the
various orders, such as the spin-density-wave (SDW), CDW,
and unconventional SC, close competitors to each other, when
the Fermi surface is featured with van Hove singularities and/or
nesting. In the Mott limit, the strong local interaction leads
to the formation of local spin moments in the first place. The
effect of EPC in such cases is an intriguing issue. For example,
a long-standing question is whether EPC plays a significant
role for d-wave pairing in copper-based [6–8] and s±-wave
pairing in iron-based high-temperature superconductors [9].
As a first step toward the issue, one considers theoretically a
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simplest model with local Holstein phonons and local Hubbard
interactions, the so-called Hubbard-Holstein model (HHM).
Much effort has been devoted to understand the various orders
and the metal-insulator transition in the HHM in 1D [10]
and infinite dimensions [11,12]. In view of unconventional
SC other than s-wave SC (s-SC), such as d-wave SC (d-
SC) in layered materials, here we consider a HHM on a
two-dimensional (2D) square lattice. We handle the interplay
between electron correlation and EPC by the singular-mode
functional renormalization group (SM-FRG) [13,14]. We limit
ourselves to weak and moderate correlations [15,16] for
which FRG has proved to be successful (see Refs. [17,18]
and references therein). Our main findings are as follows.
At half-filling, SDW and CDW compete, but no SC phase
arises. Upon finite doping, d-SC/s-SC emerges in proximity
to SDW/CDW phases. More interestingly, lower-frequency
Holstein phonons are either less destructive, or even beneficial,
to the various phases. Specifically, lower-frequency Holstein
phonon enhances SDW/d-SC and s-SC in proximity to CDW,
with an unusual negative isotope effect.

II. MODEL AND METHOD

The 2D HHM is described by the Hamiltonian,

H = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) − μ
∑
iσ

niσ + ωD

∑
i

b
†
i bi

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
+ η

∑
iσ

niσ (b†i + bi),

(1)

where t is the nearest-neighbor hopping, μ the chemical
potential, U the local Hubbard interaction, ωD the Holstein
phonon frequency, and η = g/

√
2MωD . Here g is the EPC

matrix element and M is the mass of the vibrating ion.
Henceforth we set t = 1 as the unit of energy. The EPC leads to
a retarded attraction �ν = −λWω2

D/(ω2
D + ν2), where ν is the
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FIG. 1. (Color online) One-loop contributions to d�1234
	 /d	.

The grayed bar and thin (thick) wavy line denote �	 and �	 (�0),
respectively. Spin is conserved during fermion propagation and is left
implicit. The slash denotes the single-scale propagator and can be put
on either one of the fermion lines within the loop. The directed-circle
indicates circulation of frequency at the scale of 	.

Matsubara frequency, W = 8 the electron bandwidth, and λ =
g2/(Mω2

DW ) an average EPC constant which depends on the
spring constant K = Mω2

D rather than on ωD independently.
We notice that �0 = −λW is the characteristic energy scale
of the phonon-mediated attraction.

We treat the correlation effect and EPC by the SM-FRG
[13,14]. Here we outline the necessary ingredients and nota-
tions, leaving technical details in Appendix A. In a nutshell, the
idea is to get momentum-resolved pseudopotential �	,1234, as
in (1/2)c†1σ c

†
2σ ′�	,1234c3σ ′c4σ , to act on low-energy fermionic

degrees of freedom up to a cutoff energy scale 	 (for Mat-
subara frequency in our case). Henceforth the numerical index
labels momentum/position (but will be suppressed wherever
applicable for brevity). Momentum conservation/translation
symmetry is also left implicit. The FRG flow d�	/d	 is
contributed by the Feynman diagrams shown in Fig. 1. The
initial condition �	→∞ is specified by the bare interaction
U . Since d�	/d	 depends on �	 itself and �ν=0,	, as
seen in Fig. 1, the integration towards lower 	 generates
all one-particle-irreducible corrections to arbitrary orders in
terms of the bare interactions U and �ν . As 	 is lowered,
�	 can evolve to be nonlocal and even diverging. To see the
instability (diverging) channel, we extract concurrently the
effective interactions in the general CDW/SDW/SC channels,[

V CDW
	

]
(14)(32) = 2[�	 + �0]1234 − [�	 + �	]1243,[

V SDW
	

]
(13)(42) = −[�	 + �	]1234, (2)[

V SC
	

]
(12)(43) = [�	 + �	]1234.

