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Robust determination of the superconducting gap sign structure via quasiparticle interference
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Phase-sensitive measurements of the superconducting gap in Fe-based superconductors have proven more
difficult than originally anticipated. While quasiparticle interference (QPI) measurements based on scanning
tunneling spectroscopy are often proposed as definitive tests of gap structure, the analysis typically relies on
details of the model employed. Here we point out that the temperature dependence of momentum-integrated QPI
data can be used to identify gap sign changes in a qualitative way, and present an illustration for s± and s++ states
in a system with typical Fe-pnictide Fermi surface.
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I. INTRODUCTION

There is considerable indirect evidence, but currently no
“smoking gun,” indicating that most, if not all, of the Fe-based
superconductors condense into a superconducting state that
has A1g symmetry but changes sign between electron and
hole pockets. This is indeed the prediction of spin fluctuation
theory [1] that follows from the simple argument that the
pairing interaction, proportional to the magnetic susceptibility,
is repulsive and peaked at a wave vector Q, which nearly
nests these pockets. The simplest version of this state,
conventionally referred to as the s± state, is isotropic on each
Fermi surface pocket with opposite signs for electron and
hole sheets [2]. The actual gap function realized in Fe-based
superconductors (SCs) is in many cases thought to be highly
anisotropic and even possess nodes, but may still be considered
s± as long as the average sign on electron pockets is opposite
that on hole pockets.

Arguments against the s± picture have been given as
well. If orbital fluctuations dominate spin fluctuations, a state
with equal sign on all pockets, denoted s++, is favored [3].
In addition, when either hole or electron pockets disappear
from the vicinity of the Fermi level, d-wave pairing may be
enhanced [4]. Thus, as in the cuprates, the determination of
the gap symmetry and structure is important as a clue to the
underlying mechanism of superconductivity. As discussed in
Ref. [1], this task is not as straightforward as in the cuprates
due to the multiplicity of Fermi surface sheets. While many
tests of s± pairing symmetry have been proposed, all seem to
rely on specialized theoretical assumptions or are applicable
only to certain systems. The phase-sensitive probes that proved
so decisive in the identification of d-wave symmetry in the
cuprates are much less useful in the Fe-based superconductors,
due to the fact that both s± and s++-wave symmetries belong
to the same A1g irreducible representation, and the difficulty
of fabricating junctions with controlled properties. A general
qualitative test of another type that could distinguish an s±
pair state from others would be extremely useful.

One promising technique in this regard is quasiparticle
interference, or Fourier transform scanning tunneling mi-
croscopy (FT-STM). This probe measures the wavelengths
of Friedel oscillations caused by disorder present in a metallic

or superconducting system, which in principle contain infor-
mation on the electronic structure of the pure system. These
wavelengths appear in the form of peaks at particular wave
vectors q(ω), which disperse with STM bias V = ω/e. There
is no reliable quantitative theory of quasiparticle interference,
in general because the sources of disorder, exact impurity
potentials, and k dependence of the tunneling matrix elements
are unknown. However, the positions of the q do not depend
on these effects and are related only to the electronic structure,
including the superconducting gap function.

The notion that subsets of these q that connect gaps of equal
or opposite sign on the Fermi surface can be enhanced or not
according to the type of disorder was introduced by Nunner
et al. [5]. Pereg-Barnea and Franz [6] then proposed that a
disordered vortex lattice should behave like a set of localized
order parameter suppression scattering centers, and could be
used to introduce disorder in a controlled fashion with an
external field. This experiment was performed on the cuprate
superconducting compound, Ca2−xNaxCuO2Cl2, by Hanaguri
et al. [7], who showed that certain quasiparticle interference
(QPI) q were indeed enhanced or suppressed by the field, in a
manner apparently consistent with d-wave pairing.

This experiment was attempted in the Fe-based super-
conductors on a a Fe(Se,Te) superconducting sample near
optimal doping by Hanaguri et al. [8], who identified three
interband scattering wave vectors q: one associated with
hole-electron scattering (the smallest momentum), and two
associated with two different electron-electron scatterings. The
last two features were enhanced in the presence of magnetic
field with respect to the first one, which led the authors to
conclude that the hole and the electron pockets have opposite
signs of the order parameter, as expected in the s± model
[9,10]. Some caveats regarding the interpretation, associated
with the fact that two of the wave vectors coincide with Bragg
peaks, were discussed in Ref. [1], and there are other issues that
we consider below. More recently, Chi et al. [11] measured QPI
on LiFeAs in zero external field, studying the bias dependence
of a large q peak corresponding to interband and a small
q peak corresponding to intraband scattering, arguing that
upon moving from large to small bias, the fact that one was
suppressed while the other enhanced could be consistent only
with s± pairing. This is also an argument of the qualitative type,
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but because the actual intensity dependence of the peaks as a
function of bias was in fact nonmonotonic, and because there
is currently no well-founded theory to support this conclusion,
the interpretation is uncertain.

In fact, while QPI measured by FT-STM is, in principle,
a very powerful qualitative tool, it is nearly useless as a
quantitative one. This is because, while the poles of the
response function (q-spot positions) are universal, the weights
are not, but depend on the type, strength, and range of the
scatterers (not generally known), as well as the details of the
electronic structure (including the gap), and the z position
at which the local density of states (LDOS) is calculated.
The actual pattern calculated in even the most sophisticated
theories then generally bears little detailed resemblance to the
measured STM Fourier intensities (for a discussion of some
of the causes see Ref. [12]), and identifying the symmetry or
structure of the gap function by a comparison of the intensity
patterns is similar to determining the age of a model from a
Picasso cubist painting.

The situation is further exacerbated by advanced mythology
that has formed over years about QPI. A part of this mythology
involves belief that the QPI spectra are defined by the geometry
of the Fermi surface in a nesting-like way, another part that
in the superconducting state these spectra are proportional
to coherence factors, and that magnetic and nonmagnetic
impurities have opposite effect on QPI. While this mythology
has been partially rectified in some papers, it has not become
generally appreciated, and some myths still persist.

A systematic summary of the established facts is badly
needed, and we shall provide it later in the paper. But, the
main purpose of this paper is to find a clean qualitative
way to design a QPI experiment capable of distinguishing s±
from other pairings, and in general to identify sign-changing
gaps in an unconventional superconducting system. We argue
that the best way is to measure the intensity of integrated
interband scattering peaks in the Fourier transformed density
of states, antisymmetrized with respect to STM bias, as a
function of temperature. Then the integrated weights of the
set of q corresponding to sign-changing scatterings display
a strong enhancements only for this channel; furthermore
these qualitative distinctions are robust against the strength
of the scattering. We conclude that while the general theory of
QPI in unconventional superconductors has many pitfalls, this
particular consequence of pairing sign change is robust and
can be used to unambiguously identify s± pairing if this type
of distinction between intra- and interband pairing q peaks is
observed.

II. FORMALISM

Here we present a model that captures all the qualitative
features of the general two-band case, but allows analytical
evaluation of the density of states. We are interested in the
density of states in a two-band superconductor of isotropic s++
or s± type in the presence of disorder of various kinds. Here,
following the tradition, we use the words “one-band” and “two-
band” for materials with arbitrary complex normal electronic
structure, but with the superconducting order parameter �

that can be approximated by a single value for all states on

the Fermi level, or by two different values, depending on the
location in the Brillouin zone.

