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Quantum turbulence of bellows-driven 4He superflow: Decay
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We report on studies of quantum turbulence with second sound in superfluid 4He in which the turbulence is
generated by the flow of the superfluid component through a wide square channel, the ends of which are plugged
with sintered silver superleaks, the flow being generated by compression of a bellows. The superleaks ensure that
there is no net flow of the normal fluid. In an earlier paper [S. Babuin et al., Phys. Rev. B 86, 134515 (2012)]
we have shown that steady flow of this kind generates a density of vortex lines that is essentially identical to that
generated by thermal counterflow, when the average relative velocity between the two fluids is the same. In this
paper we report on studies of the temporal decay of the vortex-line density, observed when the bellows is stopped,
and we compare the results with those obtained from the temporal decay of thermal counterflow remeasured in
the same channel and under the same conditions. In both cases there is an initial fast decay which, for low enough
initial line density, approaches for a short time the form t−1 characteristic of the decay of a random vortex tangle.
This is followed at late times by a slower t−3/2 decay, characteristic of the decay of large “quasiclassical” eddies.
However, in the range of investigated parameters, we observe always in the case of thermal counterflow, and only
in a few cases of high steady-state velocity in superflow, an intermediate regime in which the decay either does
not proceed monotonically with time or passes through a point of inflexion. This difference, established firmly
by our experiments, might represent one essential ingredient for the full theoretical understanding of counterflow
turbulence.
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I. INTRODUCTION

In this paper we report on an experimental investigation
of the decay of turbulence in a quantum fluid, superfluid 4He,
displaying the two-fluid behavior. The necessary introduction
to superfluidity and quantum turbulence is given in the next
section, together with a review on counterflow turbulence,
a unique form of turbulence existing in superfluid 4He, of
which the superflow treated in this article represents a special
case. The review sets this work into a detailed context. Here
we summarize the general motivation for this project, which
is twofold.

(i) We wish to continue the study of temporal decay
of turbulence in quantum fluids, in the spirit of exploring
similarities and differences with the decay of turbulence in
classical viscous fluids, as advocated again as an important
goal for the community in the latest review on the state of
the field [1]. The decay of turbulence is indeed a cornerstone
in classical turbulence studies because the rate of decay (of
kinetic energy or vorticity) is related to the distribution of
energy over the scales of the system, which constitutes a key
description of a turbulent flow [2]. In quantum turbulence our
experiments can accurately measure the decay of the total
length of quantized vortices per unit volume, a well defined
quantity which, if the detailed spatial distribution of the vortex
lines is known, can be related to classical vorticity.

(ii) Our second and more specific motivation is to continue
our investigation of the mechanically driven turbulent flow of
the superfluid component of 4He, of which we have reported
the steady-flow characteristics in this journal [3]. The study of
pure superflow ought to be in principle simpler than thermal
counterflow because the normal component is on average
at rest. In our previous work we have demonstrated that

Galilean invariance holds between steady-state counterflow
and superflow turbulence, i.e., that, to first order, the turbulence
produced when the superfluid and normal components of
4He move in opposite direction is the same as when the
normal fluid is at rest and the superfluid moves past it with
the same relative velocity, despite the fact that the presence
of a finite channel ought to introduce differences such as a
profile to the normal component. In this paper we extend this
work by asking how these two turbulent flows decay in time
when driving is suddenly switched off. We describe emerging
similarities as well as differences, which ought to deepen our
general understanding of the underlying physics of quantum
turbulence, especially in relation to the dynamical state of the
normal component.

II. REVIEW OF COUNTERFLOW TURBULENCE

Quantum turbulence [1,4–6] is the turbulence occurring
in a superfluid such as the superfluid phases of liquid 4He
and liquid 3He [7]. At a finite temperature superfluids exhibit
two-fluid behavior, a normal viscous fluid (composed of
thermal excitations) coexisting with an inviscid superfluid
component. Flow of the superfluid component is strongly
influenced by quantum effects, reflecting the origin of super-
fluidity in Bose condensation. In the case of 4He superfluid
flow must be irrotational, rotational motion being possible
in a simply-connected volume only with the formation of
topological defects in the form of vortex lines, each of which
carries a circulation of κ = h/m ≈ 1 × 10−3 cm2/s, where
h is Planck’s constant and m is the mass of a helium atom.
Turbulence in the superfluid component must therefore in
general take the form of a complex tangle of vortex lines. A
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purely random tangle involves turbulent energy almost entirely
on only quantum length scales—scales comparable to, or
less than, the mean vortex spacing, � = L−1/2, where L is
vortex line density (length of line per unit volume), although
local polarization of the vortices can lead to the existence
of turbulent energy on any larger scale [4,5,8]. Both purely
quantum and classical features of turbulence can therefore be
detected simultaneously in the same quantum flow, depending
on the length scale at which this quantum flow is probed [9,10].

If vortex lines move relative to the normal fluid they
experience a drag force, called mutual friction [4,5]. On
quasiclassical length scales, i.e., scales large compared to �,
the superfluid component usually behaves like a classical fluid
at high Reynolds number. The small kinematic viscosity of the
normal fluid (of order κ/6 [11]) means that the same is true
for the normal fluid on these large quasiclassical scales. Thus
the two fluids can move together with the same velocity fields,
mutual friction serving only to stabilize this coupled motion.
The coupled fluids then behave as a single quasiclassical fluid
at high Reynolds number. This situation, referred to as coflow,
obtains quite frequently—for example when the fluid is stirred
by large-scale objects similarly as for classical fluids, such as
propellers [12], grids [13], flow through channels [14–17], or
due to various oscillating objects [18].

On quantum length scales (even in coflow) the superfluid
motion is strongly influenced by quantum effects. The cou-
pled motion therefore cannot be maintained, the resulting
dissipation due to the mutual friction, combined with viscous
dissipation in the normal fluid, results in a dissipation per unit
mass of helium of the form

ε = ν ′κ2L2, (1)

where ν ′ is an effective kinematic viscosity of order
κ [4,13,19–21]. This type of coupled motion, leading to
quasiclassical behavior on large length scales, will usually
obtain as long as there is no forced relative motion between
the two fluids on these scales. We shall refer to such forced
relative motion as counterflow. It is most easily imposed with
a temperature gradient, the superfluid component moving up
the gradient and the normal fluid moving down, with no net
mass flow. This is one special case of counterflow, known as
thermal counterflow.

