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Kelvin waves from vortex reconnection in superfluid helium at low temperatures
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We report on the analysis of the root mean square curvature as a function of the numerical resolution for a single
reconnection of two quantized vortex rings in superfluid helium. We find a similar scaling relation as reported
in the case of decaying thermal counterflow simulations by L. Kondaurova et al. There the scaling was related
to the existence of a Kelvin-wave cascade which was suggested to support the L’vov-Nazarenko spectrum. Here
we provide an alternative explanation that does not involve the Kelvin-wave cascade but is due to the sharp cusp
generated by a reconnection event in a situation where the maximum curvature is limited by the computational
resolution. We also suggest a method for identifying the Kelvin spectrum based on the decay of the rms curvature
by mutual friction. Our vortex filament simulation calculations show that the spectrum of Kelvin waves after the
reconnection is not simply n(k) ∝ k−η with constant η. At large scales the spectrum seems to be close to the
Vinen prediction with η = 3 but becomes steeper at smaller scales.
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I. INTRODUCTION

The decay of quantum turbulence in the limit of zero
temperature is one of the key topics that seeks an answer.
The Kelvin-wave cascade is one promising way of transferring
energy from intervortex distances to smaller scales where the
classical Kolmogorov cascade is impossible [1–4]. There the
weak nonlinear coupling between different scales of helical
distortions (=Kelvin waves) transfers the energy to ever
smaller scales until dissipation may become possible, e.g.,
via phonon emission.

Reconnections and interactions between neighboring vor-
tices are expected to work as a drive that transfers energy
from large scales and feeds the Kelvin-wave cascade. At finite
temperatures the weak Kelvin cascade is easily suppressed by
the mutual friction dissipation [5,6]. In order to understand the
decay processes in the zero temperature limit at scales around
and smaller than the intervortex distance, we must be able to
distinguish between the roles of the Kelvin-wave cascade, the
Kelvin waves directly induced by the reconnection events, and
the mutual friction dissipation.

Here we concentrate on the Kelvin waves generated by a
single reconnection event and investigate whether a Kelvin
cascade originates from the reconnection event. We also
illustrate how Kelvin waves are damped by mutual friction.
Our analysis at zero temperature reveals that soon after a
reconnection the vortex becomes filled with Kelvin waves of
different scale and that the presence of the shortest scales is
limited only by the resolution. However, in accordance with
earlier work [7], the evidence for the existence of the Kelvin
cascade remains weak since the observations can be explained
by a redistribution of Kelvin waves that are initially “packed
inside the reconnection cusp.”

Our paper is organized such that in Sec. II we review the
relation between the rms curvature and the Kelvin spectrum.
We also take into account the numerical contribution from a
single sharp cusp. In Sec. III we consider a straight vortex
with Kelvin waves and show how the decay of rms curvature
by mutual friction can be used to identify the Kelvin spectrum.
We additionally illustrate that the mean curvature can strongly
increase without changes in the Kelvin spectrum. In Sec. IV

we consider the actual reconnection event and use the results
from previous sections to interpret these results.

II. MODEL

In superfluid 4He the vorticity appears in the form of
quantized vortices, with circulation quantum κ = h/m4 ≈
0.0997 mm2/s, whose core size is of the order of 1 Å. Ignoring
compressibility effects, the vortex dynamics can be modeled
by using the vortex filament model where the vortices are
considered as line defects and the superfluid velocity field
is given by the Biot-Savart law. The filament model should
be a good model for 4He-II where the core radius is five
to six orders of magnitude below the typical experimental
intervortex distance. The model is extensively described,
e.g., in Ref. [8]. Numerically the vortex, a three-dimensional
curve s(ξ,t), where ξ is the length along the vortex and t is
time, is described by a sequence of points whose motion is
here followed by the fourth order Runge-Kutta method. Our
numerics is described in more detail in Ref. [7], where we
analyzed a similar situation of reconnecting vortex rings but
concentrated on the dissipation due to mutual friction.

A. Kelvin spectrum and rms curvature

The identification of helical Kelvin waves in a vortex
tangle is a delicate problem [9]. A proper identification is
currently possible only in a few rare cases. In the case of a
straight vortex, taken to be along the z axis, and when the
perturbations can be presented as w(z) = x(z) + iy(z), the
Fourier transformation of w(z) determines the Kelvin-wave
amplitudes wk . The Kelvin occupation spectrum is typically
defined as

n(k) = |wk|2 + |w−k|2, k > 0. (1)

