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Ultrasonic attenuation via energy diffusion channel in disordered conductors
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We predict an existence of a dissipation channel leading to attenuation of ultrasound in disordered conductors
and superconductors with perfect electroneutrality. It is due to slow diffusion of thermal energy. We show that in
doped silicon ultrasound attenuation may be enhanced by a factor about 100. A similar effect is also studied for
s-wave and d-wave superconductors. The latter case is applied to BSCCO family where a strong enhancement
of the ultrasound attenuation is predicted. For usual s-wave superconductors, this dissipation channel might be
important for very low-electron-density materials near the BCS-BEC crossover.
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I. INTRODUCTION AND MODEL

Ultrasonic attenuation in metals has already been studied
for a long time [1–5] and may seem to be fully understood. The
ratio of ultrasound attenuation rate α(ω) to the sound frequency
ω in a clean metal is small due to the adiabatic parameter
mk3

F /ρm � 1, where m is the electron mass, kF is the Fermi
wave vector, and ρm is the density of the material. The simplest
model for electron-phonon interaction is the scalar vertex
Frohlich model with an extension due to Migdal [6,7]. This
model is applicable for clean metals. However, it is well known
that the Frohlich model is not adequate when the phonon
wavelength 2π/q exceeds the elastic electron mean free path
l. In this dirty limit, when ql � 1, the conventional theory of
electron-phonon interaction in a disordered conductor leads to
the Pippard ineffectiveness condition (PIC) that tells that the
ultrasonic attenuation at small wave vectors is suppressed by
a factor ql � 1 [5].

Ultrasound attenuation is intrinsically related to the
electron-phonon cooling power [8], which determines a
possible scale of thermal inequilibrium between electrons
and phonons. In particular, it was shown in Ref. [9] that the
strong nonlinearities of current-voltage I (V ) characteristics
observed in Ref. [10] are due to the overheating of electrons;
moreover, a detailed study of the shape of I (V ) curves for
different temperatures allows us to determine the rate of
electron-phonon inelastic processes. It was found then that in
a number of cases [10–12], the electron-phonon cooling rate is
considerably higher than one would expect from the classical
predictions based upon PIC considerations. Therefore it is
important to reconsider the issues of both electron-phonon
cooling rate and ultrasound attenuation in order to look for
some effects, which may have been overlooked previously.

The PIC phenomenon results from strong Coulomb in-
teraction that prohibits any charge imbalance in the system
(perfect screening condition). Still, some mechanisms were
found recently that increase the inelastic electron-phonon rate
even in the presence of perfect screening. The first of them is
present in a multiband electronic spectrum [8,13], the second
one is realized when impurities do not quite follow the motion
of the lattice [14]. Still another possibility is related with
deviations from the perfect screening condition that become
prominent in a strongly disordered conductor, where kF l is

not very large [8,15]. The situations discussed in Refs. [8,13]
for a multiband electron system or incomplete screening have
one important common feature: it is the presence of some
slowly diffusing mode of the electron liquid. For instance, it
might be spin polarization in the case of spin-split bands in
the presence of a strong magnetic field [8] or electron density,
which can fluctuate due to the relative weakness of Coulomb
repulsion [8,15].

In the present paper, we show that even in the simplest
case of one-band electron spectrum and a perfect screening,
the conventional PIC theory might still be insufficient. The
reason is that electron liquid possesses an additional intrinsic
diffusion mode that is present even under the condition of
strict electroneutrality and single band. It is an energy diffusion
mode that may play a role similar to the spin-polarization
mode studied in Ref. [8]. Coupling of phonons to this diffusion
mode results in an additional attenuation of longitudinal sound
waves.

The rest of the paper is organized as follows. The model
of electron-phonon interaction in the presence of disorder is
defined in Sec. II. Ultrasonic attenuation due to the energy
diffusion mode in normal conductors is studied in Sec. III.
These results are extended to the usual s-wave superconductors
in Sec. IV. Section V is devoted to the study of ultrasound
attenuation in d-wave superconductors. After a description of
the general approach in Sec. V A, in Sec. V B, we present new
results for the ultrasound attenuation due to local processes,
with a self-consistent treatment of disorder, which particularly
reveals the consequences of the quantum criticality present in
a d-wave state [16]; Sec. V C is devoted to the description
of the energy diffusion mode in the d-wave case; the results
for the ultrasound attenuation due to an energy diffusion
channel are presented in Sec. V D. Our conclusions are present
in Sec. VI. A number of technical details are contained in
Appendices A–C.

II. MODEL OF ELECTRON-PHONON INTERACTION
IN PRESENCE OF DISORDER

We consider a dirty conductor with an electron action

Sel,n =
∫

dt(d r)ψ∗
i [i∂t − (ξ ( p) + U (r))]ψi, (1)
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with U being a disorder potential and i =↑ , ↓ corresponding
to spin indices. The electron-phonon interaction is given by
[3–5,8]

Sel-ph,n =
∫

dt(d r)ψ∗
i [(pF vF /d)∂αuα(r) − ∂α(uα(r)U (r))]ψi,

(2)

where the first term describes interaction due to the modu-
lations of ionic density nion. Bare electron-ion interaction is
in fact of the form [nionV0(q)] div u, V0(q) = 4πe2/q2 being
the bare Coulomb interaction. Under the condition of full
electroneutrality, this bare potential can be reduced to the
form [nel · ν−1] ≡ [d ln nel/d ln ρ] = [pF vF /d]. This simple
expression is valid only for the case of a single branch of
electron spectrum [8]. In addition, one should keep in mind
that the dynamic nature of the screening becomes important
at frequencies [8] ω ∼ Dq2. The second term of Eq. (2)
corresponds to distortions of the disorder potential, the latter
being described by a correlator

〈U (r)U (r ′)〉 = uδ(r − r ′). (3)

It can be shown, using a comoving frame of reference
(Refs. [3–5,8], Appendix A), that the action in the form of
Eq. (2) is equivalent to [8]

SCFR
el-ph,n �

∫
dt(d r)ψ∗

i �αβ
n (∂βuα)ψi, (4)

with the vertex

�αβ
n = [pαvβ − (pF vF /d)δαβ], (5)

where pF , vF are the Fermi momentum and velocity, and d

is the dimensionality of the electron system. Throughout the
paper, the Keldysh version [17–19] of the diagram technique
will be used. For an introduction to the Keldysh technique, see
the review in Ref. [19].

III. ULTRASOUND ATTENUATION IN
NORMAL CONDUCTORS

Local processes. The attenuation rate α(ω) is related with
the imaginary part of the phonon self-energy,

α(ω) = 1

ρmω
Im A(ω,q)

∣∣∣∣
ω=sq

. (6)

The local contribution to the ultrasonic attenuation is due to
processes that involve the creation and annihilation of electron
and phonon states on a spatial scale comparable to the elastic
mean free path. Such a process is depicted by the diagram in
Fig. 1(a) and leads to a well known [1–5] result [it can be
obtained via the calculation of the diagram Fig. 1(a) with the
vertices defined in Eq. (5)]:

αn,l = 2cl

νp2
F

ρm

Dq2 ∝ ω2, (7)

where ν is the electron density of states per one spin, D is
the diffusion coefficient, and cl = 2(d − 1)/d(d + 2) is just a
numerical coefficient.