Quite generally, by combining mechanical and thermal
drive, a rich variety of counterflows, i.e., two-fluid flows with
different flow ratio of the two components, can be generated,
representing a very complex superfluid hydrodynamic system.
In this paper, we are concerned with the special case of
counterflow that can be generated by forcing helium through a
tube, the ends of which are closed with superleaks—only the
superfluid component can flow through the superleaks, so that
the average velocity of the normal fluid vanishes. The forced
flow is conveniently driven by compression of a bellows,
and we refer to this type of counterflow as bellows-driven
superflow [3], or simply superflow.

Early experiments on thermal counterflow [22] led to the
idea that in such a flow a self-sustaining random tangle of
vortex lines is generated simply by the imposed relative
motion, the turbulence being essentially homogeneous, and
a phenomenological equation was derived that describes the
growth and decay of line density. In the steady state the line

density is given in terms of the relative velocity v = (vs − vn)
by

L = γ v2, (2)

where γ is a temperature-dependent parameter. Confirmation
of these ideas, together with an understanding of the physical
processes involved, came from the pioneering computer
simulations of Schwarz [23], which were improved and refined
by Adachi et al. [24], Baggaley and Barenghi [25], and
Kondaurova et al. [26]. These simulations were based on
the vortex filament model. They assumed that the flow of
the normal fluid remained laminar, and that the mean flow
velocities were spatially homogeneous and in an unbounded
volume. The resulting vortex tangle was disordered, so
there was no large-scale turbulent motion in the superfluid
component.

In Ref. [3] we reported the results of a study of the
attenuation of second sound in bellows-driven steady-state
superflow. According to the theories that we have described so
far, the line densities observed in such an experiment should
agree with those measured at the same value of v as those
observed in thermal counterflow. This was indeed confirmed
to a good approximation in channels of different cross sections,
with the agreement being particularly good when counterflow
and superflow are measured in the same (large) channel [17].

There are, however, subtle differences between counterflow
and superflow, even in the steady state. Experiments have
shown that there is a critical velocity below which the line
density is unmeasurably small, which scales with the channel
size, D. It was found to be roughly temperature independent
scaling as D−1/4 for superflow, while for counterflow it dis-
plays a D−1 temperature-dependent scaling [3]. Additionally,
another critical velocity has been reported by Tough and his
co-workers [27] in thermal counterflow, above which the γ

factor suddenly increases, the so-called T1-T2 transition. The
existence of this transition depends on the details of channel
cross section in counterflow (according to the data reviewed
by Tough [27] two states are observed if the aspect ratio is of
order 1 and the smallest dimension is less than about 1 mm; a
single state is observed if the aspect ratio is much larger than
1 or the smallest dimension is larger than 1 mm). In superflow
on the contrary, in channels of different cross section, only one
regime of turbulence has been observed. These facts may be
related to the different dynamics of the normal component in
the two systems.

Theoretical and computational work has recognized that
earlier simulations were unrealistic in at least one important
respect: they related to an unbounded volume of helium, and
to a situation where the velocity of the normal fluid (assumed
laminar) and the mean velocity of the superfluid are spatially
uniform. In practice, thermal counterflow takes place almost
always in a channel of finite cross section, so that, at the
very least, the no-slip condition for the viscous normal fluid
at a solid boundary must lead to spatial nonuniformity in
the velocity of the normal fluid. Furthermore, the Reynolds
number for the flowing normal fluid is typically quite large,
so that it is questionable whether the flow of the normal fluid
remains laminar.

The results of more realistic theoretical and computa-
tional work can be summarized as follows. The stability of
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laminar normal-fluid flow has been studied by Melotte and
Barenghi [28], although with assumptions that have turned
out to be unrealistic (the normal-fluid velocity profile remains
approximately parabolic in the presence of mutual friction, and
the line density remains unperturbed and spatially uniform).
The properties of the vortex tangle have been studied when the
normal fluid has a prescribed laminar parabolic profile by Aarts
and De Waele [29], Adachi and coauthors [24], and Baggaley
and Laurie [30], and when the normal fluid has imposed on it
a prescribed classical turbulent flow profile by Baggaley and
Laizet [31]. In the former case the line density turns out to be
quite inhomogeneous, although the spatially averaged value
of γ is not seriously affected. In the latter case the value
of γ is increased, suggesting that the transitions at which
γ is observed to increase are associated with transitions to
normal-fluid turbulence. However, this work is still unrealistic
for two reasons: the motion in the two fluids, coupled by
mutual friction, is not treated in a dynamically self-consistent
way, and it is assumed that there is no pinning of vortex lines
at a solid boundary.

We note at this point that our recent experimental work
on bellows-driven superflow [3] showed that the steady-state
spatially averaged line density is hardly any different from that
observed in thermal counterflow at the same relative velocity
v. This is in spite of the fact that the normal-fluid velocity,
relative to the channel walls, is very different in the two cases.
This suggests that the average line density is insensitive not
only to any inhomogeneity in the vortex tangle, as suggested
by simulations, but perhaps also, contrary to the simulations,
to any turbulence in the normal fluid, since any turbulence in
the normal fluid might be expected to be different in the two
types of flow. We are led to conclude that detailed information
about counterflow turbulence must come from experiments
other than those that measure average line densities in steady
flows: two possible directions are the direct visualization of
the turbulence and a study of the decaying line density after
the flow is switched off, which we pursue in our work.