A. One-band problem

We first remind the reader of the one-band problem. We
assume a random distribution of NI pointlike impurities at
sites Ri with i = 1, . . . ,NI . The LDOS can be formally
decomposed ρ(r,ω) = ρ0(ω) + δρ(r,ω), where ρ0 is the DOS
of the homogeneous superconductor, and δρ is the local change
in the DOS due to disorder given exactly by

δρ(r,ω) = − 1

π
Im

NI∑
i,j=1

[Ĝ0(r − Ri)T̂ij Ĝ
0(Rj − r)]11,

where the ω dependence is suppressed for simplicity, T̂ (ω)
is the 2NI × 2NI many-impurity T matrix (the factor of
two is due to spin), Ĝ0(r,ω) is the bare advanced electron
Green’s function Ĝ0(r,ω) = ∑

k Ĝ0(k,ω) exp(ik · r), ˆ refers
to Nambu space, and [. . .]αβ are Nambu spinor indices. The
T matrix represents the solution to the scattering problem
T̂ = V̂ + V̂ Ĝ0T̂ for N impurities of identical potential V̂i

at Ri . Note that here we have already made an important
approximation, neglecting Umklapp processes (that is, using
one argument in the bare Green’s functions instead of two).
We will discuss this approximation in Appendix A1.

It was shown in Refs. [13] and [14] that the poles of
the many-impurity response (change in LDOS) are identical
to the single-impurity problem, although the weights may
differ substantially. In addition, in the limit of weak impurity
potentials, the response for the two problems are identical
modulo a disorder-dependent factor [13]. For clarity, we
therefore consider the simpler problem and present results for
a single impurity, and replace the full T matrix by T̂ij → t̂i δij ,
with t̂i = [1 − V̂iĜ

0(r = 0)]−1V̂i .
It was shown in Ref. [15] for simple metals, and gen-

eralized to unconventional superconductors by Ref. [16],
that information about the pure electronic system could be
extracted from STS measurements by examining the Fourier
transform of dI/dV maps. The Fourier transform of the LDOS
is ρ(q,ω) = ∑

r∈L×L e−iq·rρ(r,ω), where L × L is a square
set of L2 positions at which measurements are made, and
q = 2π (m,n)/L are vectors in the associated reciprocal lattice.
The result for a single band is then

δρ(q,ω) = 1

π
Im

∑
k

[Ĝ0(k,ω)t̂(ω)Ĝ0(k + q,ω)]11

= 1

2
Tr Im

∑
k

(τ0 + τ3)Ĝ0(k,ω)t̂(ω)Ĝ0(k + q,ω).

(1)

Here, τ̂i ,i = 0,3 are the Pauli matrices spanning Nambu space.

B. Two-band model: q-integrated LDOS peaks

Several works have already established the basic general-
ization of (1) to multiband models [10,17–21]. The qualita-
tively new aspect is that impurities can scatter quasiparticles
between bands, and if the state is of s± type, between bands
where the superconducting order parameter �k has opposite
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sign. The various types of scattering processes can then be
classified according to whether they connect portions of the
Fermi surface with different gap sign or not, as was done
previously in the cuprates [5,7,22]. Without loss of generality
for our qualitative purposes, we consider a pointlike scatterer
with Nambu and band space potential V̂μν(k,k′) � ∑

α V α
μντα ,

with band indices μ,ν = h,e, where h and e are just band
indices, although for typical Fe pnictides they correspond
to hole and electron pockets, and τ3 and τ1 correspond,
respectively, to nonmagnetic and Andreev scattering, which
we discuss separately. Weak, purely magnetic scatterers do not
couple to the spin-averaged local density of states measured
by a typical STM experiment, so we ignore this possibility
for the moment (while in Ref. [7] it was incorrectly suggested
that magnetic scattering contributes to QPI with a different
coherence factor, this mistake was corrected in a later paper
by the same authors [23]). Note that the generalization to 3
or more bands in the Fe-based systems is straightforward and
should not change our basic conclusions.

In the Fe-based systems, the Fermi pockets corresponding
to bands 1 and 2 are well-separated in momentum space and
generally have small radius. It is therefore reasonable to expect
that isolated spots of scattering intensity will be observed
generically at small q, corresponding to intraband scattering
processes, and at large q, corresponding to interband [11]. The
intraband term is a simple sum of the one-band expression
applied to each band separately,

δρ(q∼0,ω) = 1

2
Tr Im

∑
kν

(τ0+τ3)Ĝ0
ν(k,ω)t̂νν(ω)Ĝ0

ν(k+q,ω).

(2)

The form of t̂μν(ω) is known for simple cases [24] but can
be a complicated function of the various integrated Green’s
function components, so we do not specify it here. Full
expressions are given in Appendix A3.

Suppose now that we wish to calculate the total weight in
the small q QPI spot as a function of frequency, defined to be

δρintra(ω)

= 1

2
Tr Im

∑
k,q∼0,ν

(τ0 + τ3)Ĝ0
ν(k,ω)t̂νν(ω)Ĝ0

ν(k + q,ω)

≈ 1

2
Tr Im

∑
k,q,ν

(τ0 + τ3)Ĝ0
ν(k,ω)t̂νν(ω)Ĝ0

ν(k + q,ω)

= 1

2
Tr Im

∑
k,k′,ν

(τ0 + τ3)Ĝ0
ν(k,ω)t̂νν(ω)Ĝ0

ν(k′,ω), (3)

where in the second step we extended the sum over the small
range of q around q = 0 to the full Brillouin zone, since the
product of two Green’s functions from the same band is sharply
peaked at small q for small ω. In the last step, we expressed the
double k sum as independent sums over the Nambu Green’s
functions, which then decouple provided that t is momentum
independent, as we have assumed for the moment. In the
simplest approximation with a flat DOS near the Fermi level,

the integrated matrix Green’s function is∑
k

Ĝ0
ν(k,ω) � iπρν

ωτ0 + �ντ1√
ω2 − �2

ν

. (4)

Thus one can use Eq. (4) to perform all momentum integrations
in Eq. (3) and obtain closed form expressions for the intraband
q-integrated LDOS weight δρintra(ω) or the corresponding
interband quantity describing scattering between two pockets
separated by q0,

δρinter(ω) ≡1

2
Tr Im

∑
q∼q0

δρ(q,ω)

=1

2
Tr Im

∑
k,k′,μ 	=ν

(τ0 + τ3) Ĝ0
μ(k,ω)t̂μν(ω)Ĝ0

ν(k′,ω).

(5)

Note that we also performed a calculation for the lattice
(momentum-resolved) model with two bands, giving parabolic
like electron and hole band dispersions near the � and the
M points of the Brillouin zone. The results are shown in
Sec. III. Most importantly, the main features, especially the
T dependence of the antisymmetric correction to the LDOS
and its frequency dependence, allowing one to distinguish s++
and s± superconducting gaps, continue to hold.

III. RESULTS: WEAK POTENTIAL SCATTERERS

A. T = 0 frequency dependence

To complete the solution, the t matrix for a given impurity
type must be specified. Here we argue that the basic qualitative
features of the QPI patterns that are sensitive to the sign
change of the order parameter (or lack thereof) depend only
on the Nambu space structure of the t matrix, which can be
extracted by constructing the components of the conductance
properly symmetrized and antisymmetrized with respect to
bias. They do not depend on the detailed energy dependence
of the complex t matrix, except insofar as impurity bound states
are created within the gap. Even in this case, the question of
s± or s++ can be decided by means described below.

