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A recent publication [Q. Meng, L. Wu, D. O. Welch, and Y. Zhu, Phys. Rev. B 91, 224305 (2015)] examines
the quantum normal modes of the Frenkel-Kontorova chain. The authors compare their results to those of an older
work [A. D. Novaco, Phys. Rev. B 22, 1645 (1980)], attributing the differences to limitations in the numerical
analysis of that 1980 paper. We show here that it is not numerical limitations that cause the differences between
the two papers, and we argue that the cause of these differences resides with the approaches used in the modeling.

DOI: 10.1103/PhysRevB.92.186301

The article by Meng et al. [1] (paper I) explores a quantum
treatment for the modes of the Frenkel-Kontorova (FK)
problem, and it compares those modes to the classical modes
found by Novaco [2] (paper II) using a mass-density-wave
(MDW) analysis. There are many similarities between these
results, but some differences were found that affect the general
conclusions of these papers. The authors of paper I suggest that
these differences were due to limitations in the computational
analysis used in paper II. To test this suggestion, new results
have been generated using higher precision than used in paper
II and using Fourier expansions to higher order for the analysis
of the structure and normal modes.

The equation for the equilibrium positions of the atoms
in the FK chain is a well-known problem in system dynamics
known as the Standard Map [3]. This map is a prototypical map
for the illustration of chaos, approaching chaos though the gen-
eration of nested homoclinic tangles. The general behavior of
this map is characterized by one parameter, L, a scaled length
that determines the width of the domain walls in the FK chain.
In paper II, Ly = 4.0 was chosen to match the work of Ref. [4].

The original MDW code was single precision (IEEE BI-
NARY32), so the first step was to rewrite the code in double
precision (IEEE BINARY64). There are two expansions carried
out in the MDW analysis of paper II, the first being a Fourier
analysis of the MDW structure and the second being a Bessel
function expansion that determines the order of the coupling
between the harmonics of that Fourier expansion. In this new
analysis, the Fourier expansion includes higher-order harmon-
ics (—30to +30) than in the original analysis (—15 to +15), but
the maximum coupling order remains the same. This appears
justified by the smallness of these higher-order terms in the
Bessel function expansion and the smallness of the changes
generated by the Bessel function terms of orders 6 and 7.

Paper II looks at the energy of the Frenkel-Kontorova chain
for a relative average spacing (RAS) of 0.601, 0.8, and 0.95,
comparing the energies to an independent calculation of these
same energies using an “exact” method [4]. The reanalysis
found little to no deviations from those quoted results (to
the precision quoted in paper II). Furthermore, selected case
studies were carried out with Fourier expansions using up to
the maximum number of harmonics, with no noticeable change
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in the results. The normal modes were generated using these
same parameters, and little change was observed in the mode
structure shown in paper II [5]. The main differences, and
there are some, involve the modes in the low density of states
region between the lower and upper branches of the spectrum.
In particular, these modes are of lower weight than found in
paper 11, and the mode placement is sensitive to the cutoff in the
expansion. Figure 1 shows the recalculated spectrum of Fig. 7
in paper II (RAS of 0.87). In this new figure, the strength of
the peak was used to determine the gray scale of the plot, with
S(g,w) = 1.0 given a gray scale of 0 (black) and S(g,w) =0
given a gray scale of 1 (white or background). Notice that the
scattered points between the lower and upper branches of the
spectrum found in paper II do not appear here, that is, they are
small and barely distinguishable from the background. Also
note that the curves in this new figure are smoother than those
found in paper II, that is, they have less scatter, but they are
otherwise the same.

A sanity check of the work of paper II was done by
iterating the Standard Map (STD-Map) in high precision (IEEE
BINARY128) and seeing to what extent chaos is important in
the cases reported. A return map was constructed by plotting
Aj — Nin(Aj) versus X; — Nip (X j), where X ; is the position
of the jth atom, A; = X; — X;_, and Ny, is the nearest
integer function. This was typically done using 100 randomly
chosen initial point pairs and iterating each initial pair for
2000 steps. The return map so defined forms a square, —0.5
to +0.5 along each edge, the center point (0,0) being the
1:1 commensurate phase. For Ly = 4.0, chaos is present only
near the center, occupying a region roughly 0.1 across. This
was further explored by comparing various trajectories using
the positions calculated from the MDW analysis versus those
from a STD-Map iteration (using the first two positions from
the MDW analysis as starting points). For the smaller RAS’s
in paper II, the MDW map and the STD-Map were nearly the
same, with the STD-Map giving close to the correct density
after about 2000 iterations. However, for the trajectory with a
RAS of 0.95, the final density is sensitive to initial conditions
and requires small adjustments to the initial point pair to get
close to the average density. This trajectory touches the chaotic
region and could pass interior to it. This trajectory is similar to
that found for nested homoclinic tangles, so we judge the 0.95
case to be near the edge of chaos or even a bit over the edge.
Nevertheless, the MDW map and the STD-Map were very
close except near the tangles. It must be noted that the MDW
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FIG. 1. The MDW dynamics of the case study for L, = 4.0 and
relative average spacing 0.87. The gray scale is related to the S(g,w)
peak height as described in the text.

analysis, when stable solutions are found, forces a periodic
or quasiperiodic solution, even when the system is actually
chaotic.

The L associated with paper I has a small range of values
near 3.0. For values of Ly near 3.0, the return map for the
STD-Map shows about half of the area occupied by chaotic
states. We note this not because we claim that the states in
paper I are chaotic (I is a quantum calculation) but to point
out the danger of comparing the results of paper I to those
of paper II in this range. Nevertheless, a MDW calculation
of the modes for the cases in paper I shows much similarity
between the MDW analysis results and those of paper 1. In
particular, compare Fig. 2 to Fig. 4(a) in paper 1. While the
results are similar, there are significant differences. Usually
these differences involve one or two modes being significantly
“misplaced” relative to the other analysis. Plots of the MDW

PHYSICAL REVIEW B 92, 186301 (2015)

Contours of Significant Peaks in S(Q,)
1.2

0.8 -

0.6 / r

Frequency (Scaled)

0.2 L

0 T T T
0 1 2 3
Wavevector (Scaled)

FIG. 2. The MDW dynamics of the case study for L, = 2.914
and relative average spacing 6/7. The gray scale is related to the
S(g,w) peak height as described in the text.

structure showed very sharp walls and rather small domains,
while the STD-Map showed chaotic behavior.

If numerical limitations are not the source of the differences
between papers I and II, they must be due to the differences
in either the modeling or the parameter space (the L value).
The model in paper I uses a Taylor series expansion of the
interaction with the substrate, while paper II does not. On the
other hand, paper II uses expansions in both the harmonics and
the coupling between these harmonics, while paper I does not.
This is most likely the cause of the differences. However, it is
also true that paper I uses a quantum analysis and paper II is
strictly classical. Furthermore, paper I explores a region where
nonlinear effects (as exhibited by the chaos in the classical
system) are much stronger than those in paper II. It would
be interesting to know if approximations, quantum effects, or
simply stronger nonlinear effects are driving the differences in
these results.
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