On the visualization side, experiments on thermal counter-
flow have been reported using as tracers both micron-sized
hydrogen or deuterium particles and metastable He2 excimer
molecules [32]. In the former case at relatively low heat
currents bimodal distributions of vertical velocity have been
first measured by Paoletti and coworkers [33], indicating that
some of the particles move in the direction of the normal fluid,
while others are trapped on vortices and move with the tangle,
with a velocity generally different from that of the superfluid.
At larger heat currents, where effects relevant to our present
studies might be seen, the particles experience frequent trap-
ping and detrapping: vertical velocity distribution changes to
a monovalued one [34] and interpretation is in general harder.
A wealth of statistics of particle velocity and acceleration has
been produced by the Prague group in counterflow in different
heat current regimes [9,10,35], showing that the character of
particle dynamics changes from classical to quantum as the
length scale investigated is reduced from well above to well
below the intervortex separation. Additionally, there has also
been some indication that vortical structures exist on scales
larger than the intervortex spacing [10]. The excimer molecules
instead are useful because they track only the normal fluid (at
temperatures above 1 K). The use of these molecules is still

at an early stage of development, but Guo and coworkers have
already produced evidence that the normal fluid does become
turbulent above a critical velocity [36]. Very recently, Guo’s
group has been studying the time evolution of thin lines of
excimer molecules produced in counterflowing helium, from
which they can deduce the flow of the normal fluid in greater
detail [37]. We will further refer to this work in the Discussion
session.

We now turn to the main topic of this paper, i.e., the
decay of vortex line density in superflow and counterflow. The
phenomenological Vinen equations describing the growth and
decay of line density in counterflow turbulence [22] predict
that the free decay should be described by the equation

dL

dt
= −χ2κ

2π
L2, (3)

where χ2 is a dimensionless temperature-dependent parameter
proportional to mutual friction [23,38], related closely to the
effective kinematic viscosity ν ′. It follows that

L =
[

1

L0
+

(
χ2κ

2π

)
t

]−1

, (4)

where L0 is the line density at time t = 0. Recent simulations
of Mineda et al. based on the assumption that counterflow
turbulence is homogeneous and occurs in an unbounded
medium with laminar flow of the normal fluid have confirmed
this prediction [39]. However, it is now well known [22,40–44]
that the experimentally observed decay is quite different.
Although there is for a very short time a rapid decay that
might be described by Eq. (4), the decay then slows down for
a time and may actually reverse (there is a “bump” in the decay
curve), while at large times the decay is observed to continue
as t−3/2 rather than as t−1.

It is now widely accepted that the time dependence as
t−3/2 is associated with the decay through a quasiclassi-
cal Richardson-Kolmogorov cascade of coupled (superfluid-
normal fluid) energy containing eddies, the size of which is
determined by and limited by the dimensions of the containing
channel [5,8,13,45]. It has been shown that this decay is
described in detail by the equation

L(t) = D(3C)3/2

2πκν ′1/2
(t − t0)−3/2, (5)

where D is taken as the channel width, C ≈ 1.5 is the classical
Kolmogorov-41 constant, and t0 denotes the virtual time
origin.

The behavior described by Eq. (5) was first observed by the
Oregon group in the decay of grid turbulence [46–48], where
the formation of large eddies can be understood in classical
terms. However, formation of large-scale classical eddies in the
decay of counterflow turbulence must be less straightforward
than is the case with grid turbulence. Are they formed out
of large-scale eddies already present in the steady state? Or
are they generated from scratch during the early stages of the
decay? Presumably, the processes involved in this formation
are reflected in the early stages of the decay of line density,
but interpretation is hard. There has been some speculation
about these early stages, particularly about the origin of the
“bump” [49], to which we shall refer later, but there is as yet no
agreed explanation. Further substantial progress must probably
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FIG. 1. (Color online) Flow channel for turbulent superflow de-
cay studies, to scale, with dimensions in mm (left). Helium flows ver-
tically up, provided by low-temperature bellows next to the channel.
Superleak filters allow flow-through of superfluid component only.
Second-sound probes measure the total length of quantized vortices
per unit volume, Eq. (6). The channel can be modified to host thermal
counterflow too, as illustrated by sketches on the right, where S and
N stand for superfluid and normal components of He II. The channel
exists in two variants, with internal square cross section 7 mm and 10
mm on a side, coded D7 and D10 in the article.

await the results of visualization experiments, perhaps backed
up by more realistic numerical simulations. However, we argue
that if indeed the large eddies responsible for the t−3/2 decay
are formed out of large-scale eddies present in the steady state,
then bellows-driven superflow could exhibit very different
features in its decay from that seen with thermal counterflow.
We have therefore undertaken a study of the decay of such
bellows-driven superflow with a direct comparison of thermal
counterflow studied in the same channel and conditions, and
we present the results in this paper. As we shall see, the two
cases do indeed exhibit different forms of decay.

III. THE EXPERIMENT

A. Apparatus and method

A full description of the mechanically driven superflow
apparatus and the measurement technique was given in
Ref. [3]. Here we briefly recall only the essential features
for convenience, focusing on the aspects more specific to the
decay studies. A drawing of the flow channel is in Fig. 1. Two
vertical brass flow channels have been used in this experiment.
The test section is 105 mm in length and has an internal
square cross section of side 7 mm and 10 mm, therefore with a
factor 2 change in cross-sectional area (coded D7 and D10 in
this article). The channel ends are plugged by sintered-silver
superleak disks, each 2 mm thick, 16 mm diameter, with 1/2
filling fraction; these disks serve to prevent any net flow of
the viscous normal component on time scales relevant to the
experiment.

The superflow is driven by a low-temperature stainless steel
bellows immersed in the open cryostat bath and operated
through a shaft by a computer-controlled precision motor

located above the cryostat at room temperature. The velocity
of the flow in the channel is inferred from a measurement of the
rate of compression of the calibrated bellows volume, assum-
ing that the helium is incompressible. Counterflow is studied in
the traditional way, as in previous Prague experiments [42,43]:
we used the same channel of the superflow experiment (D10
only), installed it horizontally in the cryostat, removed one
superleak to open the channel to the bath, and fitted the other
end with a close cap which hosts a 50 	 heater resistor (sketch
in Fig. 1). The dissipated power is measured continuously, by
independent measure of voltage and current.