We show this by first considering the case of constant t

matrix, valid for weak (Born) impurity scattering. While in
general t̂ has several Nambu components depending on the
type of scattering, superconducting state and impurity phase
shift, it is instructive to focus on one Nambu component at a
time. For example, if t̂ = t3τ3, as, e.g., for a weak nonmagnetic
scatterer, then

δρintra(ω) ≈ −π2

2
t3

∑
ν

ρ2
ν Im

× Tr(τ0 + τ3)(ωτ0 + �ντ1)τ3(ωτ0 + �ντ1)

ω2 − �2
ν

= 0, (6)

in other words, within this approximation, there is no change in
the small-q integrated Fourier transform density of states due
to a nonmagnetic intraband scatterer, regardless of the relative
sign of the two gaps �h,e. The same is not true in general of
the interband contribution δρinter(ω) ≡ 1

2 TrIm
∑

q∼q0
δρ(q,ω),
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FIG. 1. Integrated interband density of states δρinter/(t3ρ1ρ2) for
constant (weak) τ3 t matrix. Gap magnitudes are |�1|/Tc = 3,
|�2|/Tc = 2, and artificial broadening η = 10−3. Solid line: s± state.
Dashed: s++. All other components of δρ are zero for this case.

where q0 is the wave vector connecting the two Fermi surface
pockets. In this case we have, again for the τ3 component of
the t matrix,

δρinter(ω) ≈ − 2π2t3ρhρeIm

× Tr(τ0 + τ3)(ωτ0 + �hτ1)τ3(ωτ0 + �eτ1)√
ω2 − �2

h

√
ω2 − �2

e

= − 2π2t3ρhρeIm
ω2 − �h�e√

ω2 − �2
h

√
ω2 − �2

e

, (7)

which is manifestly nonzero for |�e| < ω < |�h|. Further-
more it is easy to show that in the limit when the two
gap magnitudes become equal, |�e| → |�h|, there are two
distinct cases. For an s± state, sgn �h�e < 0, δρinter(ω) =
−2π2ρ1ρ2�hδ(ω − |�h|), while for an s++ state, δρinter → 0.
In the more general case with �h 	= �e, the interband response
in the s± case remains generically much larger than that
in the s++ case, with weight concentrated between the two
energies ω = |�h|,|�e|. In Fig. 1, we plot the interband
frequency-dependent q-integrated LDOS change for a model
constant τ3 t matrix to illustrate this difference. Note not only
the change in sign of the s++ response due to the numerator
of (7), which vanishes at an energy corresponding to the the
geometric mean of the two gaps in this case, but also the overall
small scale.

For a realistic scatterer, the Born limit results given
above are no longer adequate, and the t matrix acquires
components in all Nambu channels. It is instructive to consider
the response of the system to a scatterer with constant t

matrix in each of these channels, even if none of these cases
corresponds to a physical situation with the exception of the τ3

TABLE I. Possibility of singular integrated QPI intensity (Fourier
transformed density of states) in the symmetric (+) and antisymmetric
(−) channels for s++ and s± superconductors. Here, τα indicates the
presence of a strongly enhanced response for an assumed constant
t matrix in the α Nambu channel, and the × indicates the absence
of one. Magnetic impurities have Nambu symmetry τ0σz and do not
modulate the total LDOS within the Born approximation (see text).

intra inter

s++ δρ(+) τ0,τ1 τ0,τ1

δρ(−) × ×
s± δρ(+) τ0,τ1 ×

δρ(−) × τ3

(weak potential) scatterer.1 One can define the experimentally
accessible quantities

ρ
(±)
intra
inter

(ω) = ρ intra
inter

(ω) ± ρ intra
inter

(−ω),

and use them to make clear qualitative predictions for the
existence or nonexistence of a strong QPI response in the
various channels that are independent of the type of scatterer,
as summarized in Table I. These features will also correspond
to peaklike features in the T dependence of the integrated QPI
intensity, as we discuss below. In particular, it is easy to see that
the τ0 component of the t matrix reverses the responses of s++
and s± compared to the τ3 scatterer. For the intraband part, we
get immediately δρintra(ω) = −π2t0

∑
ν ρ2

ν�νδ(ω − |�ν |) for
both s± or s++. The interband processes contribute 0 for an s±
state and −2π2ρhρe�hδ(ω − �h) for an s++ state. Finally, for
a single impurity with constant t matrix in the τ1 channel, one
easily finds that the intraband symmetric densities of states
δρ+

intra are singular. The antisymmetric interband density of
states δρ−

inter vanishes identically, but the symmetric part δρ+
inter

can be large. The weight is proportional to ω(�h + �e), so
taking our limit |�h| → |�e| for qualitative comparison as
above, we see that the s++ case is singular while the s± case
vanishes.

Although a generic nonmagnetic impurity has all Nambu
components of the t-matrix, which will mix these behaviors,
they can be isolated to some extent by constructing the sym-
metrized and antisymmetrized densities of states, respectively,
as suggested by Maltseva and Coleman [7,23]. This is because
the τ3 component of the t matrix generates only odd frequency
changes to the density of states to all orders in perturbation
theory, and the τ0 and τ1 component only even ones. The τ2

component does not contribute to the change in the Fourier
transformed LDOS to all orders in perturbation theory simply
because of the Trace over Nambu matrices, together with
the assumption that the gaps are real (i.e., appear with τ1).
Furthermore, this statement is correct even if the particle-hole
symmetry is broken (i.e., the normal part of the Nambu Green’s
functions has an additional τ3 component).

1In a d-wave superconductor, the large impurity potential limit
yields t̂ ∝ τ0, but in an s-wave system the nonvanishing integrated
anomalous Green’s functions generate τ1 and τ2 terms as well.
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FIG. 2. Thermally averaged interband q-integrated LDOS change
within constant density of states and constant t-matrix approximation
for weak nonmagnetic scatterer with τ3 (Born limit) potential. The
external frequency � was taken to be 2.5 in units where |�1| and
|�2| were 3.0 and 2.0, as in Fig. 1. Shown is antisymmetrized LDOS
〈δρ−(�)〉 for s++ (dashed) and for s± state (solid). Symmetrized
components are zero for both states.

B. Thermal average: STM observable

Our intention is to make clear qualitative predictions for
observable quantities in STM experiments. Thus far, we have
shown only the T = 0 results for the artificial case of a constant
real t matrix. In any measurement at finite temperature,
the conductance will be related to the change in LDOS δρ

convolved with a thermal factor weighting the contribution
of different electronic states to the current. The conventional
result [25], translated into our notation, is

〈δρ±(�)〉 ≡
∫ ∞

−∞
dωδρ±(ω)

[−∂f

∂ω
(ω + �) ± −∂f

∂ω
(ω − �)

]
.

(8)

In Fig. 2, we plot the nonzero antisymmetrized q-integrated
density of states for the interband QPI peak in both s++ and
s± states in this simple approximation. Measurement of the
antisymmetric components of the interband density of states
alone should suffice to qualitatively distinguish the two states.
Note that the clearest results are obtained when the STM bias
corresponds to an energy between the two gap energies, which
can be identified from local tunneling spectra.