One should note that here the k vector is a one-dimensional
vector that defines the wavelength for the Kelvin waves and
should not be confused with the amplitude of the three-
dimensional k vector that is typically used when writing the
energy (velocity) spectrum.
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To provide a rough measure of the Kelvin waves the
distribution of curvature radii can be extracted from a vortex
filament calculation. However, in the general case, to derive
the Kelvin spectrum from the curvature spectrum leads to an
insolvable inverse problem. In case of a straight vortex, and
in the limit of small Kelvin amplitudes, these two spectra
are closely related. Unfortunately, the curvature spectrum is
typically much too noisy and no proper spectrum can be
determined from the curvature data. Therefore, the analysis
in Ref. [6] was restricted to the calculation of the root mean
square (rms) curvature, crms:

c2
rms = 1

L

∫
c(ξ )2dξ, (2)

where c(ξ ) = |s′′(ξ )| is the local curvature at ξ , and L is
the total vortex length. For small Kelvin amplitudes (more
precisely when |w′(z)| = |dw/dz| � 1) and when the energy
is taken to be proportional to the vortex length [local-
ized induction approximation (LIA)], the energy spectrum
E(k) ∝ k2n(k) for Kelvin waves with wave number k can be
related to the rms curvature by [6]

c2
rms ≈ 4π

�κ2

∫ kmax

kmin

k2E(k)dk. (3)

The term � = ln(�/a0) depends only weakly on the intervortex
distance � and on the core radius a0. Here the Kelvin spectrum
is assumed to be valid from kmin up to some cutoff scale
kmax, above which the spectrum is suppressed (either due
to numerical cutoff or, e.g., by suppression due to mutual
friction).

Since the predictions for the Kelvin-wave spectrum vary
from E(k) ∝ 1/k, in the case of strong wave turbulence
with the Vinen spectrum [10], to E(k) ∝ k−5/3 with the
L’vov-Nazarenko spectrum [3], the rms curvature is not much
affected by the scales near kmin. The dominant contribution
originates from scales near kmax and may therefore be limited
by the numerical resolution of the calculation.

The different proposals for Kelvin-wave spectra by
Vinen [10] (V), Kozik-Svistunov [2] (KS), and L’vov-
Nazarenko [3] (LN) in terms of crms are asymptotically given
by [6]

cV
rms = �kmax

�cKS
rms = �(�kmax)4/5 (4)

�cLN
rms = �(�kmax)2/3.

Generally, when the Kelvin spectrum n(k) ∝ k−η, the rms
curvature is given by crms ∝ k

(5−η)/2
max . The intervortex spacing

� limits the smallest possible k values, and the term �, given
by

� =
√

4πE/�κ2, E =
∫ kmax

kmin

E(k)dk, (5)

takes into account the fraction from the total energy E (per unit
length, per unit mass) related to Kelvin waves. Because some
numerical factors of the order of unity have been neglected
in the above derivation, one should consider � only as an
estimate.

We expect that at low enough temperatures the Kelvin
cascade becomes the dominant dissipation mechanism, which
at scales smaller than the intervortex distance transports energy
towards the core scales where it can be dissipated. For this to be
true, at sufficiently low temperatures the Kelvin-wave cascade
causes all our numerically traceable scales to be occupied
by Kelvin waves, and the rms curvature becomes determined
by the numerical resolution. By repeating simulations with
different resolutions one should be able to distinguish between
different theories.

This is precisely what was done in Ref. [6] for decaying
thermal counterflow, where the scaling for crms weakly
supported the explanation in terms of the Kelvin-wave cascade
with L’vov-Nazarenko spectrum. The complicated situation
was exemplified by the fact that the resolution could only be
changed by a factor of 2.7, and no firm proof was obtained.

In the following we consider a simpler case: a single
reconnection of two initially linked vortices. In this case we are
able to change the resolution by a greater amount. However,
first we consider how the rms curvature is affected when a
vortex configuration contains a sharp cusp where the curvature
may diverge (or at least yield values close to the inverse core
size).

B. Sharp cusp and its effect on rms curvature

As soon as one introduces a reconnection in the filament
model one creates a sharp cusp in the vortex configuration.
A simplified analytical model for a cusp where the curve
has a simple discontinuity in the derivate, being smooth
elsewhere, does not necessarily change the rms curvature by
a large amount. However, numerically the effect can be much
more dramatic. Without additional smoothing, the maximum
curvature at the cusp is the inverse resolution, and the region
for this curvature peak is of the order of the point separation
(	ξres). Smoothing does not necessarily solve the problem,
because it only widens the region and restricts the maximum
value.

If we split the integral into the “smooth part,” far from
the cusp, and into the region that is strongly affected by the
numerics, one obtains that

c2
rms = 1

L

∫
smooth

c(ξ )2dξ + b

L	ξres
. (6)

Here the numerical factor b is of the order of unity. It should
depend weakly on the numerical details and, e.g., on the initial
angle between the vortices before the reconnection. In the limit
of high resolution the last term becomes dominant, and the rms
curvature due to numerics becomes

cN
rms =

√
b

L	ξres
∝ k1/2

max, (7)

where kmax = 2π/	ξres is determined by the resolution.
If we consider the analytical model (which is based on

earlier numerical work) for the vortex shape before the
reconnection [11], we get further support for Eq. (7). This
estimate for the prereconnection vortex shape indicates that
the cusp sharpens until the minimum distance reaches the core
size (after which the filament model is not valid any more) such
that eventually the region, where the curvature is of the order of
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the inverse core radius, is also of the order of the core diameter.
Simulations with the Gross-Pitaevskii model indicate that the
curvature does not increase much from this limit imposed by
the core radius and that it also has a similar magnitude after the
reconnection [12]. Therefore, Eq. (7) should originate already
from the prereconnection dynamics where kmax is given by the
core size.