Turbulence is detected by measuring the extra attenuation
of second sound caused by scattering of normal-component
thermal excitations by the vortex lines. Second sound is gen-
erated and detected by a pair of vibrating porous membranes
located in the walls of the channel at its midpoint (see Fig. 1);
the second sound travels across the channel, which acts as a
resonator. The time-dependent attenuated amplitude of second
sound at resonance a(t) can be related to the instantaneous total
length of quantized vortex lines per unit volume, L(t), through
the equation

L(t) = 6π
f0

Bκ

(
a0

a(t)
− 1

)
, (6)

where a0 and 
f0 are the amplitude and full width at half
maximum of the second-sound amplitude resonant curve for
quiescent helium, and B is the mutual friction coefficient of
order unity, tabulated in Ref. [50] (the frequency dependence
of B can be neglected in this experiment since we perform
measurements only with a single low-frequency mode). The
attenuation of second sound measures the length of vortex line
per unit volume weighted by a factor sin2 θ , where θ is the
angle between any element of vortex line and the direction of
propagation of the second sound. To derive Eq. (6) [3], the
distribution of vortex lines is assumed to be fully random and
spatially uniform; the opposite limiting case where the lines
are instead assumed to be fully polarized, i.e., forming vortex
rings lying in planes perpendicular to the flow direction, leads
to a version of Eq. (6) a factor 4/3 higher. Therefore if the real
vortex line distribution is not known, the use of Eq. (6) can
lead to errors in L(t) of at most 33%. We will return to how
this aspect may affect results during discussion.

The decay process is too fast in time to allow sampling of a
full resonance curve at any point during the decay. However,
our studies of the steady state have shown that the second-
sound resonant frequency is not significantly affected by the
extra attenuation, so that it is sufficient to set the second-sound
frequency on resonance and observe this resonant response
as a function of time, as shown in Fig. 2. This response
accurately reflects the changing attenuation only if the natural
response time of the second-sound resonator (of order the
inverse linewidth) is sufficiently short; in practice 
f −1 is
about 10 ms at the start of the decay and about 100 ms
for quiescent helium, values that are small enough for our
purposes. Amplitude times series are sampled at 60 Hz, and
each sample is averaged with a lock-in amplifier with time
constant of 10 ms. Temperature control in our cryostat is of
order 0.1 mK, therefore sufficient to ensure that temperature
drift cannot cause significant drift away from resonance, as we
have experimentally verified.
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FIG. 2. (Color online) Example of a single raw measurement of
superflow turbulence decay in D7 channel, at T = 1.26 K. The
second-sound amplitude a(t) (black solid line) is plotted as a function
of time. At t = 0 helium is quiescent, at t = 30 s a steady flow of
velocity 11.3 cm/s is produced by the bellows, and at t = 51.5 s it is
suddenly switched off, resulting in the following decay. The reference
signal a0 entering the calculation of vortex line density, Eq. (6), is
the average of the last 20 s of the amplitude signal. The red solid line
(right axis) shows the bellows displacement. Inset: A zoom around the
switch-off time, showing that the second sound reacts immediately
after the halting of the drive. Time resolution of our measurements is
about 16 ms.

To create a turbulent steady state, the bellows are com-
pressed at a constant rate for about 20 s (Fig. 2), after which
compression is suddenly stopped. The position of the movable
end of the bellows is recorded by the motor encoder, which
shows that sudden stopping is achieved in less than 10 ms
(inset). The decay of line density is followed for 200 s,
after which the amplitude of the second-sound signal has
reached a statistically steady value; a further 30 s is allowed to
elapse before a new measurement is made. The second-sound
amplitude before and long after the steady flow was observed
to be generally slightly different. This effect—related to a
varying remanent amount of vortex line in the sample—is
studied statistically in Sec. III B and has some bearing on the
interpretation of results. It is not clear whether the beginning
or the end of the amplitude time series ought to be used for a0

in Eq. (6): we calculate it averaging the last 20 s. The measure-
ment protocol for thermal counterflow decays is very similar.

The parameter space covered by the experiment is sum-
marized in Table I. We have performed mechanically driven
superflow and thermally driven counterflow decay measure-
ments, in the two channels D7 and D10, in the temperature
range between 1.25 K to 2.10 K, and for initial steady-state
line densities, L0, spaced almost exactly one decade apart:
106 cm−2, 105 cm−2, and 104 cm−2 (we shall refer to the decay
curves corresponding to these initial line densities as L6, L5,
and L4). The table shows the corresponding superflow and
counterflow velocity in the steady state, with experimental
uncertainty of 3%.

For every combination of temperature and starting line
density we have measured typically 150 individual decays, un-
der nominally identical experimental conditions, and we have
ensemble-averaged these samples, by linearly interpolating

TABLE I. Overview of the parameter space explored by the exper-
iment. Steady-state line density and corresponding mean superflow
and counterflow velocity, shown per temperature and channel width
(7 mm and 10 mm side of square cross section).

Mechanical superflow Thermal counterflow

D7 D10 D10
T (K) L0 (cm−2) vs (cm/s) vs (cm/s) vns (cm/s)

106 11.3 / /
1.25 105 3.6 4.25 /

104 / 1.3 /

106 7.7 7.4 8.45
1.45 105 2.6 2.7 3.0

104 0.86 1.0 1.0

106 5.7 5.3 7.1
1.65 105 1.9 2.0 2.5

104 0.57 1.0 0.9

106 4.9 / /
1.75 105 1.7 / /

104 0.6 / /
/ / / /

2.10 105 0.4 / 1.50
104 0.15 / 0.51

each one onto a 100 Hz time series and averaging pointwise.
Decay signals are checked individually and rare anomalous
ones are discarded from averaging. The improvement of the
averaged signal with respect to a single sample is demonstrated
in Fig. 3. Averaging over a large ensemble has proven essential

FIG. 3. (Color online) Demonstration of the improvement of
signal-to-noise ratio by ensemble average of 150 decay samples. Data
relate to pure superflow, D7, T = 1.26 K, L6. The noisier signal in
solid black line is a single sample randomly chosen from the batch of
150. Time is rescaled here, with t = 0 marking the instant when the
bellows stops. On the y axis is the vortex line density calculated from
the data in Fig. 2 via Eq. (6). The average signal only looks noisy at
late times because it averages to zero and is plotted in logarithmic
scale. We can resolve 6 orders of magnitude in decay of vortex line
density.
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FIG. 4. (Color online) The dependence of the standard deviation
of the remanent vortex line density LR (vortex lines remaining in
the channel after a decay process) with temperature and steady-state
line density. Data relate to the D7 channel, D10 being similar. LR is
calculated with Eq. (7) and its standard deviation is typically from a
batch of 150 decays. The distribution of LR in a typical batch (here L5
at T = 1.65 K) is shown inset, roughly with a Gaussian distribution
with zero mean.

for our study, allowing us to resolve 6 orders of magnitude of
decay on L.