Notice that �ν=0,	 is local/flat in real/momentum space
for Holstein phonons. The left-hand sides are understood

as matrices with composite indices, describing scattering of
fermon bilinears. Since they all originate from �	 and �ν ,
V

CDW/SDW/SC
	 have overlaps but are naturally treated on equal

footing. The divergence of the leading attractive (i.e., negative)
eigenvalue of V

CDW/SDW/SC
	 decides the instability channel, the

associated eigenfunction and collective momentum describe
the order parameter, and the divergence energy scale 	c is
representative of the transition temperature Tc.

III. RESULTS

Before embarking on full-wedge FRG results, we digress
to gain qualitative insights first from a local approximation:
We keep the local part of �	 only so that the FRG reduces to
a simple RG. We focus on half-filling, where the particle-
hole symmetry enables us to solve �	 analytically (see
Appendix A 3),

�	 + �0 ∼ (U + �0) exp

[
αλW

ωD

(
1 − 2

π
tan−1 	

ωD

)]
, (3)

where α is a constant of order unity. The effective interactions
in the local approximation are (V SC

	 ,V SDW
	 ,V CDW

	 ) = (�	 +
�	, −�	 − �	,�	 + 2�0 − �	). They are bounded, but
their behaviors still provide interesting implications: (1) We
observe that V SC

	 > V CDW
	 for any λ > 0, so SC is absent at

half-filling. In fact, even if λ = 0 the SC and CDW channels
are exactly degenerate, satisfying the SO(4) = SU(2) ⊗
SU(2) symmetry [19] where the excess pseudo-SU(2) arises
from the particle-hole symmetry at half-filling. (2) If U +
�0 = U − λW = 0, there is a fixed line �	 = U , on which
V SDW

	 = V CDW
	 < 0. This implies a phase boundary between

CDW and SDW. (The local interactions are dispersionless,
but the nesting vector (π,π ) decides the CDW/SDW wave
vector.) (3) If U − λW > 0 (or <0), �	 is driven more (or
less) repulsive so that SDW (or CDW) can be enhanced
by EPC. (4) A lower ωD leads to stronger enhancement of
|�	 + �0|, implying that softer phonons are beneficial for
CDW and SDW in the respective phase regimes, resulting in a
negative isotope effect for both orders. This effect can also be
understood qualitatively from the quasiparticle point of view.
Under the Lang-Firsov transform [20], H → UHU† where
U = exp[(η/ωD)

∑
i ni(bi − b

†
i )], the electron operator ci →

cie
−(η/ωD )(bi−b

†
i ), which is a polaron operator. By averaging

over the phonon ensemble, one obtains a coherent bandwidth
narrowed by a factor of

z = exp

[
− λW

2ωD

1 + eβωD

eβωD − 1

]
, (4)

where β=1/T is the inverse temperature. To sustain the
quasiparticle coherence one requires T � ωD so that phonon
excitations are rare. On the other hand, U → U − λW after
the Lang-Firsov transform. The interaction to bandwidth
ratio becomes r = (U/W − λ)/z. This ratio is amplified by
1/z as long as |U − λW | = 0, implying a phase boundary
U − λW = 0 between CDW and SDW. More interestingly, the
amplifying factor 1/z is in nice agreement with the exponential
factor in Eq. (3) in the limit of 	 � ωD , a condition consistent
with T � ωD mentioned above. The negative isotope effect
uncovered above are therefore exactly a manifestation of the
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FIG. 2. (Color online) Phase diagrams for (a) 〈n〉 = 1 and
(b) 〈n〉 = 0.85. The color encodes the transition temperature Tc. The
dashed lines enclose the regime in which Tc < 10−4. Here ωD = 0.5.

fact that the polaronic effect is stronger for softer phonons. We
should caution that the Lang-Firsov approximation applies best
in the antiadiabatic limit ωD � W , but our RG result holds for
general ωD .