It appears at first glance from Table I that measurement
of the symmetrized interband q-integrated LDOS might also
distinguish the two states. However, it is important to stress
here that there is no physical impurity in the case of an s-
wave superconductor corresponding to a situation where the
t matrix is entirely of τ0 type; other components of the t-
matrix are mixed at strong impurity potentials. This we show
below for the realistic Coulomb screened impurity potential.
In particular, we will show that very little difference between
s++ and s± will be observed in the symmetrized channel for
realistic situations. We therefore believe that the symmetrized
channel should be ignored in the analysis of STM data.

It is useful to observe that the temperature dependent
average conductances predicted here bear no relation to the
standard forms one might expect were quasiparticle interfer-
ence really described by conventional coherence factors, as
anticipated in Refs. [7] and [23]. This issue is discussed in
some length in Appendix A2.

IV. GENERAL SCATTERING POTENTIALS

A. Realistic screened Coulomb potentials

The t matrix for a single impurity is given by

t =
[

1 − Uτ3

∑
k

G(k,ω)

]−1

τ3U, (9)

where the integrated matrix Green’s function given in Eq. (4)
can be further rewritten as (

∑
k Ĝ(k,ω))

νν
= gω,ντ0 + g�,ντ1

for each of the bands. The scattering potential matrix U can
be then separated into intraband Ûaa = Ûbb = Uintraτ0 and the
interband Ûab = Uinterτ0 term.

We have shown that a constant t matrix in the Born limit
leads to a clear prediction of QPI intensities enabling one to dis-
tinguish s++ from s± states. For intermediate to strong scatter-
ers, however, the t matrix is complex and frequency dependent,
and includes τ1 and τ2 components in addition to τ0 and τ3. One
may thus be concerned that our conclusions may not be gen-
eral, given that one does not know a priori the strength of impu-
rities giving rise to the QPI signal. We therefore present results
for the full t matrix of a single impurity of arbitrary strength
and intra- versus interband scattering potential, within the flat
normal state DOS approximation [Eq. (4)]. Since for large q

a screened Coulomb potential falls off like 1/(q2
T F + q2), and

screening lengths 2π/qT F are of order the unit cell size, real-
istic interband scattering potentials are smaller than intraband
potentials. We therefore begin in Fig. 3 by fixing Uinter =
0.2 Uintra for various strengths of Uintra. To analyze these
results, it is useful to identify exactly what terms distinguish
s++ and s± states. In the simple pedagogical example with
which we began, there were no such terms in the intraband scat-
tering channel, Eq. (6), and one term in the antisymmetrized
interband channel expression for δρ−

inter Eq. (7) proportional to
�h�e. The full result in the general scattering potential case
is given in the Appendix A3, but we find analogously that
the intraband LDOS has no proportionality to terms sensitive
to sign changes. In the interband channel, there are no �h�e

terms in the symmetrized LDOS, whereas the antisymmetrized
LDOS δρ−

inter still contains only a single term proportional to

U1Im
�h�e√

ω2 − �2
h

√
ω2 − �2

e

, (10)

i.e., precisely the same expression as in the simpler example of
the Born limit. All terms will be multiplied by the denominator
of the full t matrix, of course, which also contains terms that
weakly distinguish s++ and s± states, but this does not alter
our qualitative conclusions.

In consequence, we find that the singular behavior of δρ−
inter

in the s± case is preserved until the unitary limit is reached.
In Sec. IV C below, we exhibit the experimentally observable
consequences of this effect.
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FIG. 3. (Color online) Integrated density of states components
δρ±

intra,inter for “realistic” screened Coulomb scatterers Uinter =
0.2Uintra, for Uintra = 0.01 [(a) and (b)], 0.2 [(c) and (d)], and 10
[(e) and (f)]. Dashed curves correspond to s++ state, solid curves to
s±. Red and black are even and odd components of the LDOS, δρ+

and δρ−, respectively. Left panels represent intraband, right panels
interband scattering channels, respectively.

B. Role of bound states

In the cases discussed in Fig. 1, no impurity bound states
are visible in the subgap region below |�e| = 2. In general,
the formation of impurity bound states in a multiband system
is more complicated than in a one-band superconductor, and
it has been argued that such states are indeed nongeneric,
requiring fine-tuning of the potential to produce a bound
state below the lower gap edge [1,26]. In the two-band
model, subgap bound states are found only in a very narrow
interval around a line Uinter(Uintra) in impurity potential space
which approaches Uinter = Uintra for strong impurities [1]. We
therefore discuss the case Uinter = Uintra separately here.

Figures 4(a) and 4(b) essentially reproduce the results of
Fig. 3 for a weak scatterer. With increased scattering strength,
however, bound states are formed in the s± case, as seen in
Fig. 4(d). If the bound state is at low energy, it steals so much
weight from the coherence peak LDOS that the hierarchy
of intensities represented in Table I becomes a bit difficult
to distinguish. To use QPI as a definitive qualitative tool, it
may therefore be necessary to consider only systems without
impurity bound states in the gap, which occurs sometimes, or
to mask the impurities that give rise to bound states in the
spatial window used for the Fourier transform. Of course,
the observation of bound states in and of itself is strong
evidence for s± pairing, provided the nonmagnetic character
of the impurities can be reliably assumed. If no bound states
occur, the hierarchy of LDOS moments of Table I is clear
[compare Figs. 3(c) and 3(d)].
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FIG. 4. (Color online) Integrated density of states components
δρ±

intra,inter for isotropic scatterers Uintra = Uinter for Uintra = 0.01 [(a)
and (b)], 0.2 [(c) and (d)], and 10 [(e) and (f)]. Dashed curves
correspond to s++ state, solid curves to s±. Red and black are even
and odd components of the LDOS, δρ+ and δρ−, respectively. Left
panels represent intraband, right panels interband scattering channels,
respectively.

In the unitary limit, Figs. 4(e) and 4(f) the bound state
has already moved through the gap and the basic hierarchy is
again preserved. Note that for this simple band, this limit is
essentially achieved already for potentials of order Tc.

C. Finite temperatures

For transparency, we now remove from consideration
those components of the q-integrated LDOS which are not
qualitatively affected by a gap sign change, and plot in Fig. 5
the thermally averaged, antisymmetrized, interband integrated
LDOS for the two states s++ and s±, Eq. (8). Here we have used
the standard BCS type T dependence for both superconducting
gaps. Thermal averaging has the effect of removing many
of the sharp spectral features at the gap edge, as discussed
pedagogically for the case of a constant t matrix in Fig. 2
above. It is clear that the temperature dependent signal in the
s± case is huge and characteristic, whereas in the s++ it is
small and featureless. Note that the slight decrease of 〈δρ−

inter〉
occurs when the width of the peaks in the δρ−

inter becomes
comparable to the thermal broadening of the derivative of
the Fermi function. It is also clear that the T dependencies
do not resemble the classic BCS T dependencies arising
from coherence factors in, e.g., NMR relaxation and acoustic
attenuation cases (see Appendix A2). We propose that the
measurement of 〈δρ−

inter〉 versus temperature is therefore the
clearest way of identifying a gap sign change using QPI.
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FIG. 5. Thermally averaged antisymmetrized interband q-
integrated LDOS change 〈δρ−

inter〉(�) for nonmagnetic scatterers
with parameters Uinter = 0.2Uintra, with full t matrix. The external
frequency �/Tc = 2.5, with |�1|/Tc and |�2|/Tc taken as 3.0 and
2.0, respectively. (a) refers to the weak potential Uintra = 0.01. Shown
are antisymmetrized LDOS 〈δρ−(�)〉 for s++ (dashed) and for s±
state (solid). (b) shows the same for intermediate strength potential
Uintra = 0.2. Here we have used the standard BCS type behavior for
both superconducting gaps.