Even if the cusp contribution to crms grows slower with
kmax than the cascade predictions in Eqs. (4), it may give the
dominant contribution when the Kelvin amplitudes are small
(� � 1) and when the resolution is not high enough, as shown
below. Its contribution also increases with increasing number
of reconnections.

In addition to the rms curvature, we also use the mean
curvature cave in our analysis:

cave = 1

L

∫
c(ξ )dξ. (8)

Based on similar arguments as used for the rms curvature in
Eq. (6), the contribution from the cusp region should result in
a constant contribution that does not increase as the resolution
is improved, i.e.,

cave = 1

L

∫
smooth

c(ξ )dξ + b̃

L
, (9)

where b̃ is another constant of the order of unity. Because cave

is sensitive to the phases of the Kelvin waves it cannot be
directly related to the Kelvin spectrum.

III. KELVIN WAVES ON A STRAIGHT VORTEX

In order to better understand simulations where Kelvin
waves are produced by a single reconnection event, we first
consider two simplified sets of simulations for a straight
vortex where the determination of the Kelvin spectrum is less
challenging. These calculations model the time development
after the reconnection. In both cases we occupy the straight
vortex, taken to be along the z axis, with a known Kelvin
spectrum parametrized as

n(m) = |wm|2 + |w−m|2 = A2m−η, m = 1,2,3, . . . . (10)

Here A determines the amplitude of the Kelvin spectrum, and
the wm’s can be obtained by Fourier transformation of w(z),
provided that the configuration remains single valued. At the
instant when the single valuedness breaks, |dw/dz| diverges.
The k vector k = 2πm/Lz is given by the mode number m and
period Lz. In all these calculations we have fixed the reactive
mutual friction parameter α′ = 0.

We can make an analytical approximation for the time
development of crms if we assume that the Kelvin-wave cascade
is absent such that every Kelvin mode decays exponentially as
wm(t) = wm(0)e−t/ταm , where ταm = τ11/(αm2). With τ11 we
denote the decay time for mode m = 1 when α = 1. We neglect
the weak logarithmic m dependence in ταm. By assuming that
initially wm(0) has a spectrum defined by Eq. (10), we obtain
by using the small amplitude estimation, where c(ξ ) ≈ |w′′(z)|
and dξ ≈ dz, that

c2
rms(t) = (2π )4A2

LL3
z

∑
m>0

m4−ηe−2αm2t/τ11 . (11)

Here the vortex length L = L(t) ≈ Lz depends on time only
weakly. By taking kmax → ∞ and approximating the sum with
an integral we obtain, for η < 5, the asymptotic decay curve
for the rms curvature as

crms(t) = (2π )2A

Lz

√
2LLz

√
�

(
5 − η

2

)(
2αt

τ11

) 1
4 (η−5)

, (12)

where �(a) is the gamma function. If for briefness we write
crms = D(αt)−β , then the decay exponent β = (5 − η)/4 is
simply given by the Kelvin spectrum. Therefore, if the Kelvin-
wave cascade is negligible during the time window when the
decay occurs, the above law can be used to identify the initial
Kelvin spectrum, as shown below.

If one wants to improve the above approximation, Eq. (12),
at small times by taking into account the finite resolution,
one should only replace the gamma function with the in-
complete (lower) gamma function γ (a,x) as �((5 − η)/2) →
γ ((5 − η)/2, 2αtm2

max/τ11). Here mmax is the largest Kelvin
mode present, which is limited by the resolution. At large
times Eq. (12) fails when only a few lowest modes are present
(dominant). Eventually the decay is simply given by the
exponential decay of modes m = ±1.

A. Decay of rms curvature via mutual friction

In our first sample case, we use different Kelvin spectra
with different amplitudes, and observe how the rms curvature
decays by the dissipative mutual friction α(T ). We have addi-
tionally assumed that initially the phases of the Kelvin waves
are random and that |wm| = |w−m|. Figure 1 summarizes our
results in case of A = 0.01Lz and α = 0.1. The number of
points used is 1024 and Lz = 1 mm.

By repeating the calculations with different values of α, we
observe that the decay curve crms = D(αt)−β is universal, as
predicted by Eq. (12), and the terms D and β are not essentially
affected by the mutual friction parameter α. Also, the exponent
β is almost solely given by the Kelvin spectrum exponent
η, as shown by the lower inset of Fig. 1, where we have
used a time window 10−5 s < αt < 10−3 s for the fit. The
lower (red) curve is calculated for a relatively large amplitude
A/Lz = 0.1, where the energy related to Kelvin waves is of
similar order as the energy related to the straight vortex. The
upper (blue) curve is appropriate for the small amplitude limit
A/Lz = 0.001. Further expansion of the amplitude window
does not essentially change the results.