B. The remanent vortex line density

Our second-sound attenuation technique cannot provide
an absolute measurement of vortex line density, because the
reference second-sound signal a0 in Eq. (6) may itself be
attenuated by remanent vortex lines persisting in quiescent
helium after the turbulence has decayed. Vortex lines are
indeed expected to survive because they pin effectively to any
surface, due to their Å-size core [1]. The absolute vortex line
density in our sample is therefore Labs = Lrem + L, where
Lrem is the nonmeasurable remanent density of vortex lines
hidden in a0. However, Lrem is expected to be negligibly
small compared to L during most of the decay. An estimate
provided by the work of Awschalom and Schwarz [51] leads
to Lrem = 72 cm−2 and 36 cm−2 for the D7 and D10 channels,
respectively. What the experiment can access, however, is the
variation of L in the quiescent state between one decay and
another, which constitutes a measurement of the remanent
vorticity above the unmeasurable Lrem floor. We calculate this
quantity as

LR = Lstart − Lend, (7)

where this difference is obtained from the change in average
amplitude of the second-sound signal averaged over a period
of 20 s in the quiescent states before and after the imposition
of a flow. We have studied the distribution of LR in the batch
of 150 decays across all parameter space. An example for D7,
T = 1.65 K, and L5 is given in the inset of Fig. 4, showing
roughly a Gaussian distribution centered around zero; this
distribution is common to all batches. Notice that LR can be
positive or negative, and that the extent of its variation cannot

be accounted for by changes in helium temperature from one
decay to another (which are too small for this effect); therefore
we attribute this effect to varying remanent vortex line density
in the sample. The standard deviation of this distribution,
SD(LR), is given in the main plot of Fig. 4 as a function
of T and L0 for the D7 channel, D10 being similar. From this
we learn that SD(LR) is not correlated to L0 and that with the
exception of the points at T = 2.1 K where measurements are
more difficult, it varies from about 100 cm−2 to 300 cm−2. We
guess therefore that an upper limit on the absolute remanent
vortex line density in the sample is roughly SD(LR).

We do not know precisely what effect remanent vortices
might have on the rate of decay of a vortex tangle, compared
to a decay where vortex lines are totally annihilated, a
condition which, as we have explained, cannot be achieved
experimentally due to pinning. However we have indication
that when the counterflow heat current is reduced not to zero,
but to a finite subcritical value, the decay shape is somewhat
affected (Fig. 7); this suggests that the decay rate may be
affected by the amount of residual vortices. A detailed study
of these effects was carried out for thermal counterflow [22]
and we plan a similar approach for mechanical superflow.

In addition to these effects a further complication for
interpretation arises at low densities: for T < 2 K our averaged
estimated residual density SD(LR) ≈ 250 cm−2 corresponds
to a ratio of line separation to channel width of about 0.1 in D7,
at which wall effects might well start to be important. For these
combined reasons, we think it wise to consider our results only
up to times for which L � SD(LR), despite the fact that our
ensemble-average curves resolve a longer decay process. For
example, for the decay in Fig. 3 for which SD(LR) ≈ 100 m−2

we would limit our consideration up to about t = 90 s. This is
taken into account in the rest of the article.

IV. EXPERIMENTAL RESULTS

An overview of the first 10 s of all our experimentally
observed superflow decays in the D7 and D10 channels is
shown in Figs. 5 and 6, respectively. Each panel groups decays
from the same initial density and different temperature. These
plots serve to demonstrate the main features of the decays at
a glance; details on shorter and longer time ranges will be
presented in due course. An overview of the full time range
in log-log coordinates is available for D7 in the Supplemental
Material [52], with D10 being similar. Each decay shown here
in Figs. 5 and 6 displays an initial fast rate (see also Fig. 8 for
details) which expires within roughly 0.5 and 2 s depending on
conditions, followed by a slower process which continues for a
longer time (see also Figs. 9 and 11 for details). For short-time
behavior, we notice that qualitatively but systematically the
ratio of L0 to Lx at which the fast process changes to a slow
process decreases with L0 for fixed T , and increases with T

for fixed L0, in both channels. The time at which Lx occurs
increases systematically with decreasing L0 for fixed T and
increases with T for fixed L0.

In D10-L6 only (Fig. 6, left panel), the fast and slow regimes
are joined by an intermediate one, with an inversion of the
decay rate, i.e., a change of sign of dL/dt . In D10-L5 at
T = 1.25 K, instead, we observe only a slow down of the
decay rate without an increase in L, but with the presence
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FIG. 5. (Color online) Decay of vortex line density of pure superflow turbulence. Plots of L (in log scale) versus t for the D7 channel, at
different temperatures. Each panel groups decays from the same steady-state density, at different temperatures.

of a point of inflexion across which d2L/dt2 changes sign.
We shall refer henceforth to these features as a “bump” in
the decay curve. For simplicity we shall call “bump” both
the increase in L during the decay and the presence of
a point of inflexion, and we shall be more specific when
needed. The bump, observed only in these few circumstances
in superflow, is instead seen always in counterflow in the
stricter sense of nonmonotonic behavior, as demonstrated

in Fig. 7 and the related Supplemental Material [52]. The
existence of a nonmonotonic bump in counterflow was already
detected in earlier experiments [42–44] and here, within the
range of investigated parameters, we confirm it. There were
however instances in past experiments, including the ones
just cited, when a point of inflexion was observed instead
of nonmonotonic behavior, as in the first experiments on the
decaying thermal counterflow by Vinen [22] or more recently