Energy diffusion processes. For local processes, informa-
tion about the direction of electron motion is retained between

FIG. 1. (Color online) Phonon self-energy for (a) local processes
and (b) diffusive channel, when phonon converts into diffusive
mode. Throughout this paper, we use the Keldysh diagrammatic
technique [17–19].

the acts of absorption and emission of phonons, thus the
averaging of the product of two vertices over the directions
of momentum in the diagram [Fig. 1(a)] leads to an important
result:

〈�n( p)�n( p)〉 p ∼ p2
F v2

F . (8)

However, when diffusion processes are allowed, the same
information is lost between absorption and emission of
phonons. On a formal level, it is seen from the diagram
[Figs. 1(b) and 2] where an impurity ladder is inserted into the
diagram disconnecting the electron-phonon vertices. Multiple
collisions with impurities hold electrons in the regions of
phonon absorption and emission leading to an independent
averaging of the interaction vertices � over the directions
of momenta. That results in much smaller values of the
effective vertex, which is now of the order of the temperature
T � pF vF ,

〈�n( p)〉 p ∼ ε ∼ T . (9)

This is the reason why diffusion modes are usually neglected
in the electron-phonon interaction in disordered conductors.

It is convenient to define an effective electron-diffusion
vertex that depends on the electron energy instead of a quickly
relaxing momentum. Diagrammatically [see Figs. 1(b) and 2],
there is always a block of two Green functions that stands
in between the phonon and diffusive mode and results in
averaging over the electron momentum. Therefore an effective
phonon-diffusion vertex 〈�〉n may be defined with the help of
the following integral representation:

〈�〉αβ
n (ε−,ε+) = 1

2πντ

∫
(d p)GR

−
[
�αβ

n ( p−, p+)
]
GA

+, (10)

where subscripts ± stand for (ε ± ω/2, p ± q/2), respectively.
In general, the effective vertex depends on both energies ε± =
ε ± ω/2 but in the limit ω � ε ∼ T the dependence on ω is

GR(ε+,p+) GA(ε−,p−)p

Γ

FIG. 2. (Color online) When coupled to a diffusive mode, the
electron vertex is always averaged over the momentum p that goes
in the block of two Green functions preceding the diffusion .
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negligible. A new vertex 〈�〉αβ
n (ε) is then given by

〈�〉αβ
n (ε) = �ε δαβ, (11)

where

� = ∂(pv/d)

∂ε
≡

(
1 − pF vF

d

∂ ln ν

∂ε

)
. (12)

Diffusive electron modes evolve on a much larger
timescales ∼(Dq2)−1 implying a more effective dissipation,
despite a weak phonon-diffuson conversion. While the square
of the vertex is smaller by the factor (T/εF )2, the dissipation
due to diffusion processes is enhanced by a factor (ql)−2 (at
the lowest frequencies the enhancement is saturated by a factor
v2

F /s2, s being a sound velocity).
To the best of our knowledge, such processes for a single-

band conductor under the condition of the perfect Coulomb
screening had always been neglected so far. The corresponding
diagram is shown in Fig. 1(b). Its evaluation leads to the
following result [see also Eq. (6)], valid at �ω � T :

αn,d (ω) =
∫ ∞

0

(
dε

∂f (ε,T )

∂ε

)
α

(ε)
n,d (ω), (13)

where α
(ε)
n,d (ω) is the partial contribution of electrons with

energies in the interval (ε,ε + dε),

α
(ε)
n,d (ω) = q2

ρm

(�ε)2(2ν ReD(ω,q)). (14)

Equation (14) contains a diffusion propagator D(ω,q) (the
corresponding diagrams are shown in Fig. 3) equal to

D(ω,q) = 1

−iω + Dq2
, (15)

where τ = l/vF is an electron elastic scattering time and the
diffusion coefficient D = τv2

F /d. [Note that τ = (2πνu)−1

with electron density of states ν and u defined in Eq. (3).] The
calculation of the integral in Eq. (13) leads to the following
result for the ultrasound attenuation rate at frequency ω and
temperature T :

αn,d (ω) = 2π2

3

νD

ρms4

�2 T 2ω2

1 + (Dω/s2)2
. (16)

It is useful to present it also in the form of the ratio of (16) to
the “local” result, Eq. (7):

αn,d

αn,l

= π2

3cl

(
�T

pF s

)2
ω2

c

ω2
c + ω2

; ωc = s2

D
. (17)

The two mechanisms of dissipation lead also to different
dependencies of the attenuation on the temperature and
frequency: the “local” attenuation rate is only weakly T -
dependent but grows as ω2; on the other hand, the attenuation
due to the “diffusive” mechanism is proportional to T 2.
The dissipation due to the diffusive mechanism is frequency
independent at high ω � ωc = s2/D and goes as ω2 at low
frequencies. Equations (16) and (17) can be used in order to
extract the value of the electron diffusion constant D from the
data on the ultrasound attenuation.

For thermal phonons with �ω ∼ T , the attenuation due to
the diffusive channel is always small, αn,d � αn,l . However,
for the ultrasonic attenuation at low frequencies, ω � T/�,

the situation can be quite different, especially in doped semi-
conductors at moderate temperatures. Consider, for example,
heavily doped Si with n = 1020 cm−3, m = 0.36m0, pF l =
10, and s ≈ 8 × 105 cm/s. At the temperature T = 0.1EF ≈
200 K, one finds

αn,d

αn,l

≈ 100, f = 2πω � 10 GHz, (18)

i.e., attenuation is enhanced by two orders of magnitude due
to the contribution of the diffusive channel. Qualitatively,
the same effect is expected to be at work at much larger
temperatures, T � EF , as well, thus being especially relevant
for semiconductors. However, such a regime requires a careful
analysis that takes into account all the subtleties of the
semiconductor physics, which goes well beyond the scope
of the present paper.

IV. s-WAVE SUPERCONDUCTORS

A. Formulation of the model

We consider a BCS superconductor (SC) with an s-wave
pairing and the microscopic interaction constant g,

Sel,sc-int =
∫

dt(d r)[gψ∗(r)ψ∗(r)ψ(r)ψ(r)]. (19)

In the case of a dirty superconductor, it is convenient to
define the Green function as

ǦR
αβ(ε, p) = −i〈�α�β〉

= [(ε + i0)τ̌3 − ξ τ̌0 − �(iτ̌2)]−1
αβ , (20)

where the 4-component spinor � is defined as follows:

�( p) = 1√
2

⎛⎜⎜⎜⎝
ψ p↑
ψ∗

− p↓
ψ p↓

−ψ∗
− p↑

⎞⎟⎟⎟⎠, � = �+τ̌3. (21)

The four-dimensional Nambu-Gor’kov space corresponds to
the product of spin and particle-hole spaces. However, for
our purposes, only the particle-hole subspace is relevant, as is
evident from Eq. (20), where only particle-hole Pauli matrices
τ̌ are present. We will thus ignore the spin structure, effectively
working with 2-component �,� spinors.