The amplitude D is mainly determined by the Kelvin
amplitude A. This is illustrated in the upper inset of Fig. 1
using the L’vov-Nazarenko spectrum. The small time behavior,
which originates from the smallest scales, is sensitive to the
resolution and is consistent with the saturation if the full
Eq. (11), or the approximation described below Eq. (12), is
used. Therefore, the power law can be validated also at early
times simply by improving the resolution.

If we use the value τ11 ≈ 0.22 s from the calculations where
only the mode m = 1 is present and approximate that L ≈ Lz,
we obtain nice quantitative agreement with Eq. (12), not only
for the exponent, but also for the absolute amplitude. This is
illustrated in Fig. 1 with the dashed lines. The general tendency
for deviations upwards from the theory prediction, Eq. (12),
originates from the omitted logarithmic ln(m) dependence in
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FIG. 1. (Color online) Decay of crms for different initial Kelvin
spectra on a straight vortex with periodic boundary conditions and
period Lz = 1 mm. The number of points is 1024 and α = 0.1. In the
main panel the amplitude is A/Lz = 0.01, see Eq. (10). The different
spectra are from top to bottom defined by η = 3.0 (red, Vinen),
3.4 (magenta, Kozik-Svistunov), 3.666 . . . (black, L’vov-Nazarenko),
4.0 (blue), and 4.4 (cyan), respectively. The dashed lines are from
the analytical model, Eq. (12). The upper inset shows the crms for
the LN spectrum but for different amplitudes: from top to bottom
A/Lz = 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001, respectively. The lower
inset relates the decay exponent β in crms ∝ t−β to the exponent η

in the Kelvin spectrum of Eq. (10). The upper (blue) curve is for
small amplitudes with A/Lz = 0.001, and the lower (red) curve is
for rather large amplitudes with A/Lz = 0.1. The thin dashed line is
the exponent appearing in the analytical result [see Eq. (12)].

τmα . The deviations downwards at large times (which is visible
in Fig. 1 for η = 4.4 and 4.0) can be understood to originate
from the finite period which results in that eventually only
the longest Kelvin waves with wavelength equal to Lz persist
and decay exponentially. Equation (11) also models this limit
accurately.

The decay curve for crms is not sensitive to the initial phases
of the Kelvin waves, as expected from the derivation where the
phases are not present. We have also numerically checked that
on the scale of Fig. 1 one cannot resolve two different decay
curves with different initial sets of random phases.

If we analyze the decay of the different Kelvin modes in
Fig. 1, we may verify that the different Kelvin modes actually
rather well exhibit exponential decay where the time scale is
determined by α and k. There are additionally fluctuations
that are due to interactions between different modes. Also, the
decay only continues for about four to five orders of magnitude,
which is likely due to numerics. We have not checked the
situation for very small α values because it requires a large
enough time window. This would be important if one seeks
the Kelvin cascade, but if the intention is to determine the
initial Kelvin spectrum one is not required to use extremely
small values of mutual friction. Actually, it is much more
convenient to use a large enough α in order to minimize the
effect from the cascade during the decay of crms. Therefore, if
the characteristic curvatures are much larger than the inverse of
the intervortex distance 1/�, the decay of crms should provide
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FIG. 2. (Color online) Time development of the “test-cusp” vor-
tex at T = 0 that initially hosts the Kozik-Svistunov spectrum. The
upper panel illustrates the time development of the local curvature
at times 0 (black), 0.5 (red), 1 (blue), 2 (green), 10 (cyan), and
100 ms (magenta). The lower left panel shows the corresponding
vortex configurations, and the lower right panel contains the Kelvin
spectra where k = 2πm/Lz is given by the mode number m.

a potential way to identify the Kelvin spectrum, perhaps also
in more complicated tangles.

B. Cusp built by Kelvin waves

In our second example case we illustrate how a cusp, where
the curvature is strongly peaked, can be built on a straight
vortex using a Kelvin spectrum defined by Eq. (10). We then
follow its dynamics both at T = 0 and T > 0.

The phases of the Kelvin waves are typically considered
to be random, which results in a wiggly looking vortex.
However, by specially organizing the phases one may generate
a vortex that is otherwise smooth but contains a single cusp
(per period). In Fig. 2 we have built a “test-cusp” by setting
the same constant phase for all the Kelvin waves using the
Kozik-Svistunov spectrum. The period is Lz = 1 mm, and
the number of points is 1024. All the Kelvin waves have
rather small amplitude A/Lz = 0.01, but since the phases are
the same, |w′(z)| ≈ 0.5 near the cusp. Therefore, the theory
predictions made in Sec. II are not necessarily valid, e.g., the
rms curvature grows slower than the crms ∝ k

4/5
max prediction.