FIG. 6. (Color online) Decay of vortex line density of pure superflow turbulence, as in Fig. 5 but for channel D10. Features are similar to
D7, except that L6 curves display a short nonmonotonic behavior and the L5 curve at 1.25 K has a change in the decay rate with a point of
inflexion. This feature, referred to in the text as a “bump,” is an exception in superflow decay and the rule in counterflow decay, shown in later
figures.
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FIG. 7. (Color online) Comparison of decays observed for thermal counterflow with those observed for bellows-driven superflow for
different initial line densities, at the same temperature, T = 1.65 K, and in the same channel, D10. Line densities are normalized to the initial
line densities. For counterflow, lighter lines correspond to decays when the heat current was reduced to a subcritical value of 10 mW. The
temporary increase in vortex line density during decay (the “bump”) is observed systematically in thermal counterflow, but only in the D10
channel and at high density in mechanical superflow. Similar plots at T = 1.45 K are in the Supplemental Material [52], including also the
thermal counterflow decay at T = 2.10 K which does not have a counterpart in superflow for the same channel size.

FIG. 8. (Color online) Comparison of decays observed for thermal counterflow with those observed for bellows-driven superflow for
different initial line densities at very small times for T = 1.65 K. Plots of 1/L − 1/L0 against t according to Eq. (8). The Vinen decay of a
random tangle is observed for a very short transient and is followed more closely by mechanical superflow than thermal counterflow, and, in
both cases, by decays originating from lower densities. (The T = 1.45 K data are in the Supplemental Material [52].)
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TABLE II. Values of κχ2/2π obtained averaging the values
computed by Schwarz [23] and those given by the theory of Vinen
and Niemela [4]. This quantity occurs in Eq. (8) which is plotted in
Fig. 8.

T (K) κχ2/2π (cm2 s−1)

1.25 2.2 × 10−4

1.45 3.1 × 10−4

1.65 4.5 × 10−4

1.75 5.3 × 10−4

2.10 9.3 × 10−4

in the Prague decays [42,43], for decays originating from
steady-state counterflow generated by larger heat fluxes than
reached here. What Fig. 7 adds to previous studies is high
statistics for counterflow (ensemble average of 150 decays
instead of single curve, i.e., the same standards as for our
superflow) and, especially, the fact that we can compare
superflow and counterflow strictly under the same conditions:
channel, temperature, and initial vortex line density.

Figure 7 shows that the bump in counterflow is broadened
with decreasing L0, and that in superflow it occurs only for
L6, although the details of the decay remain different in the
two cases. The lighter curves in the left panel are decays when
the heat current is reduced, not to zero, but to a small value
(10 mW) below the critical value for transition to quantum
turbulence. The idea here was to observe whether leaving a
subcritical heat current in the channel may help in reducing
the level of residual vortex lines, “washing them away,” in
the spirit of the systematic study in Ref. [22]. While we did
not observe a change in the residual second-sound attenuation
at the end of the decay process, we did measure differences
during the rest of the decay, as shown. At late times the line
density is lower in the case of nonzero heat current, and the
“bump” is somewhat reduced.

Let us now focus on the fast initial decay regime observed
at short times, emphasized in Fig. 8 for counterflow and
superflow in D10 at T = 1.65 K. In the figure we compare this
decay regime with the prediction of the Vinen model in Eq. (4)
relating to the decay of a fully random tangle unbounded by
walls, by recasting the equation as follows:

1

L
− 1

L0
=

(χ2κ

2π

)
t, (8)

where the quantity κχ2/2π is given in Table II. We notice
that the Vinen decay is not generally observed, and when it
exists, is followed for only a very short time, at most 1 s.
The pure superflow is more Vinen-like than the counterflow,
and departures increase with increasing L0 in both cases. The
situation is similar at other temperatures, with departure from
Vinen behavior increasing with decreasing temperature and
increasing initial density (data at T = 1.45 K are provided as
Supplemental Material [52]). In Fig. 8 we notice also that the
decay does not start abruptly as predicted by Eq. (4), but there is
some rounding immediately after t = 0. This rounding is more
pronounced in superflow than in counterflow, lasting at most
some 200 ms, with the tendency to increase with initial line
density. This latter fact leads us to favor the explanation that the

FIG. 9. (Color online) Superflow decay in the D7 channel from
initial line density L0 = 105 cm−2 at different temperatures. In the
main plot L and t are plotted in logarithmic axis, demonstrating
that superflow decays with the power law L ∝ (t − t0)−3/2 (dashed
line) for a very large fraction of time, except for the first few seconds,
according to the quasiclassical single fluid decay model in Eq. (5). The
x axis requires the subtraction of the virtual time origin t0 obtained
from the inset, as described in the text. Similar plots from different
initial density and for the D10 channel are in the Supplemental
Material [52] and confirm the same conclusions.

rounding may be an instrumental effect. The switching off of
counterflow is controlled fully electronically, while the bellows
is a mechanical system which may introduce secondary
lagging effects. Although the bellows motor encoder at room
temperature does show that the system comes to rest to
within 10 ms (Fig. 2), the actual flow may not stop abruptly,
for reasons such as finite compressibility, the finite time
for expiration of pressure gradients (which would increase
with bellows velocity as observed), the expiration of thermal
gradients occurring because of the presence of superleaks
causing an increase of temperature in the bellows and a
decrease in the channel due to change in superfluid/normal
density ratio (see Ref. [3] for more detailed discussion), and so
on. In principle however one should not exclude the possibility
that the flow actually stops at t = 0 and therefore the rounding
would be explained by some incompleteness of the model in
Eq. (4). At any rate, our time resolution of ≈ 16 ms, limited
by the intrinsic physics of second-sound resonance, does not
allow us to study this physical process in greater depth. We
therefore concentrate on the decay process after the first, say,
100 ms have elapsed.