For a disordered s-wave superconductor, the self-consistent
Born approximation gives [20]

ǦR(ε, p) = [η(ε)(ετ̌3 − �(iτ̌2)) − ξ τ̌0]−1 (22)

with

η(ε) =
(

1 + i

2τE

)
, E =

√
ε2 − �2. (23)

B. Energy density mode

1. Diffuson

Diffusion modes are described by the impurity ladder
shown in Fig. 3. This ladder can be analyzed with the help
of a Bethe-Salpeter equation,

(D̂)−1(ε,ω,q) = 1̂ − �̂(ε,ω,q), (24)
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= +

FIG. 3. Diffusive modes correspond to impurity ladders. The
quantityD(. . . ) in the text is given by the sum of this ladder, excluding
one overall (2πντ )−1 factor coming from the first impurity line.

with the self-energy

�̂(ε,ω,q) = u

∫
(d p) ǦR(ε−, p) ⊗ ǦA(ε+, p). (25)

The Green function is a 2 × 2 matrix in the particle-hole space
[the two-dimensional spin space is irrelevant, see Eq. (21)].
Thus D̂ and �̂ are matrices in a four-dimensional space
constructed as a product of two two-dimensional particle-hole
subspaces. These 4 × 4 matrices D̂ and �̂ could be interpreted
as superoperators acting on 2 × 2 operators such as an effective
electron-phonon vertex �̌ [for an s-wave state �̌ is defined
further in this chapter, see Eq. (30)]. For example, if Ǎ, B̌, and
X̌ are 2 × 2 matrices, then Y̌ = ǍX̌B̌ is as well a matrix of
this type. This means that Ǎ ⊗ B̌ describes a mapping X̌ → Y̌

thus indeed being a superoperator.
At zero external frequency and momentum the self-energy

reads as follows:

�̂ = 1

2
τ̌0 ⊗ τ̌0 + (ετ̌3 − �(iτ̌2)) ⊗ (ετ̌3 − �(iτ̌2))

2(ε2 − �2)
. (26)

Analyzing this matrix structure, one finds two massless modes
corresponding to operators

τ̌0 and ετ̌3 − �(iτ̌2). (27)

The τ̌0 mode is symmetric in particle-hole space and corre-
sponds to the charge density, while the asymmetric mode ετ̌3 +
�(iτ̌2) corresponds to the energy density. The corresponding
term in the matrix propagator defined in Eq. (24) is given by

(D̂)(ε,ω,q) → 1

τ
D(ε)

s (ω,q), (28)

where

D(ε)
s (ω,q) = 1

[−i(E+ − E−) + Dq2]
(29)

and E± =
√

(ε ± ω/2)2 − �2. Charge density fluctuations are
prohibited by the strong Coulomb interaction, so we should
not consider them here.

Strictly speaking, there are two more diffusion modes of the
“Cooperon” type, which are related to the charge conversion
between the condensate and thermal excitations. Contrary to
Eq. (25), these modes are constructed with a combination of
Green functions of the type of GR(ε−, p−)GA(−ε+, − p+).
The corresponding propagator is proportional to (−i(E+ +
E−) + Dq2)−1. It is important that in the limit Dq2 � √

T �,
the contribution from these modes is much smaller than that
of the energy diffusion channel, so we neglect the Cooperon
channel in the following.

2. Effective vertex

When defining an equivalent phonon-diffuson vertex, we
now have to pay attention to the matrix structure in the

Nambu-Gor’kov space,

〈�̌〉s(ε) = u

∫
(d p)ǦR

−�n( p)ǦA
+, (30)

which modifies the vertex (11) into

〈�̌〉s(ε) = �(ετ̌3 − �(iτ̌2))δαβ. (31)

We see that there is indeed no coupling between ultrasound and
charge density modes. In the expression above, u = (2πντ )−1.

We have used here the vertex of the same matrix structure
as in the normal state, i.e. �nτ̌0. The reason is that in the
s-wave state there are no additional contributions to the vertex
(except the one discussed right below, �̌ vertex). In the leading
approximation, the electron-phonon vertex is given by the
stress tensor of the electron system pα∂βȞ (see Appendix A),
plus an electromagnetic contribution representing screening
that ensures electroneutrality. In the s-wave state, neither of
these contributions is modified with respect to the normal
state, since the part of the Hamiltonian related to the BCS
gap functions is momentum independent (∇ p�̌)α = 0. Then,
screening is proportional to quantity [d ln nel/d ln ρ] that is
not modified by the order parameter (in other words, the
development of superconducting order parameter does not
change the total number of particles).

Generally, an acoustic wave modifies the effective BCS
coupling constant λ leading to an additional electron-phonon
vertex. This vertex has the same matrix structure as the order
parameter:

�̌ = ��(�τ̌1)δαβ (32)

with constant �� being equal to

�� = −d ln �

d ln ρ
=

BCS
−1

λ

(
d ln λ

d ln ρ

)
. (33)

Here, λ = νg is a dimensionless BCS coupling constant.
Below in this section, we consider the temperatures and
all other relevant energy scales to be well below the gap
T , ω,Dq2 � �.

Variations of λ arise either directly through the density of
states ν or through interaction constant g,

d ln λ

d ln ρ
= d ln ν

d ln ρ
+ d ln g

d ln ρ
. (34)

Within our model d ln ν/d ln ρ = (pF vF /d)(d ln ν/dE); it
arises due to the shift of the chemical potential in the presence
of an acoustic wave.

Defining the effective vertex 〈�̌〉s analogously to Eq. (30),
we get

〈�̌〉s(ε) = ��

�2

2(ε2 − �2)
(ετ̌3 − �(iτ̌2))δαβ. (35)

The effective vertex 〈�̌〉s is substantially enhanced due to the
singular density of states, in contrast with the vertex 〈�̌〉s .

C. Ultrasound attenuation due to energy diffusion

Similarly to the normal metal case, the contribution of the
diffusion channel to the ultrasonic attenuation is given by the
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following integral (assuming ω � T ):

αs,d (ω) =
∫ ∞

0

(
dε

∂f (ε)

∂ε

)
α

(ε)
s,d (ω), (36)

where α
(ε)
s,d (ω) is the partial contribution of quasiparticles with

energies in the range (ε,ε + dε),

α
(ε)
s,d (ω) = q2

ρm

(
�E + ��

�2

2E

)2(
2νn ReD(ε)

s (ω,q)
)
, (37)

D(ε)
s (ω,q) being a diffuson in a superconducting state given

by Eq. (29) and E = √
ε2 − �2. We have also added subscript

n to the normal metal DOS νn to avoid a possible confusion.
Note that the contribution due to variations of the effective BCS
interaction constant (described by the vertex 〈�̌〉) is enhanced
due to the singularity in the density of states at the gap edge,
ν(ε)/νn � �/

√
ε2 − �2.

Substitution of Eq. (37) into Eq. (36) and integration yields
the final result for ultrasonic attenuation due to the energy
diffusion channel in s-wave superconductors:

αs,d (ω) = 2
ν

ρmD
exp

[
−�

T

]⎧⎨⎩(�/T )
(
(��/2)2�2 ln T

A(ω) + 2����T + 4�2T 2
)

ω � ωc

√
�
T

2((��/2)2�2 + 2����T + 8�2T 2) × (
Dω
s2

)2
ω � ωc

√
�
T

, (38)

where A(ω) ≡ ω + �(ωc/ω)2 and ωc = s2/D is the crossover
frequency in the normal state. Equations (38) were derived
under the conditions

ω,Dq2 � T � � � τ−1 � pF vF (39)

and contain two characteristic crossover frequencies, ωc,s1 =
ωc(�/T )1/2 and ωc,s2 = ω

2/3
c �1/3.

Note that ωc,s2 describes a weak logarithmic crossover that
results from the DOS singularity in the superconducting state;
(�/T ) factor in the first line of Eq. (38) is the result of DOS
behavior as well. This crossover exists only if ωc,s2 > ωc,s1,
or equivalently only for temperatures T > (�ω2

c )1/3. The
frequency of the second crossover ωs,c2 can be small or large
in comparison with ωs,c1, depending on the specific material.