The upper panel of Fig. 2 shows the time development of
the local curvature at T = 0. It seems that with increasing time
more small scale structure is developing because Kelvin waves
spread from the cusp and eventually fill the whole vortex.
However, if one investigates the corresponding Kelvin spectra,
shown in the lower right panel of Fig. 2, the amount of Kelvin
waves (=∫ kmax

kmin
n(k)dk) is not essentially changed because the

spectrum is still the same (initial) Kozik-Svistunov spectrum.
Deformations occur only near the resolution limit, where the
numerical errors are largest.

As the cusp relaxes, the phases of the Kelvin waves random-
ize because all the Kelvin waves have different propagation
velocity along, and different rotation velocity around, the z

axis. This results in that the mean curvature, which initially is
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FIG. 3. (Color online) Decay of the rms curvature when the
initial configuration is a specially arranged sharp cusp with Kozik-
Svistunov spectrum, see Fig. 2. The different curves correspond to
different values of mutual friction: α = 0.0001 (blue), 0.001 (cyan),
0.01 (green), 0.1 (magenta), and 1 (red). The inset shows the time
development for crms, and in addition at α = 0 (black) both for crms

(solid) and cave (dashed), plotted on a linear time scale.

much smaller than the rms curvature, grows and soon has a
similar value as crms. This is illustrated in the inset of Fig. 3,
where we have analyzed the decay of the rms curvature by
mutual friction, for different values of α. The main panel shows
that the decay follows the universal power law with exponent
β = 0.4, derived above for the KS spectrum (Fig. 1).

IV. RECONNECTION OF TWO LINKED VORTEX RINGS

A. Numerical setup

We consider two vortex rings with radius R = 1 mm,
initially linked and oriented perpendicular to each other. The
initial distance between the two vortices is 0.1R, causing that
at T = 0 they will reconnect approximately at 1.696 s. For
dynamics, see Ref. [7]. Our reconnection method is rather
standard: We reconnect the vortex segments when the mini-
mum distance becomes smaller than 0.8	ξmin, where 	ξmin

is the minimum point separation tolerated. The maximum
point separation allowed is 	ξmax = 2	ξmin. Additionally,
we require that the vortex length must decrease, which
approximately means that the reconnection event is dissipative.

The time resolution is chosen such that our numerical time
step is kept smaller than the time scale related to the smallest
resolvable Kelvin waves. This implies that our time step 	t ∝
(	ξmin)2, resulting in that the better the spatial resolution,
the more difficult it becomes to cover the same overall time
window as in the lowest resolution run. Another numerical
challenge is caused by the fact that the computational work
per one time step grows as N2 ∝ (1/	ξmin)2, where N is the
number of points used to describe the vortex.

B. Finite mutual friction

Before concentrating on the zero temperature limit we show
how finite mutual friction affects the vortex dynamics and how
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0.0100 
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0.0025 
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FIG. 4. (Color online) Time development of the rms curvature
for different values of the mutual friction parameter α (and α′ = 0).
In the main figure time is measured from the reconnection instant and
scaled by α, and on the vertical axis the initial curvature crms(0) =
1/R is subtracted from the data. Different colors are used for α =
1 (red), 0.1 (magenta), 0.01 (green), 0.001 (cyan), 0.0001 (blue),
and 0.00001 (light green), respectively. The corresponding maximum
times simulated are 1, 9, 10, 12, 20, and 30 s, respectively. The black
dash-dotted curve is for α = 0.01 where the initial configuration is
taken from T = 0 simulations, 1 s after the reconnection, and the time
(which covers a time window of 5 s) is measured from this instant.
The curves are calculated with a resolution of 	ξmin = 0.0025 mm,
while for α = 0.01 results with 	ξmin = 0.00125 mm (dashed, green)
and 0.000625 mm (dash-dotted, green) are also shown. The power-
law behavior is illustrated by plotting the crms ∝ (αt)−β asymptotics
with β = 0.5 and 0.38 (dashed) that correspond to η = 3 and 3.48,
respectively. In the lower inset linear scales are used without any
scaling. The color coding is the same as in the main figure. The case
α = 0 is additionally shown by the black curve. The upper inset is for
α = 0.01 with five different resolutions indicated on the plot, together
with the β = 0.38 asymptotic (dashed line).

it damps the Kelvin waves generated by the reconnection cusp.
In Fig. 4 we have plotted the rms curvature for one particular
resolution, defined by 	ξmin = 0.0025 mm, for seven different
values of the mutual friction parameter α (in all cases α′ = 0).

For α ∼ 1 the instant of reconnection depends essentially
on α because the vortex rings shrink more and therefore
they also move faster. The relaxation rate for crms is strongly
affected by the mutual friction. However, one may notice that
the peak value, just after the reconnection, is not substantially
affected by α. The changes are mainly due to the numerical
algorithm used for the reconnection. This causes that the
distance between the neighboring vortices is not exactly
the same when the reconnection is made, and therefore the
sharpness/angle of the cusp may slightly vary.