D. Comparison with experiment

We have shown in the previous section that the temperature
dependence of the antisymmetrized integrated LDOS is a
sensitive measure of the gap sign change in a superconductor,
although it does not reduce in any limit to the BCS-type
temperature dependence expected from coherence factors.
Here we comment on the results of Chi et al. [11] on LiFeAs,
who neither symmetrized their integrated conductance maps,
nor made use of the sign of the LDOS change, but nevertheless
obtained what appeared to be a distinct qualitative result.
Shown in Fig. 6 are the expected |〈δρinter,intra〉(�)| for both
s± and s++ states within our model, with the two gap
scales indicated. While the overall behavior is somewhat
complicated, one can see that it is indeed the case, as inferred
by the authors of Ref. [11], that the bias dependence for an s±
state immediately below the upper gap scale |�h| is opposite
for the intra- and interband contributions, while it is the same
in the case of an s++ state. Note further that had one not known
the gap scales exactly, distinguishing between the two states on
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FIG. 6. (Color online) Absolute magnitude of thermally aver-
aged unsymmetrized interband (black) and intraband (red) q-
integrated LDOS changes |〈δρinter,intra〉(�)| for s++ (a) and s± (b)
vs �/Tc for nonmagnetic scatterers with parameters T = 0.2Tc and
Uinter = 0.2Uintra, with full t matrix, and |�1|/Tc and |�2|/Tc taken as
3.0 and 2.0, respectively. � = |�1| and |�2| are indicated by dashed
lines.
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FIG. 7. Thermally averaged LDOS changes for antisymmetric,
interband channel, |〈δρinter,intra〉(�)| vs �/Tc. Curves shown are for
nonmagnetic scatterers with parameters T/Tc = 0.1 (a), 0.3 (b), 0.6
(c), 0.9 (d) and Uinter = 0.2Uintra, with full t matrix, and |�1|/Tc and
|�2|/Tc taken as 3.0 and 2.0, respectively. � = |�1| and |�2| are
indicated by dashed lines. Solid curve: s±. Dashed curve: s++.

the basis of this type of measurement might have been difficult:
the relative magnitudes of intra-and interband contributions
are probably not to be taken seriously, since it is difficult to
subtract the q weight of the homogeneous system from the
intraband. The gap scales are presumed to be known from STM
experiment from direct measurements of the coherence peaks
in the real space local conductance ∝〈δρ〉(r,�), but they will
be shifted somewhat from the underlying values by thermal
smearing and gap anisotropy. The former type of shift is even
evident in Fig. 6. In case of more than two distinct gap values
the results are even more muddled. These caveats are among
the reasons why we propose that a T -dependent measurement
at fixed frequency, ideally between the two gap scales, should
be a more sensitive measure of the gap sign change.

To illustrate what one should expect, we now plot in Fig. 7
the antisymmetric component of the interband LDOS as a
function of bias �, for different temperatures. This is the
quantity that should show the most prominent difference
between s++ and s±. In particular, this component for
the s++ case should exhibit a sign change at a frequency
corresponding to the geometric mean of the two gap scales,
while s± has a finite large value there. With further increase
of the temperature, the main features decrease in amplitude
but should remain detectable. We expect that this will be the
typical behavior seen in experiment.

E. Effect of particle-hole asymmetry:
momentum-resolved Green’s functions

To complete our analysis, we also performed a calculation
assuming a lattice based model with two bands, giving
parabolic like electron and hole band dispersions near the
� and the M points of the Brillouin zone. In particular,
we consider the simplest band topology of the iron-based
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superconductors with hole band, εh(k) = μh − k2

2mh
, centered

near the � point of the Brillouin zone and the electron
band, εe(k) = (k+Q)2

2me
− μe, centered near the M point of the

Brillouin zone [Q= (π,π )]. Here, we set 1
2mh

= 1
2me

= 34 and
μe = −10.6, μh = 9.4 (all in the same units of energy as
for the momentum independent model). The most important
part introduced by the lattice based models is the electron hole
asymmetry in the normal part of the Nambu Green’s functions,

Ĝ0
ν(k,iωn) � − iωnτ0 + εν(k)τ3 + �ντ1

ω2
n + �2

ν + ε2
ν(k)

. (11)

Substituting the Green’s function for the electron and hole
bands, Eq. (11) into Eqs. (3), (5), and (9) we computed the
interband and inraband corrections to the LDOS similar to the
main text. In Figs. 8–10, we show the corresponding results
for the integrated density of states components δρ±

intra,inter, ther-
mally averaged antisymmetrized interband q-integrated LDOS
change 〈δρ−

inter〉(�), and thermally averaged LDOS changes
for antisymmetric, interband channel, |〈δρinter,intra〉(�)| versus
�/Tc, respectively. Despite some differences, the main fea-
tures that allow one to distinguish s++ and s± superconducting
gaps continue to hold also if one uses more realistic Green’s
functions. We believe this happens because the electron and
hole Fermi surfaces and corresponding gaps are well separated
in q space. This allows one to disentangle intra- and inter-band
scattering processes in the normal and superconducting states
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FIG. 8. (Color online) Integrated density of states components
δρ±

intra,inter for isotropic scatterers Uinter = 0.2Uintra for Uintra = 0.01
[(a) and (b)], 0.2 [(c) and (d)], and 10 [(e) and (f)] (all in units of
energy as in the main text), computed for momentum resolved Green’s
functions, Eq. (A14). As in Fig. 3, the dashed curves correspond to s++
state, solid curves to s±. Red and black are even and odd components
of the LDOS, δρ+ and δρ−, respectively. Left panels represent
intraband, right panels interband scattering channels, respectively.
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FIG. 9. Thermally averaged antisymmetrized interband q-
integrated LDOS change 〈δρ−

inter〉(�) for nonmagnetic scatterers
with parameters Uinter = 0.2Uintra, with full t matrix and momentum
resolved Green’s function, Eq. (A14). The external frequency �/Tc =
2.5, with |�1|/Tc and |�2|/Tc taken as 3.0 and 2.0, respectively.
(a) refers to the intermediate potential Uintra = 0.2. Shown are
antisymmetrized LDOS 〈δρ−(�)〉 for s++ (dashed) and for s± state
(solid). (b) shows the same for the larger strength potential Uintra = 10.
As in Fig. 5, here we have used the standard BCS type behavior for
both superconducting gaps.

clearly, as found in most of the ferropnictides. In particular,
we observe that the actual T/Tc dependence for the s±-
wave symmetry shows a nonmonotonic dependence which
is reflected in the peaklike structure at small T/Tc values
and corresponding downward behavior at low T/Tc values.
This is absent for the s++-wave symmetry. In addition, we
see from Fig. 10 that the antisymmetrized STM signal for
|�1| � � � |�2| has one sign for s± and changes sign for
s++. Therefore we believe that these two key features can be
observed in the experiments.
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FIG. 10. Thermally averaged LDOS changes for antisymmetric,
interband channel, |〈δρinter,intra〉(�)| vs �/Tc. Curves shown are for
nonmagnetic scatterers with parameters T/Tc = 0.1 (a), 0.3 (b), 0.6
(c), 0.9 (d) and Uinter = 0.2Uintra (Uintra = 0.2), with full t matrix,
momentum-resolved Green’s functions, Eq. (A14), and |�1|/Tc and
|�2|/Tc taken as 3.0 and 2.0, respectively. � = |�1| and |�2| are
indicated by dashed lines. Solid curve: s±. Dashed curve: s++.
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F. Remarks on magnetic and τ1 (“vortex”) scatterers