To compare the attenuation due to the energy diffusion
channel (38) with the one produced by the usual local processes
in a superconducting state (we denote it as αs,l), note that the
latter is proportional to the density of the normal electron-hole
excitations [21]. Thus the ratio

αs,l

αn,l

=
∫ ∞

�

dε
∂f (ε)

∂ε
� 2 exp

(
−�

T

)
, (40)

so that αs,l ∝ ω2 as in the normal state. At high frequencies
ω � ωc,s2, we thus find that the role of the energy diffusion
channel grows with ω decrease:

αs,d

αs,l

= 1

2cl

1

p2
F s2

(
�2

�

�3

4T
ln

T

A(ω)
+ 2����2 + 4�2�T

)

×
(

ωc

ω

)2

. (41)

In this frequency range, the attenuation due to energy diffusion
has only a weak logarithmic frequency dependence; it also
depends on the temperature in a nontrivial way that does not
reduce to the T dependence of the normal electron density.

At the lowest frequencies, when ω � ωc,s1, the frequency
dependence of αs is of the standard form, but the temperature
dependence differs from that of the local contribution:

αs,d

αs,l

= 1

cl

1

p2
F s2

((��/2)2�2 + ����T + 8�2T 2). (42)

Inspection of the ratio (42) shows that usually it is rather
small; an interesting exception is presented by superconductors
with extremely low electron density, which are not far from
the crossover to the regime of “local pairs.” A particular
example of this kind is presented by the recently discovered
heavy-metal compound YPtBi [22] with a conduction electron
density at temperatures about a Kelvin range as low as
n = 2 × 1018 cm−3. With the values of other parameters taken
from Ref. [22] as m = 0.15m0, electron mean free path l =
130 nm, Tc = 0.77 K, ωD = 200 K, and sound velocity [23]
s = 2 × 105 cm/s, we find for T = 0.2 K the ratio of the
energy diffusion contribution to the standard PIC result αs,l :

αs,d

αn,l

≈ 1, f = 2πω � 1 GHz. (43)

V. d-WAVE SUPERCONDUCTORS

A. Hamiltonian

We consider here strongly a model of an anisotropic d-
wave superconductor and neglect the electron dispersion in the
direction transverse to the layers. Then the order parameter
depends on the direction of the momentum (Fig. 4) in the
following way:

�( p) = �0(cos pxa − cos pya), (44)

where a is the lattice constant. At low temperatures T �
�0, this leads to an angular dependence of the ultrasonic
attenuation due to local processes. At the same time, the
contribution of the diffusion channel is isotropic (see Fig. 5).

For a d-wave superconductor, the Green function is the
same as for the s-wave case, up to a momentum dependence
of the order parameter � ≡ �( p):

ǦR
αβ(ε, p) = −i〈�α�β〉 = [(ε + i0)τ̌3 − ξ − (iτ̌2)�]−1,

(45)
The energy of excitations above the d-wave SC state vanishes
at four nodal directions in the momentum space of the order
parameter, see Fig. 5. Near these directions, the excitation
spectrum can be linearized:

ξ = vF k1, � = vgk2, (46)
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FIG. 4. (Color online) Schematic Fermi surface of a d-wave
superconductor. The background color represents an order parameter
�( p) with an angular dependence revealing four nodes on the Fermi
surface. Each of them has its own electron Fermi v1 = dξ/d p and
gap v2 = d�/d p velocities. We thus choose four different coordinate
systems (k1,k2)(i)(for clarity only one is shown) around each node
with axes aligned with local electron Fermi and gap velocities.
x and y directions correspond to [100] and [010] crystalline axes,
respectively; a is the lattice constant.

where the momentum k is measured from the node, k = p −
pnode, and the basis is individual for each node (see the Fig. 4).
Due to the presence of low-lying excitations, all thermal effects
at T � Tc are described by some power laws of T , instead of
the exponential behavior in the s-wave case.

Now we should take into account a random disorder
potential, which we consider in the white-noise limit:

〈U (r)U (r ′)〉 = uδ(r − r ′). (47)

0 π 2 π

0

θ (rad)

αl, αd,

Δ
(αl)min

(αl)max

π/2 3π/2

FIG. 5. (Color online) Schematic angular dependence of ultra-
sonic attenuation for local (αl) and diffusive (αd ) processes. αl

exhibits a strong anisotropy with extremal values (αl)min and (αl)max

shown by horizontal dashed lines. In contrast to local processes,
the attenuation in the diffusion channel is isotropic. As a reference
direction θ = 0 we choose [110]. Minima of ultrasonic attenuation are
observed in ±[100] and ±[010] directions, while maxima in ±[110]
and ±[1 − 10]. The angular dependence of the gap �(k) is shown as
well (dashed blue line).

Scattering by disorder results in renormalization of Green
functions, leading both to a scattering rate γ and to renor-
malization of the energy: ε → ε̃. In the self-consistent Born
approximation, we find〈

ǦR
αβ(ε, p)

〉 = [(ε̃ + iγ )τ̌3 − ξ τ̌0 + (iτ̌2)�]−1, (48)

where ε̃ is related to a residue of the Green function,

ε ≡ Z(ε)ε̃(ε). (49)

The quantities γ and ε̃ are to be determined by self-consistency
equations [24]:

1 = K

(
ε̃

γ
arctan

ε̃

γ
+ ln

�0√
ε̃2 + γ 2

)
, (50)

ε = K
ε̃2 + γ 2

γ
arctan

ε̃

γ
, (51)

where K is a dimensionless disorder strength,

K = Nu

2πvF vg

≡ N
vF

vg

G−1
n . (52)

Here, N is the number of valleys (N = 4), and Gn is the
dimensionless conductance per layer in the normal state (in
units of e2/�). The self-consistent Born approximation is
valid as long as K � 1; since the ratio vF /vg is a large
parameter (according to Ref. [25], it is about 20 for BSCCO
superconductors), thus the normal-state conductance should
be sufficiently large, Gn � 100, for this approach to be valid.

The asymptotic behavior of γ (ε) and Z(ε) is of particular
interest, it is given by

ε � γ0 : γ (0) = �0e
−1/K, Z(0) = K, (53)

ε � γ0 : γ = π

2K

ε

(ln(ε/γ0))2
, Z(ε) = K ln(ε/γ0), (54)

where γ0 ≡ γ (0) is the scattering rate at the Fermi surface.
The logarithmic energy dependencies of γ (ε) and Z(ε) are
direct consequences of the quantum critical behavior of the
quasiparticles in a d-wave state. Similar behavior takes place in
graphene [26] where the conductivity acquires logarithmic cor-
rections. Energies ε � Z(0)γ (0) ∼ K�0e

−1/K (when ε̃ � γ0)
require careful consideration that might imply a full-fledged
renormalization group approach. We thus restrain ourselves to
the intermediate temperature range γ0 � T � �0.