The situation at late times is summarized in Fig. 9, for the
case of superflow in D7, with starting density L5 at different
temperatures (D10 version in the Supplemental Material [52]).
Although we know from Sec. III B that we should handle
with care the decay process when L becomes comparable
with or smaller than its mean remanent value, in this figure
we demonstrate that a single power law of the form L ∝
(t − to)−3/2 represents the data from the first few seconds to
the end of the range. This is the behavior predicted by the
quasiclassical model in Eq. (5).
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FIG. 10. (Color online) The time for the onset of L ∝ t−3/2

behavior (saturation time; see text) as a function of the flow’s
Reynolds number. The present experiments are compared with an
older Prague thermal counterflow experiment in a round channel [42]
and with the Oregon towed grid experiments (the dashed line is
an interpolation of their experimental points) which measures the
turbulence decay behind a moving grid [48].

Since Eq. (5) has a virtual time origin t0, this must be
subtracted from the time axis in a logarithmic plot. To estimate
it we recast Eq. (5) as follows:

1

L2/3
= (2π )2/3κ2/3ν ′1/3

3CD2/3
(t − t0), (9)

and obtain t0 as the intercept of the linear part of the plot with
the time axis, as demonstrated in the inset of Fig. 9 by dashed
lines.

Another characteristic time of the decay process, often
discussed in literature, is the time at which the t−3/2 behavior
onsets, i.e., the “saturation time” ts [“saturation” refers to
the attainment of the condition of large eddies reaching their
maximum size limited by the channel width D, required in
deriving Eq. (5)]. This time is plotted for different flows in
Fig. 10 against the Reynolds number, defined with the mean
velocity v, the channel width D, and the kinematic viscosity
of the normal component ν, following Ref. [42]. Allowing
for some scatter, all experiments produce roughly a scaling
ts ∝ Re−1.

We continue the analysis of the late-time behavior by
contrasting superflow and counterflow in Fig. 11, for the same
temperature, T = 1.65 K, and channel, D10, observing that
in both cases there is linear range as predicted by Eq. (9)
extending as far as 80 s; the similar T = 1.45 K case is in
the Supplemental Material [52]. This equation also predicts
that (i) curves from different initial densities should have the
same slope: our data confirm this. (ii) The slope should scale
as D−2/3: despite the fact that we have only two channel sizes,
we checked this prediction and found that experimental slopes
scale by a substantially larger extent than expected. In these
two respects therefore our results differ from the prediction.

Fitting Eq. (9) to the linear part of the curves in Fig. 11
allows us to extract the effective viscosity ν ′, as is customarily
done [13,19,20]. In Fig. 12, together with the data from the
decay of turbulence past the towed grid [53], we thus plot
ν ′(T ) for all our flows. The effective viscosity measured
from decays starting from different vortex line density L0

is found to slightly vary, but in a manner uncorrelated with
L0. In any case, we do not expect ν ′ to be dependent on
L0 because we understand ν ′ to be a robust property of the
flow independent of flow details, as is shown by consistent
values coming from different decay experiments [20] and

FIG. 11. (Color online) Comparison of decays observed for thermal counterflow with those observed for bellows-driven superflow for
different initial line densities at T = 1.65 K in D10. Plots of L−2/3 against t as according to Eq. (9). Linear behavior corresponds to the
quasiclassical L ∝ t−3/2, observed in both flows. The T = 1.45 K version is in the Supplemental Material [52].
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FIG. 12. (Color online) The effective viscosity of the “quasiclas-
sical” model [Eq. (5)] as a function of temperature. For our three
experiments, at each given temperature, ν ′ has been averaged from
decays of different initial density (L4, L5, and L6), resulting in the
shown error bars. For comparison we add also data from the Oregon
towed grid experiment [53].

also from steady flows, hence from an entirely independent
approach [54]. For these reasons, we think it justified to
average ν ′ originating from different L0—which is reflected
in the error bars in Fig. 12. We notice that, despite the data
from the three experiments at the same temperature being
roughly consistent within error bars, the superflow data for
D10 lie systematically lower than those for D7, which puts
pressure on the understanding that ν ′ should not depend on
flow details. At any rate, as we have discussed in our works
which include determination of effective viscosity [16,54], the
absolute value of ν ′ obtained from decay measurements can
have uncertainties up to a factor of 4, depending on how strictly
the assumption on saturation of the large eddies’ size obtains.
Accurate experimental determination of ν ′ to better than a
factor of 4 remains therefore still a challenge.

V. DISCUSSION

All our experimentally observed decays, both in superflow
and counterflow, have an initial regime when the line density
drops rapidly (for sufficiently low density it approaches for a
short time the Vinen law L ∝ t−1, especially in superflow),
and a final slower regime of the form L ∝ t−3/2. The first, fast
regime, lasts at most 1 s (Fig. 8) and is responsible for the
loss of a large fraction of vortex lines, even up to about 99%
(see, e.g., the T = 1.75 K curve in Fig. 5, left panel). The
fact that the decay rate increases with increasing temperature
for fixed initial density may be due to rising value of the
prefactor κχ2/2π in Eq. (3) with temperature, as shown in
Table II, which in turn must be related to the increase in mutual
friction. The second, slow regime lasts for the majority of the
decay process and causes the loss of the remaining vortex lines
(except the remanent ones).

We have compared our observations with two available
analytic models: (i) the Vinen equation for a random tangle,
and found it to apply in a limited regime, and (ii) the
quasiclassical model for the decay of large eddies, and found it
to apply more generally although not fulfilling all predictions.

Our results generally confirm the understanding [19,55,56]
that a general quantum turbulence tangle consists of an random
system of vortex lines which decays fast by mutual annihilation
of lines, a fraction of which is organized in bundles giving
rise to eddies of various sizes, up to sizes comparable to the
channel width, which decay more slowly. Alternatively, we
can imagine there being a more spatially homogeneous regime
with an energy spectrum that is Kolmogorov in form except
for an initially enhanced energy at wave numbers close to
the inverse vortex line spacing; i.e., a situation in which the
density of vortex lines is initially larger than is necessary for
the dissipation of energy, given by Eq. (1), at the rate required
to match the flow of energy down the Kolmogorov cascade.
Our experiment cannot establish unequivocally whether these
eddies exist already in the steady state, although evidence
that they do exist comes from visualization of counterflow
turbulence both from tracing solid particles [10] and imaging
the normal component [36,37].