A weak “magnetic impurity” represented by an isolated
classical spin that couples via exchange to conduction electron
spin density may be written in Nambu space as Vspinτ0σ3,
where σ3 is the Pauli matrix in spin space. Within the
Born approximation, the change to the up-spin LDOS will
cancel that of the down-spin LDOS. Higher-order magnetic
scatterings will produce effects, but since in general a chemical
substituent with a magnetic moment will have a nonmagnetic
scattering potential much larger than its magnetic one, we
ignore this effect here. Including transverse spin couplings (or
deep d or f levels within an Anderson model approach) will
result in Kondo physics which obviously produces interesting
effects on the density of states, including Kondo resonances
near the Fermi level, with concomitant influence on QPI;
these have been recently discussed elsewhere [27]. Similar
effects on the QPI would be expected when the Yu-Shiba
bound state is induced by the magnetic impurity. In order to
draw qualitative conclusions regarding gap symmetry using
the methods described here, samples or regions of samples
displaying Kondo and/or Yu-Shiba bound state resonances
should be excluded.

Scattering in the τ1, or Andreev channel has been discussed
in several contexts in the field of unconventional supercon-
ductivity. Chemical impurities suppress the order parameter in
their vicinity, creating an effective off-diagonal local potential
which contributes to the scattering of quasiparticles [28,29].
Normally these effects are ignored, e.g., in standard t matrix
calculations, or treated as weak, but under some circumstances
they can become important. If an impurity has the effect
of enhancing the pairing locally, as occurs in some models
[30–34], the τ1 potential component of an impurity can be
significant and even control the behavior of the conductance
spectrum and map [31].

The order parameter is also suppressed near vortex cores,
and Pereg-Barnea and Franz suggested that this fact could
be used to provide a method of controlling disorder and
distinguishing gap symmetries in situ, provided the vortex
lattice were sufficiently disordered [6]. Here we do not discuss
τ1 chemical impurities in detail, as we are focussed primarily
on qualitative aspects of QPI, but we discuss the oft-repeated
statement that the effect of the disordered vortex lattice,
represented by a random, tunable set of τ1 scatterers can
distinguish sign-preserving and sign-reversing QPI peaks. It
is believed [7,8,11] that the peaks whose weight is enhanced
in a field correspond to sign-preserving peaks, while those
whose weight is suppressed by a field are sign-reversing.

In fact a clear statement to this effect is difficult to make.
As we showed in Sec. III A, τ1 impurities indeed enhance
the QPI signal in the intraband channel, which represents
sign-preserving scattering for both superconducting states
considered. In addition, Table I also shows that the sign-
preserving interband scatterings in the s++ case give rise to
an enhancement. There is no indication of a suppression with
field in the sign-reversing (s± interband) case, however. This
apparent discrepancy was noted already by Pereg-Barnea and
Franz [6], who suggested that the disordered vortex lattice led
to a random phase potential experienced by quasiparticles,
which might give rise to an overall suppression of the
QPI signal. Such a “background” suppression could then

be overcompensated by the singular enhancements of the
sign-preserving scattering wave vectors. There is, however,
no calculation to support this assertion, so statements about
determining gap symmetry from QPI peaks in unconventional
superconductors from their field behavior should be treated
with caution (see also the discussion in Appendix).

G. Application to other states; nodeless d wave

While for pedagogical reasons we have restricted ourselves
to two bands, isotropic gaps, and either s++ or s± states,
the concepts we have discussed are clearly applicable to
more general situations. The interband entries of Table I
labeled s++ apply generally to gap sign preserving transitions
between bands, and those labeled s± apply to sign-changing
ones. The obvious example under discussion in the Fe-based
superconductivity field is the putative d-wave state in systems
with no hole pockets but four electron pockets at the (±π,0)
and (0,±π ), initially proposed for the alkali-intercalated FeSe
materials [35,36]. In addition to Bragg scattering and small q

intraband scattering, interband scattering should give rise to
rings of scattering intensity around q = (0,±2π ) and (±2π,0),
as well as around (±2π,±2π ). Predictions for intraband scat-
tering weights will be identical to those listed for s± in Table I.

V. CONCLUSIONS

In this paper, we have argued that the task of identifying
order parameter symmetries in unconventional superconduc-
tors via QPI measurements is unlikely to be successful if it
relies, as in the past, on comparisons of theoretical conductance
maps with experiment. This is because there are too many
unknown parameters, particularly in multiband systems, to
allow for a quantitative theory of QPI. It is possible that
this situation can be improved to some extent by ab initio
based calculation of the density of states away from the metal
surface, including an isolated impurity. This would be however
time consuming and would still not eliminate all quantitative
assumptions. On the other hand, in systems like the Fe-based
superconductors, where one can clearly identify QPI peaks
related to intra- and interband scattering, the temperature
dependence of the integrated weights of these peaks can
provide a robust qualitative means of detecting order parameter
sign changes that can be used to determine its structure.

We have focused our attention on a model of a two-band
system with two distinct gaps �, and shown that the most sensi-
tive way to distinguish scattering processes connecting gaps of
same or different sign is to operate with STM bias in the energy
region between the two gap scales, identification of which is a
relatively simple experimental task. We have then shown that
the T -dependent response of the symmetrized and anitsym-
metrized combinations of the conductance for both intra- and
interband scattering provide a characteristic signature of a gap
sign change or lack thereof. These temperature dependencies
do not, as suggested by previous works, correspond to thermal
averages of simple BCS coherence factors, but are somewhat
more complicated. In particular, we find that the effect is
strongest at low temperatures, and not near Tc, in contrast to
the expectation assuming coherence factors. Although we have
focused on the question of distinguishing s± and s++ states in
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the FeSC, it is clear that similar arguments can be made for
sign-changing gaps in other contexts, for instance a putative
d-wave state in FeSC materials with electron pockets only.

In the past, most QPI experiments have focused on the
power spectrum of the LDOS, in other words the absolute
magnitude of the density of states Fourier transform |δρ(q)| or
related ratios of this quantity, so-called Z or R maps. We have
shown here that measurement of the signed symmetrized and
antisymmetrized QPI maps are crucial to extract symmetry
information in the absence of detailed knowledge of the
impurity potentials, which is usually the case. This effect
persists up to Tc.

The existence of order parameter bound states is one aspect
which must be treated with care in such a measurement, as
we have shown that they tend to steal weight from the spectral
region where the characteristic distinctions are most visible. Of
course if one has a clear indication of a bound state induced
by a nonmagnetic impurity, it is already a strong indication
of a sign-changing order parameter. Nevertheless, additional
complementary evidence can be obtained by performing the
analysis suggested here while masking the regions containing
the bound states before Fourier transforming.