To describe electron-phonon interaction, it is still sufficient
to start from the electron stress tensor (5), but now the
momentum dependence of the order parameter �( p) should
be taken into account:

�̌
αβ

d = pα∂βȞ − pF vF

2
δαβ

=
(

(vF pF /2) + �ξ (pF + kF )vg(iτ̌2)

kgvF −(pF vF /2) + ���(iτ̌2)

)
αβ

,

(55)

where we have used Ȟ = ξ τ̌0 + �(iτ̌2) and � =
d(pF vF /d)/dξ , and �� = −d ln �/d ln ρ are the same
parameters as in the s-wave and normal cases.
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B. Ultrasound attenuation due to local processes

Like previously, attenuation due to local processes in a
d-wave superconductor can be depicted by the electron bubble
diagram [Fig. 1(a)], the corresponding analytical expression
reads as

αd,l = q2

2ρmω
Tr [(f+ − f−)�̌(ǦR

− − ǦA
−)�̌(ǦR

+ − ǦA
+)],

(56)
where �̌ is an abbreviation for

�̌ = eα�̌
αβ

d,leβ (57)

with eα being a unit vector in the direction of phonon momen-
tum qα (while the polarization vector of longitudinal phonons
is essentially the same as eα). In contrast to normal and s-wave
states, in a d-wave state, attenuation is essentially anisotropic
due to the two strongly different velocities vF and vg and the
symmetry of the order parameter.

A partial contribution of electrons with energies (ε,ε + dε)
into the attenuation rate can be found in the form

α
(ε)
d,l(ω) = q2

2π2vF vgρm

(
1 + Z(ε)

K

) (
p2

F v2
F F (θ )

)
, (58)

where the function F (θ ) comes from electron-phonon vertices
and describes the angular dependence of attenuation,

F (θ ) = sin2 2θ +
(

vg

vF

)2

cos2 2θ. (59)

Integration of Eq. (58) over the electron energy [like in
Eq. (13)] eventually leads to

αd,l(ω) = F (θ )

2π2

vF

vg

p2
F ω2

ρms2
ln

T

γ0
. (60)

Comparing the result (60) with the attenuation in the
(isotropic) normal state, we find

αd,l

αn,l

= 2KF (θ ) ln
T

γ0
, (61)

where K is the dimensionless measure of disorder defined in
Eq. (52) and γ0 is the scattering rate at the Fermi surface, see
Eq. (53). Within the self-consistent Born approximation, the
logarithmic behavior stops at temperatures T � γ0, where one
should just replace ln(T/γ0) → 2 in Eq. (60).

The attenuation rate (60) possesses an unusual logarithmic
temperature behavior ∝ ln(T/γ0) that does not correspond
to naive expectations for the linear density of states, α ∝ T .
The reason is that the electron scattering rate γ is intimately
related to the electron density of states; the typical scattering
rate decreases with T together with the typical DOS. Namely,
Eq. (54) shows that at moderately high temperatures, γ ∝ T

up to a logarithmic factor. Finally, the remaining logarithm
ln(T/γ0) in Eq. (54) is the result of quantum critical behavior.
The situation with ultrasonic attenuation due to local processes
in a d-wave state is completely analogous to the situation with
logarithmic corrections to the conductivity of graphene [26].

C. Energy diffusion mode

1. Diffusion propagator

This section proceeds in a way almost identical to the s-
wave case. The diffusion modes are described by a Bethe-
Salpeter equation, Fig. 3,

(D̂)−1(ε,ω,q) = 1 − �̂(ε−,ε+,q), (62)

with a self-energy

�̂(ε,ω,q) = u
∑
nodes

∫
(d p)ǦR

− ⊗ ǦA
+. (63)

The energy density diffusion mode corresponds to the τ̌3

eigenvector and eigenvalue of the self-energy:

�̂(ε,ω,q) → u
∑
nodes

∫
(d p)Tr (τ̌3Ǧ

R
−τ̌3Ǧ

A
+). (64)

Summation of the impurity ladder for the energy density mode
thus gives

(D̂)(ε,ω,q) → 2γ (ε)D(ε)
d (ω,q), (65)

where D(ε)
d is a diffuson propagator in a d-wave state,

D(ε)
d (ω,q) = 1

−iω + D
(ε)
d q2

. (66)

The diffusion coefficient is

D
(ε)
d = K + Z(ε)

2γ (ε)
〈v2〉, (67)

where 〈v2〉 = (v2
F + v2

g)/2 � v2
F /2. Cooperon modes in a d-

wave state are irrelevant at temperatures T � γ0.

2. Effective vertex

The effective phonon-diffuson vertex is defined in a way
similar to the s-wave state:

〈�̌〉αβ

d (ε) = u
∑
nodes

∫
(dp)ǦR

+�̌
αβ

d ( p)ǦA
−. (68)

Calculation of this vertex requires some caution, see Appendix
for details. Eventually we get, similar to the normal metal state,

〈�̌〉αβ

d (ε) = �∗ετ̌3δαβ, (69)

where �∗ is just the sum

�∗ = � + ��. (70)

The effective vertex describing coupling to the energy density
mode turns out to be isotropic ∝ δαβ once the summation over
four nodes is performed. This happens despite the anisotropy
of velocities for each node separately.

D. Ultrasound attenuation due to energy diffusion

We obtain the contribution of the diffusion processes in a
complete analogy to the s-wave state:

αd,d (ω) =
∫ ∞

0

(
dε

∂f (ε)

∂ε

)
α

(ε)
d,d (ω), (71)
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where

α
(ε)
d,d (ω) = q2

ρm

· �2
∗ε

2 · (
2νd (ε) ReD(ε)

d (ω,q)
)
, (72)

where νd (ε) = γ (ε)/πu is a density of states in a d-wave
superconductor and �∗ is defined in Eq. (70). Then Eq. (72)
gives

α
(ε)
d,d (ω) = 1

π2

vF

vg

(
1 + Z(ε)

K

)
�2

∗ε
2

ρms4

ω2

1 + ω2/ω2
c,d (ε)

(73)

with a crossover frequency ωc,d (ε) = s2/D
(ε)
d . We are inter-

ested only in the case of weak disorder K � 1 and tempera-
tures T � γ0. The effective crossover frequency which enters
the result for the total attenuation, as given by Eq. (71), is

ωc,d (T ) = πs2

2v2
F

KT

[1 − K ln(�0/T )]3
, T � γ0. (74)

In Eq. (74), we have used the identity K ln(T/γ0) ≡ 1 −
K ln(�0/T ).

At low frequencies, the resulting attenuation rate has a ∝
T 2 ln T temperature dependence:

αd,d (ω) = 1

3
�2

∗
vF

vg

T 2ω2

ρms4
ln(T/γ0), ω � ωc,d (T ), (75)

while for higher frequencies the attenuation behaves roughly
as ∝ T 4,

αd,d (ω) = 7π4�2
∗

60ρmv3
F vg

KT 4

[1 − K ln(�0/T )]5
,

ω � ωc,d (T ). (76)

The additional two powers of temperature, ∝ T 4 versus ∝ T 2

in the normal state, are due to the nearly linear DOS at high
energies, νd (ε) ∝ ε up to logarithmic factors. Note that the
energy dependence of the diffusion coefficient has the same
origin, D

(ε)
d ∝ γ (ε) ∝ ν−1

d (ε) ∝ ε−1.
The contribution of the energy diffusion channel is espe-

cially prominent for directions that correspond to the minimum
of the “local” attenuation rate [Fig. 5, Eq. (60)]. For such a
direction at the lowest frequencies, when ω � ωc,d , the ratio
of the contributions from the energy diffusion and from a local
channel is similar to that in the normal case,

αd,d

(αd,l)min
= 2π2

3

(
vF

vg

)2
�2

∗T
2

p2
F s2

. (77)

For higher frequencies ω � ωc,d for the ratio of attenuation
rates, we find

αd,d

(αd,l)min
= 14π4

15

(
vF

vg

)2
�2

∗T
2

p2
F s2

(
ωc

ω

)2

, (78)

All these results are valid as long as we are in the dirty limit
ql � 1. This condition is equivalent to Dd (T )q2 � γ (T ),
which in turn gives ω � ω

(d)
0 (T ),

ω
(d)
0 (T ) � s

vF

γ (T )√
Z(T )

= πs

2vF

KT

[1 − K ln(�0/T )]5/2
. (79)

Using the parameters for BSCCO compounds [25,27–29],
we estimate the ratio of the (isotropic) contribution of the

energy diffusion channel [given by Eq. (77)] to the contribution
of the local channel at its minimum:

αd,d

(αd,l)min
≈ 10, f = 2πω � 1 GHz. (80)

Here, we used the following values of relevant parameters:
n = 5 × 1021 cm−3, vF = 2.5 × 107 cm/s, vF /vg = 20, T =
10 K, impurity scattering rate γ0 = 1K , and sound velocity
s = 4.6 × 105 cm/s.