We now turn to the full-wedge FRG results by retaining the
nonlocal part of �	, and the emerging order is determined by
the leading divergence in the various channels. Figure 2 is the
phase diagram for ωD = 0.5 for two filling levels. The color
encodes Tc versus U and λ. The dashed lines enclose a regime
in which Tc < 10−4 beyond our interest. At half-filling 〈n〉 = 1
in Fig. 2(a), there is a phase boundary U = λW separating the
CDW and SDW phases. In the CDW phase, Tc is enhanced with
increasing λ. In the SDW regime, Tc exhibits a dome-shaped
behavior along the λ axis, implying that a weak λ also enhances
SDW. These behaviors are exactly what we discussed and
understood in the above simple RG analysis. Moreover, the full
FRG is able to capture general pairing channels. For example,
in the SDW phase, VSC has a negative eigenvalue in the d-wave
pairing channel, but it is always less diverging than that of
VSDW. This excludes d-SC at half-filling. The phase diagram
is in good agreement with the quantum Monte Carlo (QMC)
result [21] on finite-size lattices, demonstrating the reliability
of our FRG.

Away from half-filling, our result for 〈n〉 = 0.85 is shown
in Fig. 2(b). Since the perfect nesting is no longer at the Fermi
level, the CDW (SDW) order with wave vector is stabilized
beyond a finite threshold λ > λc (U > Uc). Their wave vector
is still found to be (π,π ) because the SDW/CDW interactions
are established by virtual particle-hole excitations at energy
scales higher than the small shift of Fermi level. Below the
phase boundary of CDW, we find s-SC is established. On the
other hand, near the SDW phase boundary, d-SC emerges.
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FIG. 3. (Color online) Tc versus λ and ωD with U = 0 in (a)
and (b), and U = 3 in (c) and (d). The phases are denoted by both
text and color. The solid lines are equally spaced by λ = 0.025 in
(a) and (b), and ωD = 0.2 in (c) and (d).

The proximity between these phases is easily understood in
view of the overlap between the SDW and SC channels,
and is also known as a manifestation of pairing induced by
SDW fluctuations [22,23]. What’s more interesting here is
the phase boundaries of both SDW and d-SC phases are
curvy in the parameter space, implying that weak (strong)
EPC enhances (suppresses) both SDW and d-SC. Given the
behavior of SDW versus EPC we discussed above, however,
the anomalous enhancement becomes natural in view of
the overlap between SDW and d-SC channels. We notice
that in an earlier FRG work [24], the EPC (with Holstein
phonons) appears to suppress d-SC. We ascribe the difference
to the dilute frequencies (with minimal frequency spacing
much larger than Debye frequency) used for �ν in their
case.

We now check more systematics for the effects of EPC
on Tc of the various phases. For a pure EPC system with
U = 0, the transition temperature Tc is shown in Figs. 3(a)
and 3(b). At half-filling in (a), only CDW phase is present, and
Tc clearly drops with increasing ωD , for any λ. Such a negative
isotope effect is discussed above, and is in agreement with the
result judged from correlation functions measured by QMC on
small clusters [25]. For 〈n〉 = 0.85 in (b), the CDW phase is
realized for large λ, and Tc follows the trend in (a) closely. For
weaker λ, the system yields to the s-SC phase. In proximity
to the CDW phase, we observe that Tc for s-SC drops for
larger ωD . This is understood as caused by the weakening of
CDW fluctuations, so that Tc for s-SC eventually inherits a
negative isotope effect. For even weaker λ, however, Tc for
s-SC increases with small ωD , in a BCS fashion. In fact, the
FRG reproduces the exact BCS behavior Tc ∝ ωD for λ → 0
and ωD � W , if the CDW and SDW channels are too weak to
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FIG. 4. (Color online) Doping dependence of Tc for ωD = 0.5
and U = 0 (a) and U = 3 (b). The phases are denoted by both text
and color. The dashed line in (a) is a fit to the BCS theory (see the
text for more details).

affect the pairing channel. We have numerically checked this
point, and an analytic derivation can be found in Appendix A 2.
Therefore, the negative isotope effect for s-SC occurs only in
proximity to the CDW phase.