What is not predicted by the existing analytic models is
the occurrence of the “bump,” i.e., the change of sign in
dL/dt or d2L/dt2 between the fast and slow regimes, which
we have observed always in thermal counterflow and as an
exception in superflow. The second-sound attenuation can
become increased during decay for one, or for a combination
of two, reasons: (i) the line length stays approximately constant
but it is spatially rearranged so that the second sound “sees”
a greater fraction (recall that second sound is attenuated only
by the projection of vortex lines onto a plane perpendicular
to second sound’s propagation direction), or (ii) the spatial
orientation stays fixed but the line length increases.

The possibility of (i) has been confirmed numerically
by Barenghi et al. [44,49] for spatially rearranged random
tangles, but although the simulation gave a qualitative result
in agreement with observations, the vortex line density in
the simulation was about an order of magnitude below the
lowest available experimentally. We note nevertheless that the
observed height of the bump is never greater than can be
accounted for by this mechanism (33%). On the other hand,
this effect was not observed in the simulations of Mineda
and coworkers [39], based on more realistic line densities.
However, neither of these simulations takes account of the
possibility that the vortex tangles with which we are dealing
are polarized in such a way that large-scale eddy motion is
superimposed on the random tangle.

Option (ii) is also physically possible, and to build an
argument for it we note that in our measurements the bump
occurs always in thermal counterflow and only at high steady-
state velocities in superflow. This suggests that the dynamical
state of the normal component (laminar, unstable, or turbulent)
might be relevant to the existence or not of the bump, since the
average velocity of the normal component relative to the walls
varies significantly in the two systems: it can be rather large
in the case of thermal counterflow, but it is nominally zero in
the case of superflow. We note however that, as suggested in
Ref. [3], from considerations on the scaling of critical velocity
with channel width from different experiments, the normal
component is probably not at rest in superflow in a large
channel, but is set in motion by mutual friction, the spatially
averaged velocity remaining zero. Nevertheless this motion
may be relatively slow in comparison with that in thermal
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counterflow, except at large superflow velocities. But just how
would the motion of the normal component cause the decay
inversion? The recent results from the Tallahassee group [37],
where the normal component is tracked by the excimer
molecules, give evidence that the normal component at a
sufficiently high heat current becomes turbulent (specifically
at T = 1.83 K for a heat current above qc = 80 mW/cm2 at
which L0 ≈ 104 cm−2). The second order structure functions
calculated from the normal fluid turbulent velocity fluctuations
extend over a fairly large range of lengths scales, up to a sizable
fraction of the channel size. The structure function can be
related to a turbulent energy spectrum of the form E(k) ∝ k−2

in the steady state (where k is the wave number). During the
decay the spectrum changes gradually, within about 3 seconds,
into the Kolmogorov form E(k) ∝ k−5/3. It seems possible that
the bump is associated with this evolution. We are currently
exploring this idea with a model for the temporal evolution
of the energy spectrum, and this work will be reported in
a future publication. Further experimental evidence that the
bump is associated with transition to turbulence in the normal
component would come by testing thermal counterflow at
heat currents below the transition. In our system this would
mean to study decays from initial density sufficiently below
L0 = 104 cm−2, which constitutes a direction for future work.

VI. CONCLUSIONS

We have presented a comprehensive picture of the temporal
decay of vortex line density in quantum turbulence produced
by mechanically driven superflow through two square channels
of 7 and 10 mm on a side. We have covered a broad parameter
space in temperature (1.25 � T � 2.10 K) and in steady-state
vortex line density (104 � L � 106 cm−2). Additionally, at
T = 1.45 K and T = 1.65 K and for all the same initial
densities, we have provided, for the first time, a direct
comparison of mechanical superflow and thermal counterflow,
the latter performed in the same 10 mm wide channel used for
superflow and under exactly the same experimental conditions.
This, together with enhanced accuracy achieved thanks to
ensemble averaging of up to 150 individual decays, placed
us in a strong position to compare these flows.

In an unbound system superflow and counterflow ought to
display identical physics since they are related by Galilean

invariance. In practice, the presence of channel walls will
change the physics, at least for the normal component
which must acquire a profile due to viscous drag with the
walls. This has been indeed confirmed experimentally by
visualizing the normal fluid flow profile using helium excimer
molecules, observed to turn from laminar to turbulent as heat
current increases [37]. Additionally, we know from numerical
simulations [31,38,57] that the normal fluid profile induces
inhomogeneity in the distribution of vortex lines across the
channel width, with the density being enhanced in the case of
turbulent normal fluid profile. Our experiments with steady-
state superflow have shown that when comparing with other
counterflow experiments with channels of different size [3] and
also when measuring in our own superflow channel adapted for
counterflow [17], the line density for a given relative velocity
is essentially insensitive to the normal component net flow.
This is not so for the decay.

The decay of these two flows is similar in that both display
an initial fast process where most of the line density is lost
which for sufficiently low density has the form L ∝ t−1,
and a subsequent slow L ∝ t−3/2 process where the rest of
the tangle decays. These two processes have been associated
respectively with the decay of the randomized and polarized
components of the tangle. The key difference however is that in
counterflow we invariably observed an inversion of the decay
rate between the two regimes, which we observed only at
high steady-state velocities in the wider channel in superflow.
This fact, firmly established by high-statistics measurements,
indicates that the dynamical state of the normal component in
the steady state (no net flow through the channel in superflow
and turbulent pipe flow in counterflow) has consequences
for the decay of the tangle. We have speculated about the
reasons, but further work is required if these reasons are to
command confidence. We hope that this comprehensive set
of experimental data describing the vortex tangle decay in
superflow and counterflow will stimulate the development of
a still missing full theory of counterflow turbulence.
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