VI. CONCLUSIONS

We have shown that low-frequency phonons in disor-
dered conductors and superconductors experience additional
damping due to the coupling between the lattice density
modulations and a gas of thermally excited quasiparticles
which is out of equilibrium with the lattice due to the finite
frequency of the phonon-induced modulations. The nonequi-
libirum distribution of the quasiparticle energy then slowly
decays leading to a phenomenon similar to the Mandelstam-
Leontovich relaxation. The effect is especially strong in doped
semiconductors at moderately low T/EF and ultrasound
frequencies ω � T/�. In particular, we have estimated the
ultrasound attenuation in doped Si to be enhanced by a factor of
about 100 due to this mechanism. The frequency dependence
of the attenuation rate α(ω) contains a typical crossover
frequency ωc, see Eq. (17), which depends explicitly on the
electron diffusion coefficient D. Thus, measurements of α(ω)
may be used for the determination of D. A similar phenomenon
exists in superconductors as well; for conventional s-wave
superconductors, it is weak usually, but can be important for
very low-density materials close to the BCS-BEC crossover,
like the recently discovered YPtBi superconductor. For d-wave
superconductors, we calculated both the conventional (local)
and the diffusion-induced attenuation rate and showed that the
latter may dominate in strongly anisotropic BSCCO materials
at moderate temperatures. The possibility to extract electron
parameters such as the diffusion coefficient D from mea-
surements of α(ω) in a d-wave case is especially interesting,
since they posses nontrivial dependencies on temperature and
disorder, due to the quantum criticality of a d-wave state.
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APPENDIX A: CANONICAL TRANSFORMATION

As Tsuneto had pointed out [4], in the linear approximation,
the transition to a comoving frame of reference can be
considered as a canonical transformation:

U = exp

(
i

2
{uα, pα}

)
. (A1)

This transformation is connected to the spatial translation
r → r − u, with the exception that it conserves probability,
ψ(r) → (1 + (1/2)div u)ψ(r − u). The transition to CFR in
normal conductors had already been considered in details, see
Refs. [3–5,8,14,15]. It is a very general approach and here we

195101-8



ULTRASONIC ATTENUATION VIA ENERGY DIFFUSION . . . PHYSICAL REVIEW B 92, 195101 (2015)

illustrate the way it works in an s-wave superconductor. It is
convenient to introduce a particle-hole space that together with
spin constitute the Nambu-Gorkov space. We introduce it in
the exact same way as in the main text, so that the electron
action is

Sel,s =
∫

dt(d r)�[ετ̌3 − ξ ( p)τ̌0 − �(iτ̌2) − U (r)]�,

(A2)

Sel-ph =
∫

dt(d r)�[−(pF vF /d) div u + ∇α(uαU (r))]�.

(A3)

The first two terms of Eq. (A2) give a standard vertex,

�̌
αβ

0 = [ετ̌3 − ξ ( p)τ̌0,{uα,pα}] (A4)

= u̇αpατ̌3 − (i∇βuα)pαvβτ̌0, (A5)

which after careful consideration of the screening together
with the first term of Eq. (A3) becomes

�̌αβ
n = u̇αpατ̌3 − (i∇βuα)(pαvβ − (pF vF /d)δαβ). (A6)

The first term in the last equation is irrelevant in most of the
cases due to the fact that ω � qvF .

The last terms of Eqs. (A2) and (A3) almost cancel out
leaving

�̌αβ
imp = [Uτ̌0,{uα,pα}] − ∇α(uαU )τ̌0 = (U div u)τ̌0. (A7)

This term is inevitable in any reference frame since the
scattering rate is the same in any reference frame and it depends
on the concentration of impurities (provided we do not involve
time transformations).

Last but not least, the second term of Eq. (A2) is

�̌
αβ

� = [�̌,{uα,pα}]. (A8)

In the linear approximation, this gives

(iτ̌2)[�̌,uα]pα + [�̌,pα]uα (A9)

= ∂βuα(∂�̌/∂pβ) + uα∇α�̌. (A10)

The first term is zero for the s-wave case but is essential for a d

wave. The second term describes coupling to order parameter
fluctuations and is not relevant for the problem considered in
this paper.

Finally, as we have mentioned in the main text, an acoustic
wave could change the effective BCS coupling constant. After
screening by a SC propagator, we eventually get

�̌ = �(iτ̌2)

(
∂ ln �

∂ ln ρ

)
el

div u. (A11)

This vertex represents changes in the order parameter as a
result of the induced changes of the electronic DOS under
strain. A similar contribution might arise from changes in the
interaction constant itself so that

d ln �

d ln ρ
=

(
∂ ln �

∂ ln ρ

)
el

+
(

∂ ln �

∂ ln ρ

)
lattice

. (A12)

APPENDIX B: EFFECTIVE ELECTRON-PHONON
VERTEX IN A d-WAVE STATE

In the main text, we have used the tensorlike electron-phonon
vertex,

(Šel-ph)1 =
∫

(d r)ψ(pα∂βȞ − (pF vF /d)δαβ )∂βuαψ. (B1)

However, as we have just mentioned in Appendix A, careful
calculation shows that the actual electron-phonon interaction
in a comoving reference frame contains an additional contri-
bution [8],

Šel-ph = (Šel-ph)1 + (Šel-ph)2, (B2)

(Šel-ph)2 =
∫

(d r)ψ[−U (r)(∂αuα)]ψ. (B3)

This contribution describes changes in the disorder potential
strength, for example, changes in the local concentration of
impurities. This term is usually negligible. However, this is not
the case for a d-wave state, where it plays an important role.