Finally, we have discussed the commonly used method
of distinguishing gap symmetries by observing the magnetic
field dependence of QPI peaks and identifying sign-preserving
scattering wave vectors as those corresponding to peaks that
increase with field, and sign-changing ones with those that
decrease with field. This analysis, while appealing and possibly
correct in some cases, is based on a questionable analogy
of vortices as pointlike Andreev scatterers that may fail for
several reasons, including if the vortex lattice is too ordered
or coherence lengths too large. In addition, while we can
understand within the work presented here why some QPI
peaks can be enhanced by the magnetic field, there is no firm
theoretical ground for interpretation of those peaks that are
suppressed.
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APPENDIX

1. Remarks on the Bragg peaks and the 1-Fe versus 2-Fe
Brillouin zone

The electronic structure of the iron-based superconductors
can be described exactly in the Brillouin zone corresponding

to a 2-Fe unit cell, or approximately in the twice larger
one, corresponding to a 1-Fe cell [1]. In the former case,
the intraband scattering create a QPI spot near the zone
center (q ≈ 0), and an intraband one near zone corners
(q ≈π/a,π/a), where a is the lattice parameter of the 2-Fe
cell, a = d

√
2, and d is the Fe-Fe bond length. In the

experiment, the QPI signal is invariably mixed with the Bragg
peaks, resulting from electrons scattering off the regular crystal
lattice. It is important to understand that, just as in x-ray
scattering, while the density of states ρ(q) is peaked at each
reciprocal lattice G, the intensity of each q + G component
depends on G, and generally decays with |G|, and the same
is true for the QPI spectra. In other word, when we say that
the intraband spot is located around q = 0, it is implied that
there are also spots near all q = G, albeit with a reduced
intensity.

Now, let us use the 1-Fe cell, and a twice larger Brillouin
zone. In this setting, there are spots near q1 ≈ 0, near
q2 ≈ π/d,0, and two overlapping spots near q3,4 ≈ π/d,π/d.
Three of them, the first one and the last two, are located at 2-Fe
reciprocal lattice vectors. Of course, this means that as long as
we include scattering off the pnictogen or chalcogen sublattice,
each of these peaks will generate shadow peaks at all other
reciprocal lattice vectors. Experimentally, however, they will
be clearly distinguishable: the q1 peak will be most intensive
at G = 0, while q3,4 will actually be stronger at G = 0,±π/a

and ±π/a,0 (in the reduced zone). The spots near q2 will
not be affected by the downfolding procedure, as for this
particular vector the sublattice scattering will not generate any
shadows.

This may seem to be of academic importance, but it may
have considerable practical ramifications. Indeed, while for
Fe-based superconductors, as mentioned, there is no problem
separating the hole-hole and electron-electron scattering from
the hole-electron one, the scattering between two inequivalent
electron pockets in the 2-Fe zone is seemingly indistinguish-
able from the intraband scattering, and, as the latter, overlaps
with the Bragg peaks. But, as discussed above, the intraband
scattering will be stronger at that half of the reciprocal lattice
vectors that coincide with those reciprocal lattice vectors of
the 1-Fe cell, while the interband electron-electron scattering
will be stronger at the other half of the G vectors. This, of
course, makes the signatures of the order parameter signs
discussed in the main text weaker, but does not destroy them.
Moreover, several papers recently suggested a possibility of
the order parameter sign change between different hole bands
[37,38] in particular, between the two bands formed by the xz

and yz orbitals and the one with predominantly xy character.
In the 2-Fe zone, they both occur at the zone center and
thus seem indistinguishable. However, a closer look reveals
that the first two bands generate a spot that is located at
the zone center in both 1-Fe and 2-Fe zones, while the
scattering between xz/yz and xy pockets, in the 1-Fe zone
occurs near the zone corner. While both processes will create
“shadows” at all 2-Fe reciprocal lattice vectors, the former
will be stronger at one half of the vectors, and the other at
the other half, again allowing to use QPI to assess the above
hypothesis.

Finally, the very fact that some of the nontrivial QPI spots
are overlapping with Bragg peaks is not a disadvantage, but
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just the opposite. As pointed out by Hanaguri et al. [8],
the Bragg peaks are much sharper then the QPI maxima,
and have distinctly different profiles, which allows them to
be separated. Note that the mechanism that is supposed to
generate a QPI dependence on the external magnetic field
should not operate on the Bragg peaks, whether in the normal
or superconducting state. Thus, if not only the QPI, but also
the Bragg peaks demonstrate a strong field dependence (as
was in fact the case in Ref. [8]), this strongly suggests that
the field dependence of the QPI spectra is also not directly
related to scattering off Abrikosov vortices. Given the caveats
described in the main text, this capability appears rather
useful.

2. Coherence factors

We remarked in the introduction that there is an expectation
shared by many in the STM community that the temperature
and bias dependence of QPI signals will follow simple BCS
coherence factors. This is based in part on Refs. [7] and
[23], which expressed the change in the Fourier transform
density of states as an integral over such factors, written
explicitly, for instance, for the antisymmetrized response and
Born scattering, as (ukuk′ − vkvk′)2, and similar expressions
for other types of scattering. However, this assertion is not
correct and the prefactors in the expressions for the QPI
intensity cannot be cast into such form. Let us illustrate that
now for the Born scattering. In this case,

δρ(q,ω) = 1

2
T r Im

∫
k
τ3Gk(ω)τ3Gk′(ω)δ(k − k′−q) (A1)

= Im
∫

k

ω2 + ξkξk+q − �k�k′(
ω2 − E2

k

)(
ω2 − E2

k′
) δ(k − k′−q), (A2)

where ξ are the one-electron energies. Concentrating on the fraction under the integral, we see that it is
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k − E2
k′
) + δ(ω − Ek′)

(
E2

k′ + ξkξk′ − �k�k′
)

4Ek′
(
E2

k′ − E2
k

) ]

= 1(
E2

k − E2
k′
)[

δ(ω − Ek)
(
E2

k + ξkξk′ − �k�k′
)

4Ek
− δ(ω − Ek′)

(
E2

k′ + ξkξk′ − �k�k′
)

4Ek′

]
. (A3)

Note that arguments of the δ functions are different, therefore in order to combine the two terms we need to rename the k variables
in the second term, after which, assuming inversion symmetry in � and ξ , we get

δρ(q,ω) =
∫

k

[
δ(ω − Ek)

(
E2

k + ξkξk′ − �k�k′
)

8Ek
(
Ek

2 − E2
k′
) + δ(ω − Ek′)

(
E2

k′ + ξkξk′ − �k�k′
)

4Ek′
(
E2

k′ − E2
k

) ]
δ(k − k′−q)

=
∫

k

(
E2

k + ξkξk′ − �k�k′
)
δ(ω − Ek)(

E2
k − E2

k′
)
ω

δ(k − k′−q)

2
. (A4)

The first factor is what was taken to be a coherence factor in Refs. [7] and [23]. However, the true coherence factor in question is
different, namely, (E2

k + ξkξk′ − �k�k′)/(EkEk′), that instead of the expression above one would have a very different formula,
namely∫

k

(ω2 + ξkξk′ − �k�k′)δ(ω − Ek)δ(ω − Ek′)

ω2

δ(k − k′−q)

2
	=

∫
k

(ω2 + ξkξk′ − �k�k′)δ(ω − Ek)

ω
(
ω2 − E2

k′
) δ(k − k′−q)

2
. (A5)

One may think that this difference will disappear after an integration over q, and the integrated expression will be similar to
classic BCS predictions of thermally averaged transition probabilities, e.g., in NMR spin relaxation and/or ultrasonic attenuation
[39]. For example, consider the spin-lattice relaxation rate

1

T1T
∝ lim

ω0→0

∑
q,μ,ν

Imχμν(q,ω0)