For a correlated system with U = 3, the transition tem-
perature Tc is shown in Figs. 3(c) and 3(d). At half-filling in
(c), a large λ drives SDW into CDW, with a phase transition
at λc = U/W independent of ωD . The transition temperature
is always lower for larger ωD , again a manifestation of the
negative isotope effect. Moreover, we observe in (c) a slight
enhancement of SDW by a weak λ at small ωD . This effect
is qualitatively explained by Eq. (3), and has been discussed
previously. To our delight, the slight enhancement is consistent
with the DCA result for U = W = 8 in Ref. [26]. For the doped
case, as 〈n〉 = 0.85 in Fig. 3(d), the SDW phase yields to the
d-SC phase, and the CDW phase remains for large λ. Here Tc

is laterally higher for lower ωD for both CDW and d-SC in the
respective regimes. A similar case was observed but only for
the d-SC phase in Ref. [27]. Moreover, in the d-SC regime,
even though Tc decreases with λ for ωD > 1, it is lifted by a
lower ωD for a given λ. Thus lower-frequency phonons are at
least less destructive to the d-SC. On the other hand, there is
a marked enhancement of Tc by a weak λ, up to λ = 0.2 for
ωD = 0.2, which we ascribe to the anomalous enhancement of
SDW fluctuations as revealed in Fig. 3(c). The reason that the
negative isotope effect is observed in the entire d-SC regime
is because d-SC occurs only in proximity to the SDW phase.

Finally, we consider the systematics in doping. We set
ωD = 0.5 for illustration. For U = 0, Fig. 4(a) shows the CDW
phase is present at low doping, and s-SC at higher doping. For
stronger λ, a larger doping is needed to enter the s-SC phase.
In both phases, Tc decreases with doping, since the density of
states ρ at the Fermi level drops. We compare our result to the
BCS formula (dashed line), T BCS

c = 1.13ωD exp(−1/ρVBCS)
[1]. We choose the value of VBCS so that T BCS

c matches our FRG
result for λ = 0.25 and a deep doping level 1 − 〈n〉 = 0.9. We
find Tc > T BCS

c approaching half-filling. The enhancement
follows from the effect of increasing CDW fluctuations,
also favorable for s-wave pairing but missing in the simple
BCS theory. For a nonzero U = 3 in Fig. 4(b), the CDW
and s-SC phases are realized if λ is sufficiently large (e.g.,
λ = 0.5). For a weaker λ = 0.25, d-SC sets in since the SDW

fluctuations become stronger. Closer to half-filling, the SDW
phase eventually sets in. For both phases, Tc is higher for
λ = 0.25 than that for λ = 0, reconfirming the previous result
that a weak EPC enhances SDW/d-SC if ωD is small.

IV. SUMMARY AND DISCUSSION

In summary, we investigated the effects of EPC in a 2D
HHM systematically by SM-FRG. We found lower-frequency
Holstein phonons are beneficial to all of CDW, SDW, and
s-SC/d-SC in proximity to CDW/SDW phases, resulting in
a negative isotope effect. The qualitative mechanism is as
follows. For CDW, low-frequency phonons can be easily
softened and adapt to the CDW order. Near the phase boundary
of CDW, the enhanced CDW fluctuations are beneficial to
s-SC. For SDW and d-SC, the enhancement can be effectively
ascribed to polaronic band narrowing, which in turn blows
up the correlation effect, favoring SDW and the d-SC in its
proximity.

Before closing, a few remarks are in order. First, in a strict
2D system, academically there is no finite temperature SDW
phase by the Mermin-Wagnar theorem [28], and there is only
algebraic SC order below the Kosterlitz-Thouless temperature
[29]. In this regard, Tc in our case should be understood as
a crossover temperature in 2D, or the transition temperature
in quasi-2D systems. Second, we stress again that FRG is
perturbative in nature, and it works best in the itinerant picture
up to moderate U/W ∼ 1 and λ ∼ 1, as discussed in this paper.
While in the strong correlation limit, EPC might also enhance
the Tc of SDW [26] as a result of self-localization of polarons
in the presence of a sufficiently strong EPC [26,30–35]. On
the other hand, we notice that whether EPC would enhance
d-SC in the strong correlation limit is under debate [36,37].
Furthermore, the negative isotope effect of the d-SC observed
here (also confirmed by an early study [27]) may become
positive in the strong correlation limit [38]. Finally, there
is even a proposal that EPC-driven bipolarons are necessary
ingredients for high-Tc SC in cuprates [8].
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APPENDIX A: TECHNICAL DETAILS OF SM-FRG