If we compare these results with the model system,
Sec. III A, we may conclude that the results are consistent
with the idea that the amplitude of the Kelvin wave decays
exponentially with time scale τ ∝ 1/(αk2). These Kelvin
waves are generated by the reconnection, and the α scaling
shown in the main panel of Fig. 4 is consistent with the idea
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that the Kelvin-wave cascade is absent. If, at low enough
temperatures, the Kelvin cascade would become important
(compared with mutual friction), then the same scaling would
not work anymore because the cascade should continuously
generate new small scale Kelvin waves and crms should
decay slower (or perhaps even grow). Note that a similar
scaling relation is obtained and plotted for the mutual friction
dissipation power in Fig. 5 of Ref. [7].

The absence of the Kelvin cascade is additionally supported
by the decay curve, plotted with the black dash-dotted line
in Fig. 4. Here the decay is calculated using α = 0.01, but
the initial configuration is taken from the zero temperature
calculations with α = 0 one second after the reconnection.
Since the decay follows exactly the same curve as the standard
α = 0.01 case, the two spectra are likely the same. Therefore,
even during that one second period, which corresponds to the
Kelvin period with a wavelength of the order of R = 1 mm, the
interactions between different Kelvin modes have not altered
the spectrum which was directly generated by the reconnection
at T = 0.

The observed decay exponent in our reconnection calcu-
lation (see Fig. 4) at late times (large scales) is close to
β = 0.5, which corresponds to the Vinen spectrum (η = 3)
for the Kelvin waves. This has been suggested, e.g., in
Ref. [10]. At early times, which correspond to small scales,
the decay slope is slower, and one obtains a reasonable fit
using β = 0.38. Using the analytical model in Eq. (12), this
corresponds to η = 3.48. In the upper inset the decay behavior
with α = 0.01 is illustrated using five different resolutions.
The two highest resolutions are also included in the main panel
of Fig. 4. The slope at early times is close to the predictions
by Kozik-Svistunov [2] with η = 3.4, but here the spectrum is
generated directly by the reconnection, without the need for a
cascade.

The difficulty in finding a good fit with fixed β, that would
cover the whole time window for the decay of crms, may
indicate that the Kelvin spectrum is not necessarily given by
Eq. (10) with constant η. It seems that the smaller the scale
the bigger is η. This is consistent with the idea suggested by
Nazarenko in Ref. [13], where he argued that the reconnection
drives not only length scales near the intervortex distance but
also smaller scales. Therefore, the spectrum excited by the
reconnection would depend on scales. Now these simulations
illustrate that the spectrum is not simply n(k) ∝ k−4 that can
be associated with a sharp bend.

C. Zero temperature results

In the zero temperature limit, where the mutual friction
decay time for the single Kelvin wave diverges, crms does not
essentially decay after the reconnection kink has appeared
but remains sensitive to the numerical resolution. Figure 5
illustrates the time development of the calculated rms curvature
when the resolution is changed by a factor of 16 while α = 0.
The inset illustrates that the curvature starts to increase already
before the reconnection due to nonlocal interactions. This
tends to strongly deform the vortex shape near the reconnection
point. The noticeable jump at the instant of reconnection
appears due to the appearance of the sharp cusp which
is sharpest immediately after the numerical reconnection
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FIG. 5. (Color online) Time development of the rms curvature
at T = 0 for five different resolutions where the point separation is
kept between 	ξmin . . . 2	ξmin. For the two highest resolution runs,
times well before the reconnection were omitted and the calculations
were continued using the configuration from the run with one step
lower resolution where the configuration was still smooth. The left
inset shows the detailed behavior near the reconnection event when
	ξmin = 0.000625 mm. The right inset shows the scaling relation for
the root mean square curvature after the reconnection as a function of
resolution plus the fit crms ∝ 	ξ−0.56

min (solid line) and the predictions
from the L’vov-Nazarenko spectrum (lower dashed) and from the
single cusp model (upper dashed).

process. Therefore, very locally the curvatures reach the values
determined by the resolution.

After the reconnection the rms curvature may slightly
increase and later decrease, but very soon after the recon-
nection crms remains constant. This is consistent with the LIA
approximation where crms is one of the several constants of
motion and where cascade formation is not allowed. We have
continued our 	ξmin = 0.005 mm calculation up to 100 s, and
in addition to the small ∼1% decay of crms during this time; it
possesses oscillations with amplitude ∼1% and period ∼20 s.
This makes it difficult to say accurately from shorter simulation
runs whether the curvature actually decays, or whether the
initial small decay is just part of these oscillations.

If we plot the approximately constant value of crms after the
reconnection as a function of the resolution one may observe a
scaling relation, similar to the predictions above. This is shown
in the inset of Fig. 5. The fitted exponent is 0.56, which is closer
to the prediction for a simple cusp than the one originating
from the Kelvin cascade with L’vov-Nazarenko spectrum. If
we want to relate the exponent to a particular spectrum, the
value corresponds to η = 3.88. Within the cusp model, if we
use the minimum point separation instead of 	ξres in Eq. (7),
we obtain b ≈ 7. This is consistent with our prediction (note
that our configuration has two cusps).