1. Naive (incomplete) effective vertex

Let us first show what would be obtained for an effective
phonon-diffuson vertex ignoring the disorder-related contri-
bution. Taking into account only (Ȟ CFR

el-ph)1, we have

〈�̌〉αβ

d1 = u
∑
nodes

∫
(dp)ǦR

+(pα∂βȞ − (pF vF /d)δαβ)ǦA
−. (B4)

For longitudinal phonons, after the summation over the
nodes is performed, the relevant terms arising from the vertex
are∑

nodes

(pα∂βȞ − (pF vF /d)δαβ) = 2(ξ τ̌0 + �(iτ̌2))δαβ. (B5)

We omit δαβ and α,β indices for brevity. The ξ τ̌0 term, for
example, gives

〈�̌〉d1a(ε) = u

∫
(d p)

2ξ 2ε̃τ̌3

((εk − ε̃)2 + γ 2)2
(B6)

= ε̃(ε)

(
1 − 1

2
Z(ε)

)
τ̌3, (B7)

where εk =
√

ξ 2 + �2. The same contribution arises from the
�(iτ̌2) term thus resulting in

〈�̌〉d1(ε) = ε̃(ε)(2 − Z(ε))τ̌3. (B8)

In the general case, the vertex (B8) depends on electron energy
in a sophisticated way. Meanwhile, in the clean limit, when the
impurities are negligible and ε̃(ε) → ε, Z(ε) → 1, we would
have a very simple result: 〈�̌〉d1 = ετ̌3. It turns out that this is in
fact the correct answer once everything is taken into account.

2. Full effective vertex

What we have just left out is (Šel-ph)2, the disorder-induced
contribution to the electron-phonon interaction:

〈�̌〉αβ

d2 = u
∑
nodes

∫
(dp)ǦR

+(U )ǦA
−. (B9)
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After we average this vertex over the disorder we see that it
gives

〈�̌〉d2 = u
∑
nodes

∫
(dp)ǦR

+
(
̌R + ̌A

)
ǦA

−

= . . .

= 2 Re ̌R = 2(ε − ε̃(ε))τ̌3. (B10)

In other words, this vertex is tightly connected to the
renormalization of the electron energy. If the energy is not
renormalized then this vertex is absent.

Recalling the relation ε = Z(ε)ε̃(ε), we now see that the
actual effective phonon-diffuson vertex is indeed connected
only to the true electron energy variable ε:

〈�̌〉d1 = (2ε̃ − ε)τ̌3, 〈�̌〉d2 = (2ε − 2ε̃)τ̌3, (B11)

so that

〈�̌〉d = 〈�̌〉d1 + 〈�̌〉d2 = ετ̌3, (B12)

exactly the expression that was used in the main text.

APPENDIX C: KELDYSH TECHNIQUE

Despite the fact that Ref. [19] provides a pedagogical
and detailed introduction into the Keldysh technique, we
present here an example of calculations considering one of
the diagrams from the main text, namely the energy diffusion
contribution in the s-wave case.

We seek the imaginary part of the phonon self-energy,
which is given by the expression

A = Tr [Ǧ−�̌(cl)Ǧ+,�̌(q)], (C1)

where the trace is taken over all spaces: Keldysh, spin,
and particle-hole. ± indices stand for (ε ± ω/2, p ± q/2)
arguments while (cl) and (q) stand for classical and quantum
Keldysh vertices. Green function Ǧ is a matrix in Keldysh
space:

Ǧ =
(

ǦR ǦK

0 ǦA

)
, (C2)

with ǦR , ǦA, ǦK themselves being matrices in the Nambu-
Gorkov space. After taking the trace over the Keldysh space,
the expression for the phonon self-energy reduces to

A = q2

2
Tr [ǦR

−�̌ǦK
+ ,�̌ + ǦK

− �̌ǦA
+,�̌]. (C3)

An extra q2 factor appeared since in our definitions we
actually exclude the phonon momentum from the definition
of the vertex. Say, our vertex would be pαvβ , not uαpαvβqβ .
In equilibrium, ǦK = ǦRF̌ − F̌ ǦA = f (ε)(ǦR − ǦA) with
f (ε) = tanh ε/2T and thus for the imaginary part of the
self-energy, we obtain

Im A = q2

4
Tr [(f+ − f−)(ǦR

− − ǦA
−)�̌(ǦR

+ − ǦA
+)�̌],

(C4)

Im A = q2

4
Re (Tr [�̌ǦR

−�̌ǦR
+ − �̌ǦA

−�̌ǦR
+]). (C5)

Dealing with ultrasound we assume that the frequency is low,
�ω � T , so expanding the expression above to linear order
in ω and using the relation (6) between α and Im A, we
get f (ε) = tanh ε/2T and thus for the imaginary part of the
self-energy, we obtain

αs(ω) =
∫ ∞

0

(
dε

∂f (ε,T )

∂ε

)
α(ε)

s (ω), (C6)

where α(ε)
s (ω) is the contribution to the attenuation from

electrons with energies in an interval (ε,ε + dε),

α(ε)
s (ω) = q2

4ρm

Tr (ε)[(ǦR
− − ǦA

−)�̌(ǦR
+ − ǦA

+)�̌], (C7)

where the trace is now taken over momenta and the Nambu-
Gorkov space (at a chosen electron energy ε). Dealing with
a disordered system we have yet to take an average over
the disorder. We skip the arising local part, focusing on
the diffusive part that corresponds to the diagrams with
noncrossing impurity lines connecting two Greens functions.
If we sum all such diagrams, we obtain a whole impurity ladder
that is connected to a diffusion mode.

It is evident from Eq. (C7) that two kinds of terms exist:
AR and RR types. The first gives the diffuson’s contribution,
while the second describes the Cooperon modes. The presence
of a diffusive dynamic contribution from the R-R combination
might be confusing; it is due to the fact that the retarded
matrix Green function is a combination of a retarded particle
propagator at energy ε and an advanced hole propagator taken
at energy −ε,

ǦR(ε, p)|�=0 =
(

GR
0 (ε, p) 0

0 −GA
0 (−ε, − p)

)
, (C8)

where for clarity, we had ignored the anomalous part of
the propagator. The combination GR(ε, p)GA(−ε, − p) cor-
responds to the Cooperon mode. Below, we show that the R-R
part is indeed irrelevant, as we have stated in the main text.
Since only the �̌AR vertex is relevant for the problem, we did
not keep the superscript AR in the main text, but below we
keep it to avoid possible confusion.

As we have stated in the main text, it is very convenient to
introduce an effective phonon-diffuson vertex that describes
the coupling between an acoustic wave and diffusion modes.
We see from the diagram that we have two blocks of two Green
functions near each phonon vertex. For A-R, the diagram gives

α
(ε)
s,d,AR(ω) = 1

4ρmu
Re (tr [〈�̌〉†s,ARD̂〈�̌〉s,AR]), (C9)

where the trace is now taken only over the Nambu-Gorkov
space, the effective vertex is defined in exactly the same way
as in the main text:

〈�̌〉s,AR(ε) = u

∫
(d p)ǦR

−�n( p−, p+)ǦA
+, (C10)

and D̂ is a superoperator corresponding to the diffuson, the
sum of the impurity ladder

D̂(ε,ω,q) =
[

1 − u

∫
(d p)ǦA(ε+, p+) ⊗ ǦR(ε−, p−)

]−1

.

(C11)
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The action of a superoperator ǦA ⊗ ǦR is defined as

(ǦA ⊗ ǦR)〈�̌〉 = ǦA〈�̌〉ǦR. (C12)

In Eq. (C9), we have an extra factor u−1 in front of the trace
since we exclude one impurity line from the definition of the
diffuson (C11) (the impurity ladder series starts from 1, not
u) yet include one into each effective vertex (C10). Hence
u(u)−2 = u−1. Since the structure of the vertex in an acoustic
wave polarization space is trivial ∼ δαβ , we omit here all these
extra indices. The effective vertex introduced in this way is
tightly connected to the vertex of the type Tr [Q̂ div u] in
the nonlinear sigma-model approach to disordered conduc-
tors [19].