Consider the interaction Hamiltonian HI =
(1/2)c†1σ c

†
2σ ′�1234c3σ ′c4σ . Here the numerical index labels

momentum/position, and we leave implicit the momentum
conservation/translation symmetry. The spin SU(2) symmetry
is guaranteed in the above convention for HI . The idea of
FRG is to get the one-particle-irreducible interaction vertex
� for fermions whose energy/frequency is above a scale 	.
(Thus � is 	 dependent.) Equivalently, such an effective
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FIG. 5. (Color online) One-loop contributions to ∂�1234/∂	. The
grayed bar and thin (thick) wavy line denote �	 and �	 (�0), re-
spectively. They are added up wherever overlayed. Spin is conserved
during fermion propagation and is left implicit. The slash denotes the
single-scale propagator and can be put on either one of the fermion
lines within the loop. The directed-circle indicates circulation of
frequency along the loop, and 	 the running scale. Each diagram
can be viewed as a convolution of aliases of � (together with �ν) via
�1234 = P(12)(43) = C(13)(42) = D(14)(32).

interaction is what’s called pseudopotential for fermions
whose energy/frequency is below 	. Starting from the local
U at 	 = ∞, the contributions to ∂�/∂	 are illustrated in
Fig. 5. In principle there will also be self-energy correction to
fermions, which we ignore as usual, given the fact that we are
just looking for the instability of the normal state. To proceed,
it is useful to define matrix aliases of the rank-4 “tensor” �

via

�1234 = P(12)(43) = C(13)(42) = D(14)(32). (A1)

Then ∂�/∂	 can be compactly written as

∂�1234

∂	
= [Dχph(D − C) + (D − C)χphD](14)(32)

+ [PχppP](12)(43) − [CχphC](13)(42), (A2)

where matrix convolutions are understood within the square
brackets, and

P = P + �	, C = C + �	, D = D + �0,

χ
pp

(ab)(cd) = 1

2π
[Gac(	)Gbd (−	) + (	 → −	)], (A3)

χ
ph

(ab)(cd) = − 1

2π
[Gac(	)Gdb(	) + (	 → −	)],

where �	 = −λWω2
D/(ω2

D + 	2) and �0 = −λW as defined
in the main text. Both �	 and �0 enter as a matrix (local in
real space and flat in momentum space), G is the normal state
Green’s function, and we used a hard cutoff in the continuous

Matsubara frequency [39]. Notice that �0 enters D because
the EPC-induced interaction is direct in the charge channel.
This is also evident from Fig. 5. Since the external lines are
set at zero frequency (the frequency dependence is irrelevant
for four-point interactions in the RG sense), the frequency on
the phonon lines (thickened wavy lines) overlayed by D is
automatically zero in Figs. 5(c)–5(e).

The integration of ∂�/∂	 toward decreasing 	 generates
all one-particle-irreducible corrections to � from U and �ν

to arbitrary orders. From � (or its aliases P , C, and D), �	

and �0, we extract concurrently the effective interactions in
the general SC/SDW/CDW channels,

(V SC,V SDW,V CDW) = (P, −C,2D − C). (A4)

They are matrices describing scattering of fermion bilinears
in the respective channels, equivalent to Eq. (2) in the main
text. Since they all originate from �, �	, and �0, they are
overlapped but are naturally treated on equal footing. The
effective interactions can be decomposed into eigenmodes. For
example, in the SC channel (with a zero collective momentum),

[V SC](k,−k)(k′,−k′) =
∑
m

fm(k)Smf ∗
m(k′), (A5)

where Sm is the eigenvalue, and fm(k) is the eigenfunction.
We look for the most negative eigenvalue, say S = min[Sm],
with an associated eigenfunction f (k). If S diverges at a scale
	c, it signals the instability of the normal state toward an
SC state, with a pairing function described by f (k). Similar
analysis can be performed in the CDW/SDW channels, with
the only exception that in general the collective momentum
q in such channels is nonzero. Since q is a good quantum
number in the respective channels, one performs the mode
decomposition at each q. There are multiple modes at each q,
but we are interested in the globally leading mode among all q.
In this way one determines both the ordering vector Q and the
structure of the order parameter by the leading eigenfunction.
Finally, the instability channel is determined by comparing the
leading eigenvalues in the CDW/SDW/SC channels.