In Fig. 6 we have plotted the time development of the
mean curvature. One may observe that the large sudden jump,
present for the rms curvature, is now missing at the instant
of reconnection. Rather, the mean curvature starts to increase
after the reconnection and finally stabilizes to a value very
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FIG. 6. (Color online) Time development of the mean curvature
for the same five different resolutions which were used to plot the rms
curvature in Fig. 5. The inset shows a similar scaling relation as that
for crms. The solid line is a fit, crms ∝ 	ξ−0.56

min , to the data points, and
the dashed lines are again the predictions from the L’vov-Nazarenko
spectrum (lower dashed) and from the single cusp model (upper
dashed).

similar to crms. Therefore, also the cave satisfies a similar scaling
relation as crms.

The time scale for reaching the final value in Fig. 6 is
determined by the resolution, and the increase in cave appears
because small scale Kelvin waves travel from the reconnection
site and quickly fill the whole vortex. The better the resolution,
the faster the smallest Kelvin waves travel, and therefore
the time scale for reaching the “steady-state” value for cave

is directly proportional to the point separation used. This
redistribution of the Kelvin waves is illustrated in Fig. 7, where
the local curvatures are plotted at different times.

One might argue that the increase in cave proves the
existence of the Kelvin cascade because it seems that more
small scale structure appears. This is possible, but it is not
the only possible explanation. First, scaling relations similar
to those in Eq. (4) cannot be easily derived for cave from the
Kelvin-wave spectrum. Second, the mean curvature can be
strongly increased by simply adjusting the phases of the Kelvin
waves without changing the Kelvin spectrum, i.e., without
changing the amplitudes of small scale Kelvin waves. This
is illustrated by our “test-cusp” in Sec. III B, see Fig. 3. In
the small amplitude limit, which is not necessarily a proper
assumption for a cusp, the phases of Kelvin waves do not
change crms, as shown by Eq. (3). Instead, the increase in the
average curvature cave in Fig. 6 after the reconnection appears
as the phases “randomize” from their initial values at the instant
of reconnection.

The above phase randomization can be understood by
considering a vortex with a shape of a triangle wave whose
mean curvature is zero. It has a Fourier representation with
only odd indices k = 1,3,5, . . . whose amplitudes go like wk ∝
1/k2, corresponding to the Kelvin spectrum E(k) ∝ 1/k2

(equal to the Kelvin occupation spectrum nk ∝ |wk|2 ∝ 1/k4),
not far from the LN spectrum. The Kelvin waves present in
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FIG. 7. (Color online) Time development of the local curvature
at T = 0 along the vortex after the reconnection of two rings. The
reconnection results in two strong peaks at locations ξ ≈ 0 and ξ ≈
0.5L. The upper panel is for the resolution 	ξmin = 0.00125 mm, and
the lower panel is for twice better resolution 	ξmin = 0.000625 mm.
The black curve is immediately after the reconnection, and other
curves are 1 ms (red), 10 ms (blue), and 20 ms (green) after
the reconnection. Note the logarithmic vertical axis and that the
maximum speed of the spreading Kelvin waves is limited/defined
by the resolution.

this kind of configuration have a different frequency around
the “average vortex direction” (the direction which is realized
when the amplitude of the triangle wave goes to zero) and
different propagation velocities. Therefore, the vortex has soon
a rather different shape with a mean curvature much larger than
initially. This does not require any cascade.

One may still wonder why the Kelvin spectrum, determined
from the decay curve at small scales where η ≈ 3.5, does not
show up in the scaling relation for crms, which is close to
the cusp model (or alternatively would correspond to Kelvin
spectrum with η ≈ 3.9). One possible reason for this difference
might be that the amplitude of the Kelvin spectrum is too
small, and therefore the cusp contribution still dominates when
calculating the rms curvature. If we compare Eqs. (4) and (7)
we find, by setting kmax = π/	ξmin, that these estimates give
the same value for crms when

� = π−γ
√

b/L �1−γ 	ξγ−1/2
min , (13)

where γ = (5 − η)/2 is the general exponent in Eq. (4) for
kmax. We may crudely approximate that the energy associated
to Kelvin waves is related to the increase in vortex length,
which is around 1% in our example case [14], and therefore
� ≈ 0.1. If we use b = 7 from our fit, L ≈ 4πR, and addition-
ally approximate that � = R = 1 mm, we obtain that the small
scale spectrum with η ≈ 3.5, which dominates the calculation
of rms curvature, should be visible in the scaling relation for
crms if the resolution is better than 	ξmin = 0.01 mm. Our
resolution is almost always better than this. Because we only
see the steeper spectrum in the crms scaling (Fig. 5), the Kelvin
spectrum near the resolution might be steeper than η = 3.5,
or alternative because the assumption |w′(z)| � 1 is likely
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not valid, the rms curvature grows slower than predicted by
Eqs. (4). Also, the above approximation is rather sensitive
to the value of �. By using � = 0.05 the critical resolution
increases to 	ξmin = 0.0006 mm, which is the best resolution
used. Now, the cusp contribution should always dominate.