Before moving forward, we remind that the retarded Green
function in the s-wave state as follows from Eq. (20) is

ǦR(ε, p) = ηε(ετ̌3 − �(iτ̌2)) + ξ τ̌0

η2E2 − ξ 2
(C13)

with ηε = 1 + i/2τE,E = √
ε2 − �2.

1. A−R diffuson and effective vertex

a. Diffuson

To evaluate the diffusion propagator, we have to calculate
the diffuson self-energy

�̌(ε,ω,q) =
∫

(d p)ǦA(ε+, p+) ⊗ ǦR(ε−, p−). (C14)

We first seek the eigenmodes of the diffuson. Since we interpret
�̂ as a superoperator, appropriate eigenmodes correspond
to eigenoperators of a superoperator. The Pauli matrices τ̌i ,
i = 0, . . . ,3 provide a basis in the operator space and any
eigenopertor will be some combination of Pauli matrices. For
zero external ω,vF q = 0, we thus have

�̌ = u

∫
νdξ

η∗
ε (ετ̌3 − �(iτ̌2)) + ξ τ̌0

((η∗
ε )2E2 − ξ 2)

⊗ . . . (C15)

· · · ⊗ ηε(ετ̌3 − �(iτ̌2)) + ξ τ̌0

(η2
εE

2 − ξ 2)
(C16)

that reduces to

�̌ = (ετ̌3 − �(iτ̌2)) ⊗ (ετ̌3 − �(iτ̌2))

E2
ID1 + τ̌0 ⊗ τ̌0ID2

(C17)
with integrals ID1 and ID2,

ID1 = u

∫
νdξ

|η|2E2∣∣η2
εE

2 − ξ 2
∣∣2 = 1

2
, (C18)

ID2 = u

∫
νdξ

ξ 2∣∣η2
εE

2 − ξ 2
∣∣2 = 1

2
, (C19)

where we had used the fact that u = (2πντ )−1. We have thus

�̌ = 1

2
τ̌0 ⊗ τ̌0 + (ετ̌3 − �(iτ̌2)) ⊗ (ετ̌3 − �(iτ̌2))

2E2
(C20)

and the eigenoperators corresponding to massless modes (with
eigenvalues � = 1 and thus D−1 = 0) are

massless: τ̌0 and
1

E
(ετ̌3 − �(iτ̌2)) (C21)

charge and energy. The remaining massive eigenoperators are

massive: τ̌1 and
1

E
(ετ̌3 + �(iτ̌2)) (C22)

with eigenvalues � = 0. These do not describe any diffusion
modes, they are akin to a GRGR combination in the normal
metal where the impurity ladder cannot be inserted.

We consider a finite ω,vF q in the spirit of perturbation
theory, when an eigenvalue can be obtained by an average
over the eigenstate in the zero-order approximation,

�
(ε)
i (ω,q) = 1

2
tr [τ̌i �̌τ̌i] = u

∫
(d p)

1

2
tr [τ̌iǦ

A
+τ̌iǦ

R
−]. (C23)

It is easy to see that the eigenvalue for τ̌0 and ετ̌3 + �(iτ̌2)
is the same, since they both commute with self-energy �̌ at
ω = 0. Say for charge we have

�
(ε)
0 (ω,q) = u

∫
(d p)

1

2
tr

[
(η+ε+)(η∗

−ε−) − �2) − ξ+ξ−
(η∗+)2E2+ − ξ 2+)(η2−E2− − ξ 2−)

]
(C24)

= 1 − [−i(E+ − E−) + Dq2], (C25)

where we had expanded in ω,q and D = (1/d)τv2
F is a

diffusion coefficient in a normal state. The diffuson is thus

D(ε)(ω,q) = 1

−i(E+ − E−) + Dq2
. (C26)

Note that in order to obtain the true diffusion coefficient in the
s-wave state, we have to expand E+ − E− in ω,

1

−i(E+ − E−) + Dq2
=

√
ε2 − �2

ε

1

−iω + D
(ε)
s q2

(C27)

with a diffusion coefficient in the s-wave state

D(ε)
s =

√
ε2 − �2

ε
D ≡ νn

νs(ε)
D. (C28)

b. Effective vertex

For the effective vertex, we have

〈�̌〉s,AR(ε) =u

∫
(d p)

[ηε(ετ̌3 − �(iτ̌2)) + ξ τ̌0](
η2

εE
2 − ξ 2

)
× [�ξ τ̌0] × [η∗

ε (ετ̌3 − �(iτ̌2)) + ξ τ̌0](
η2

εE
2 − ξ 2

)∗ ,

(C29)

giving

〈�̌〉s,AR(ε) =2�ID2(ετ̌3 − �(iτ̌2)), (C30)

where ID2 is exactly the same as given by Eq. (C38), leading
to

〈�̌〉s,AR(ε) =�(ετ̌3 − �(iτ̌2). (C31)
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Similarly, �̌ = ���(iτ̌2) gives

〈�̌〉s,AR(ε) = (���)

(
ID1 − ε2 + �2

E2
ID2

)
(iτ̌2) (C32)

= ��

(
−�2

E2

)
�(iτ̌2), (C33)

where ID1,ID2 are given by Eqs. (C37) and (C38). Finally, (iτ̌2)
gives a superposition of massless (C20) and massive (C39)
modes,

�(iτ̌2) = ετ̌3 + �(iτ̌2)

2
− ετ̌3 − �(iτ̌2)

2
. (C34)

Only the massless mode is of interest for us. Projecting onto
the massless subspace, we obtain

〈�̌〉s,AR(ε) =��

�2

2(ε2 − �2)
(ετ̌3 − �(iτ̌2)), (C35)

Eventually, we have to use our effective vertices and
diffuson in Eq. (C9), exactly what was done in the main
text.

2. R-R diffuson (Cooperon) and effective vertex

In the case of a Cooper mode, the calculations are absolutely
similar to the diffuson case up to the use of RR combinations
instead of RA. For the self-energy we have

�̌C = (ετ̌3 − �(iτ̌2)) ⊗ (ετ̌3 − �(iτ̌2))

E2
IC1 + τ̌0 ⊗ τ̌0IC2

(C36)

with integrals

IC1 = u

∫
νdξ

η2E2(
η2

εE
2 − ξ 2

)2 = 1

2(1 − 2iτE)
, (C37)

IC2 = u

∫
νdξ

ξ 2(
η2

εE
2 − ξ 2

)2 = 1

2(1 − 2iτE)
. (C38)

This results in the same set of eigenoperators:

massless: τ̌0 and
1

E
(ετ̌3 − �(iτ̌2)), (C39)

massive: τ̌1 and
1

E
(ετ̌3 + �(iτ̌2)), (C40)

and a Cooperon eigenvalue similar to a diffuson,

C(ε)(ω,q) = 1

i(E+ + E−) + Dq2
. (C41)

Unsurprisingly, the expressions for the effective vertices are
obtained as well by a modification of the integrals IDi → ICi .
Given that we always have τE � 1, the modification of the
effective vertex as compared to the AR case is negligible, and
RR vertex turns out to be the same as AR,

〈�̌〉s,RR(ε) � 〈�̌〉s,AR(ε), (C42)

and same for the �̌ vertex.
The gap in a Cooperon propagator (C41) suppresses the

contribution from this mode in the limit Dq2 � √
T �. On

the other hand, in the opposite limit, Dq2 �
√

T �, the
contribution from a Cooper mode is the same as that of the
diffuson resulting in an additional overall factor of 2.
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