In principle, the above procedure is able to capture the
most general candidate order parameters. In practice, however,
it is impossible to keep all elements of the “tensor” � for
computation. Fortunately, the order parameters are always
local or short-ranged. This is notwithstanding the possible
long-range correlations between the order parameters. For
example, the s-wave pairing in the BCS theory is local, since
the gap function is a constant in momentum space. The order
parameter in usual Landau theories is assumed to be local.
The d-wave pairing is nonlocal but short-ranged. The usual
CDW/SDW orders are ordering of site-local charges/spins.
The valence-bond order is on-bond but short-ranged. In fact, if
the order parameter is very nonlocal, it is not likely to be stable.
The idea is, if it is not an instability at the tree level, it has to
be induced by the overlapping channel. But if the induced
order parameter is very nonlocal, it must be true that the donor
channel has already developed long-range fluctuations and is
ready to order first. These considerations suggest that most
elements of the “tensor” � are irrelevant in the RG sense and
can be truncated. Equation (A2) suggests how this can be
done. For fermions, all four-point interactions are marginal
in the RG sense, and the only way a marginal operator
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FIG. 6. (Color online) Dependence of our SM-FRG results on the
truncation range Lc in both undoped and doped cases. In calculations,
U = 3 is used.

could become relevant is through coherent and repeated
scattering in a particular channel. Therefore, it is sufficient
to truncate internal spatial range within the fermion bilinear,
e.g., between 1 and 2, between 3 and 4, inP(12)(43). The setback
distance between the two groups is, however, unlimited (thus
thermodynamical limit is not spoiled). Similar considerations
apply to C and D. Eventually the same type of truncations can
be applied in the effective interactions V CDW/SDW/SC. Such
truncations keep the potentially singular contributions in all
channels and their overlaps, underlying the key idea of the
SM-FRG [13,14,40]. The merit of SM-FRG is as follows:
(1) It guarantees Hermiticity of the truncated interactions;
(2) it is asymptotically exact if the truncation range is enlarged;
(3) it respects all underlying symmetries, and in particular it
respects momentum conservation exactly. (4) In systems with
multiorbitals or complex unitcell, it is important to keep the
momentum dependence of the Bloch states, both radial and
tangential to the Fermi surface. This is guaranteed in SM-FRG
since it works with Green’s functions in the orbital basis. We
take these as advantages of SM-FRG as compared to the patch
FRG applied in the literature [17,18,39].

1. Convergence of the truncation range

To check the validity of the real-space truncation for
fermion bilinears discussed above, we define Lc as the
maximal distance between the two fermions within a fermion
bilinear. We consider Lc from Lc = 0 (on site) up to Lc = 2

√
2

(fifth neighbor on the square lattice). The resulting diverging
scale for various Lc’s is shown in Fig. 6. At half-filling in (a), a
longer Lc > 0 hardly affects the divergence scale 	c obtained
for Lc = 0. This is because the order parameters of both SDW
and CDW are site local in the present model. For the doped
case 〈n〉 = 0.85 in (b), the results for Lc = √

2 and Lc = 2
√

2
are indistinguishable, signaling the convergence versus Lc.
Notice that Lc � 1 is needed for d-SC since symmetry requires
pairing on bond. In the main text, we used Lc = √

2, which
appears to be sufficient to take care of all orders in the present
model.

2. BCS limit

We notice that if only Fig. 5(a), the pairing channel, is kept,
the BCS theory is trivially reproduced. For this to be valid,
one requires 	c � ωD � W and the absence of any nesting,

so that the contributions from the other channels, Figs. 5(b)–
5(e), are negligible. To make analytical solution accessible, we
approximate �ν as a step function, �ν = −λWθ (ωD − |ν|).
Thus �	 = 0 for 	 > ωD , and the RG flow above ωD merely
generates a renormalized Coulomb interaction V ∗. The flow
for 	 < ωD is, with �	 = −λW in the above approximation,

∂(V SC − λW )/∂	 = (ρ/	)(V SC − λW )2, (A6)

where ρ is the normal state density of states, and we assumed
that V SC

(k,−k)(k′,−k′) is independent of k and k′, as assumed in
the BCS theory. (This means that we are treating on-site s-
wave pairing.) The solution is, given the boundary condition at
	 = ωD ,