V. DISCUSSION

In more complicated tangles, where vortices experience a
large number of reconnections, the rms curvature can remain
high only if the average time between successive reconnections
is smaller than the time scale for mutual friction damping. This
implies that the temperature must be low enough, as observed
in simulations depicting decaying counterflow turbulence [6].
By considering only a single reconnection event we are still far
from explaining the dissipation in more complicated tangles
where reconnections occur continually. The future question
might be to explain what happens to existing Kelvin waves
when a new reconnection occurs. Strong local stretching
caused by a reconnection is likely to damp the pre-existing
Kelvin waves near the reconnection site.

Our method of determining the Kelvin spectrum from the
decay of crms, i.e., obtaining η from the fitted value of the decay
exponent β, could also be applied to more complicated vortex
tangles. If one needs to avoid reconnections one could apply
the method separately for each vortex. One may use rather high
values of mutual friction and simulate only over a short time
window to obtain the scaling law. Actually, with large enough
mutual friction the effects from the cascade are minimized
and one obtains more accurately the Kelvin spectrum which
describes the initial state of the vortex. However, with large
α we cannot immediately tell whether the spectrum is due
to a cascade or due to other means like excitations from
reconnections. If the cascade should become important at low
enough temperatures, it should then result in the decay law
of Eq. (12) not being satisfied anymore. This change can
be verified by repeating the decay analysis at these lower
temperatures.

A nonconstant decay exponent β is likely to originate
from a Kelvin spectrum where η is not universal. This is
supported by the simulations, similar to the ones presented
in Sec. III A, where we have occupied a straight vortex by
using the Vinen spectrum at low k’s (m < 100) with amplitude
A/Lz = 0.01, while using a steeper spectrum with η = 4 at
high k’s with A/Lz = 0.1, such that the spectrum remains
continuous. The resulting decay curve has a wide crossover
region where β changes but both asymptotics follow nicely
the theory prediction, Eq. (12). This is illustrated in Fig. 8.

The initial approximately constant value of the rms curva-
ture, seen, e.g., at small values of αt in Fig. 1, illustrates that
the numerical resolution determines when the simulation is
numerically in the zero temperature limit. In this limit even the
smallest resolvable scales are not smoothened out by mutual
friction. From the decay of the smallest scale Kelvin waves
one may derive that if α	t � (	ξres)2/κ then the effects from
mutual friction are negligible within times of order 	t . This
is consistent with the observations by Kondaurova et al. [6]
where their simulations at T � 0.5 K are essentially the same
as those conducted at T = 0.
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FIG. 8. (Color online) Decay of the rms curvature in the case of
a straight vortex when α = 0.1 and Lz = 1 mm. The initial Kelvin
spectrum, shown in the inset, is the Vinen spectrum with η = 3 and
A = 0.01Lz at low k’s, while at high k’s the spectrum is parametrized
by η = 4 and A = 0.1Lz. The early time behavior (blue curve) is
determined using 65 536 points on the vortex, while 8192 points is
used to obtain the late time asymptotic (red curve). The dashed lines
are the analytical results, Eq. (12), corresponding to both spectra.

The presence of the Kelvin-wave cascade in simulations has
been a controversial topic. The concern concentrates around
the computational resolution required to resolve the excitations
at short length scales in the zero-temperature limit. In Ref. [15]
Kivotides et al. study the reconnection of four rings in T = 0
simulations and report excitation of Kelvin waves on different
scales, including the appearance of a cascade. The later
conclusion is not in agreement with our findings. However,
in the simulations of Ref. [15] the extremely crinkled shape
of the vortex after the reconnection differs from simulations
conducted later [7,16] where more effort has been spent on
the numerical stability and conservation of energy. See also
Ref. [9] for numerical challenges that appear when Kelvin
waves are being identified.

VI. CONCLUSIONS

Based on vortex filament simulations for a single recon-
nection event in superfluid helium, we have developed an
explanation for the scaling relation seen for the rms curvature
as a function of the numerical resolution. In contrast to
suggestions by Kondaurova et al. [6], our model does not
involve the Kelvin cascade but originates from the excitations
created by a reconnection cusp. The distribution of Kelvin
waves with different wavelengths, which becomes visible
after the cusp relaxes, can be understood to arise from
the prereconnection dynamics where the minimum distance
between vortices necessarily sweeps all length scales down to
the core scale. Therefore, the cusp is built from Kelvin waves
of different scale, limited only by the numerical resolution,
that redistribute when the cusp relaxes.

Thus we conclude that the response to a single reconnection
can take place without the excitation of a Kelvin-wave
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cascade. This statement was explicitly tested in vortex filament
calculations for mutual friction dissipation down to α � 10−4

and additionally at T = 0. Instead the reconnection cusp leads
to an exponential decay of the calculated rms curvature crms

which can be associated with a Kelvin spectrum n(k) ∝ k−η

in the range η ∼ 3 . . . 3.5. We believe that this indicates that
a universal Kelvin wave spectrum is not necessarily to be
expected as a response to a single reconnection event.
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