ω0
� lim

ω0→0

1

ω0
Im

∑
k,k′,μ,ν

Tr(α̂Ĝ0(k,ωn)α̂Ĝ0(k′,ωn + ω0))iω0→ω0+i0+ , (A6)

where χ is the spin susceptibility matrix in band space, α̂ is the electronic spin operator in Nambu space, ω0 is the Larmor
frequency, and we have neglected any momentum dependence of hyperfine matrix elements in order to arrive at a simple
expression. In fact, Eq. (A6) bears a certain resemblance to the structure of Eq. (1), in particular because each Green’s function is
local and therefore integrated over momentum independently. Performing these sums and the analytical continuation, one obtains
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the usual result, with slight generalization to multiband systems:

1

T1T
∝

∑
μ,ν

∫ ∞

0
dω

(
− ∂f

∂ω

)[
Im

(
ω√

�2
μ − ω2

)
Im

(
ω√

�2
ν − ω2

)
+ Im

(
�μ√

�2
μ − ω2

)
Im

(
�ν√

�2
ν − ω2

)]

= intrabandterms + 2
∫ ∞

0
dω

(
− ∂f

∂ω

)[
Im

(
ω√

�2
h − ω2

)
Im

(
ω√

�2
e − ω2

)
+ Im

(
�h√

�2
h − ω2

)
Im

(
�e√

�2
e − ω2

)]

= intrabandterms + 2
∫ ∞

max(�h,�e)
dω

(
− ∂f

∂ω

)
ω2 + �h�e√

ω2 − �2
h

√
ω2 − �2

e

. (A7)

Now one can see that an s++ superconductor will have an interband contribution to NMR relaxation that obeys exactly a BCS
type II coherence factor T dependence (in the limit �h → �e), while for s±, the corresponding result is type I.

Compare now to our expression for the interband contribution to the Fourier transform density of states in the case of a weak
potential scatterer, Eq. (7), together with the thermal average,

〈δρinter(ω)〉 ∝
∫

dω

(
− ∂f

∂ω

)
Im

ω2 − �h�e√
ω2 − �2

h

√
ω2 − �2

e

=
∫ �h

�e

dω

(
− ∂f

∂ω

)
ω2 − �h�e√

�2
h − ω2

√
ω2 − �2

e

. (A8)

We see that while the functional form of the fraction under the integral is indeed the same, the cost of the q integration is that the
frequency integral is now taken over a totally different, in fact not overlapping, limits, which results in a completely different T

dependence, as shown above.

3. Single impurity t matrix for two-band system

The t matrix for a single impurity is given by

t =
[

1 − Uτ3

∑
k

G(k,ω)

]−1

τ3U, (A9)

where the integrated matrix Green’s function given in Eq. (4) can be further rewritten as (
∑

k G(k,ω))
ν

= gω,ντ0 + g�,ντ1 for
each of the band. The scattering matrix U can be then separated into intraband (U )νν = Uintra and interband (U )μν = Uinter term.

Inverting the t matrix, one finds the common denominator for both intra- and interband terms of the t matrix

D = −(
g2

ω,h−g2
�,h

)
U 2

intra−
(
g2

ω,e−g2
�,e

)
U 2

intra − 2(gω,hgω,e − g�,hg�,e)U 2
inter + (

g2
ω,h − g2

�,h

)(
g2

ω,2 − g2
�,2

)(
U 2

inter−U 2
intra

)
2 + 1.

(A10)

Now for the intraband scattering within the band 1 one obtains in Nambu components

t̂h = t0
hτ0 + t1

hτ1 + t3
hτ3 (A11)

with

t0
h = [

gω,hU
2
intra + gω,eU

2
inter − gω,h

(
g2

ω,e − g2
�,e

)(
U 2

inter − U 2
intra

)
2
]/

D,

t1
h = [−g�,hU

2
intra − g�,eU

2
inter + g�,h

(
g2

ω,e − g2
�,e

)(
U 2

inter − U 2
intra

)
2
]/

D,

t3
h = [

Uintra
(
1 − (

g2
ω,e − g2

�,e

)(
U 2

intra − U 2
inter

))]/
D. (A12)

The expressions for t̂e are obtained by exchanging the band indices h and e. Similarly, the interband t matrix can be written as

t̂eh = t0
ehτ0 + t1

ehτ1 + t2
ehτ2 + t3

ehτ3 (A13)

with

t0
eh = [(gω,e + gω,h)UintraUinter]/D

t1
eh = [−(g�,e + g�,h)UintraUinter]/D

t2
eh = [ − i(g�,egω,h − gω,eg�,h)Uinter

(
U 2

inter − U 2
intra

)]/
D

t3
eh = [

Uinter(gω,egω,h − g�,eg�,h)
(
U 2

intra − U 2
inter

) + 1
]/

D, (A14)

and the corresponding expression for the. Note that the interband scattering terms generate a τ2 contribution for the interband t

matrix.

184513-12



ROBUST DETERMINATION OF THE SUPERCONDUCTING GAP . . . PHYSICAL REVIEW B 92, 184513 (2015)

[1] P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog.
Phys. 74, 124508 (2011).

[2] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du,
Phys. Rev. Lett. 101, 057003 (2008).

[3] H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010).
[4] S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and

A. V. Chubukov, Phys. Rev. Lett. 107, 147002 (2011).
[5] T. S. Nunner, W. Chen, B. M. Andersen, A. Melikyan, and P. J.

Hirschfeld, Phys. Rev. B 73, 104511 (2006).
[6] T. Pereg-Barnea and M. Franz, Phys. Rev. B 78, 020509

(2008).
[7] T. Hanaguri, Y. Kohsaka, M. Ono, M. Maltseva, P. Coleman,

I. Yamada, M. Azuma, M. Takano, K. Ohishi, and H. Takagi,
Science 323, 923 (2009).

[8] T. Hanaguri, S. Niitaka, K. Kuroki, and H. Takagi, Science 328,
474 (2010).

[9] F. Wang, H. Zhai, and D.-H. Lee, Phys. Rev. B 81, 184512
(2010).

[10] A. Akbari, J. Knolle, I. Eremin, and R. Moessner, Phys. Rev. B
82, 224506 (2010).

[11] S. Chi, S. Johnston, G. Levy, S. Grothe, R. Szedlak, B. Lud-
brook, R. Liang, P. Dosanjh, S. A. Burke, A. Damascelli, D. A.
Bonn, W. N. Hardy, and Y. Pennec, Phys. Rev. B 89, 104522
(2014).

[12] A. Kreisel, P. Choubey, T. Berlijn, W. Ku, B. M. Andersen, and
P. J. Hirschfeld, Phys. Rev. Lett. 114, 217002 (2015).

[13] L. Capriotti, D. J. Scalapino, and R. D. Sedgewick, Phys. Rev.
B 68, 014508 (2003).

[14] L. Zhu, W. A. Atkinson, and P. J. Hirschfeld, Phys. Rev. B 69,
060503 (2004).

[15] P. T. Sprunger, L. Petersen, E. W. Plummer, E. Lægsgaard, and
F. Besenbacher, Science 275, 1764 (1997).

[16] J. E. Hoffman, K. McElroy, D. H. Lee, K. M. Lang, H. Eisaki,
S. Uchida, and J. C. Davis, Science 297, 1148 (2002).

[17] S. Sykora and P. Coleman, Phys. Rev. B 84, 054501 (2011).
[18] T. Hänke, S. Sykora, R. Schlegel, D. Baumann, L. Harnagea, S.
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