V SC − λW = V ∗ − λW

1 + (λ − μ∗) ln(	/ωD)
, (A7)

where we used μ∗ = ρV ∗ and ρW ∼ 1. There is a divergence
V SC − λW → −∞ if and only if λ − μ∗ > 0 (i.e., EPC
mediated attraction overwhelms the repulsive V ∗), at the scale,

	c = ωDe−1/(λ−μ∗). (A8)

This is already in nice agreement with the Tc in the Eliashberg
theory, given the approximations in �ν . This example shows
that the idea of pseudopotential can be pushed down to any
energy scale (not just at ωD as in the BCS theory) until it
diverges, and the divergence scale is just a representative
of the transition temperature Tc. If sufficiently strong, the
CDW/SDW channels neglected in the BCS theory will clearly
invalidate the latter, as revealed in the main text.

3. Local limit

On the other hand, if only the local elements of � are kept,
we have � = P = C = D. Furthermore, in the presence of
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FIG. 7. (Color online) Effects of EPC on the flow of leading
eigenvalues S (plotted as 1/S for clarity) of V CDW/SDW/SC at λ = 1/8
for (a) 〈n〉 = 1 and U = 0, (b) 〈n〉 = 1 and U = 3, (c) 〈n〉 = 0.85
and U = 0, and (d) 〈n〉 = 0.85 and U = 3. The phonon frequency is
indicated in the legend for all panels. For clarity, a channel is dropped
if it’s |S| is too weak, and S is multiplied by a factor of 10 in the flow
of SC channel in (d).
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particle-hole symmetry (at half-filling in HHM), the second
line of Eq. (A2) cancels out (in the local limit), leaving

∂�

∂	
= − 2

π
(�0 − �	)

∂χ	

∂	
(� + �0), (A9)

where χ	 ∼ α/	 is a local susceptibility at the scale 	, with
a factor α of order unity. This can be solved analytically,

� + �0 ∼ (U + �0) exp

[
αλW

ωD

(
1− 2

π
tan−1 	

ωD

)]
, (A10)

where we used �0 = −λW . This is Eq. (3) in the main text.

APPENDIX B: REPRESENTATIVE FRG FLOWS

In the main text, we present the divergence scale Tc in the
various cases. Here we show how it is determined by presenting
and discussing some representative FRG flows of the leading
eigenvalues S of V CDW/SDW/SC in Fig. 7 for λ = 1/8. Since
we are looking for divergence, we drop out �0 and �	 in Eq.
(A4) to concentrate on the flow of the projections of � in the
various channels. At half-filling with U = 0/3 in Figs. 7(a)
and 7(b), the CDW and SDW channels, respectively, diverge
as 	 is lowered. We have checked that for a pure negative-U
Hubbard model, equivalent to ωD = ∞ and U = 0 in (a), the
s-SC and CDW channels are exactly degenerate, satisfying the

SO(4) = SU(2) ⊗ SU(2) symmetry [19], where the excess
pseudo-SU(2) arises from the particle-hole symmetry at
half-filling. However, a finite ωD breaks the pseudo-SU(2)
symmetry in favor of CDW [25], since �ν is a direct interaction
in the charge channel. For both CDW and SDW channels, 1/S

is higher for lower ωD , and so is Tc. This is just the negative
isotope effect.

For 〈n〉 = 0.85 in Figs. 7(c) and 7(d), the CDW and
SDW interaction flow, respectively, at high 	 is similar to
that in Figs. 7(a) and 7(b) for half-filling, since high-energy
quasiparticles are insensitive to the Fermi level. As 	 decreases
further, however, low-energy quasiparticles come into play,
but the lack of nesting limits the phase space for low-energy
particle-hole excitations, so that the SDW/CDW channel
eventually saturates. In contrary, there is no phase-space
restriction for Cooper pairing, and upon an attractive pairing
interaction, either already existing or induced via the overlap
to CDW/SDW channels, the SC channel is boosted via the
Cooper mechanism until it diverges. Not surprisingly, we find
s-SC/d-SC in relation to the subleading CDW/SDW channel.
More interestingly, the negative isotope effect for CDW and
SDW clearly also acts on the proximiting SC, as is clear in
Figs. 7(c) and 7(d), and this is understood as from the channel
overlap. The exception is the case of ωD = 0.1 in Fig. 7(c),
which has the lowest Tc. In fact this is a case in the BCS limit,
since λ � 1 and ωD � W .
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