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We illustrate the magnetoelectric effect conditioned by the Katsura-Nagaosa-Balatsky (KNB) mechanism
within the frames of exactly solvable spin-1/2 XY chains. Due to three-spin interactions which are present in our
consideration, the magnetization (polarization) is influenced by the electric (magnetic) field even in the absence
of the magnetic (electric) field. We also discuss a magnetoelectrocaloric effect examining the entropy changes
under the isothermal varying of the magnetic and/or electric field.
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I. INTRODUCTION

Magnetically induced ferroelectricity is an important and
highly interesting phenomenon in condensed matter physics
which attracts attention from both experimentalists and the-
oreticians [1,2]. In general, the phenomenon is a part of the
so-called magnetoelectric effect, the intercoupling of magneti-
zation and polarization in matter, which in its most prominent
form can be briefly described as the magnetization dependence
on the electric field and the polarization dependence on the
magnetic field. The importance of the topic is not limited
only to the highly nontrivial and rich physics; it also has
very promising practical applications in future electronic
devices [3,4].

Among the various physical realizations of the magneto-
electric effect, the ferroelectricity of spin origin is particu-
larly important for spin-related electronics. There are several
mechanisms of the coupling between local spins (magnetic
moments) of the magnetic materials and the local polarization
of the lattice cell [1–4]. The one which we are going to exploit
in the present study is called the Katsura-Nagaosa-Balatsky
(KNB) mechanism [5,6], which is based on a so-called inverse
Dzyaloshinskii-Moriya model or spin current model. This
mechanism gives for the polarization (dipole moment) of
the bond pij connecting two spins si and sj the following
expression:

pij ∝ [eij × [si × sj ]], (1.1)

where eij is the unit vector pointing from the ith site to the j th
site. In terms of the spin current flowing between the magnetic
sites

jij ∝ [si × sj ], (1.2)

the bond polarization in Eq. (1.1) can be rewritten as

pij ∝ [eij × jij ]. (1.3)

According to Eqs. (1.1)–(1.3), a spiral spin order may generate
a macroscopic polarization of electronic (spin) origin.

At the present time a number of compounds are known
which give evidence of the magnetically-driven ferroelectricity
and magnetoelectric effect due to the KNB mechanism
[2,7–14]. The simplest quantum spin model exhibiting the
spiral magnetic order is a spin-1/2 J1-J2 chain with ferromag-

netic nearest-neighbor coupling (J1) and antiferromagnetic
next-nearest-neighbor coupling (J2) which is considered to be
a more or less realistic model for such materials as LiCu2O2

[7–10], LiCuVO4 [11–13], and CuCl2 [14] to mention just a
few. Another example of a one-dimensional system exhibiting
magnetically-driven ferroelectricity is the Ising chain magnet
Ca3Co2−xMnxO6 (x ≈ 0.96). However, the ferroelectricity in
the latter compound occurs due to the exchange striction
associated with symmetric superexchange [15].

In the present paper we are going to examine an exactly
solvable model exhibiting a nontrivial magnetoelectric effect.
The introduced quantum spin-chain model contains, in ad-
dition to the common two-spin interactions, the three-spin
interactions [16], and the bond polarization is of the spin origin
according to the KNB scenario (1.1)–(1.3). The spin system
under consideration is a variant of the famous spin-1/2 XY

chain [17] (Suzuki models [18,19]) which is solvable by
the Jordan-Wigner fermionization. Such free-fermion spin
models are quite popular as they provide suitable playgrounds
for the exact description of various phenomena in strongly
correlated systems [20–30]. It is also in order to mention
here similar recent studies on the exact treatment of the
magnetism-driven ferroelectricity in quantum spin chains
which, however, deal with the two-spin interactions only in
the XXZ Heisenberg [31,32] or compass models [33]. The
polarization for those models is influenced by the magnetic
field only in the presence of the electric field, but the
polarization is zero at zero electric field independently on
the magnetic field. In other words, those models exhibit only
the so-called trivial magnetoelectric effect. Contrary to those
previously studied models, the ones considered below show the
nontrivial magnetoelectric effect: The polarization is affected
by the magnetic field even at zero electric field. A proposal to
consider magnetoelectric effect in more sophisticated models
with three-spin interactions was formulated in Ref. [31].

The rest of the paper is organized as follows. In Sec. II
we discuss the spin-chain models of magnetism-driven ferro-
electricity which can be treated exactly by the Jordan-Wigner
transformation to free fermions. Exact solutions are presented
in Sec. III. The essential feature of the models at hand
is the three-spin interactions. For the sake of simplicity
we distinguish two types of the three-spin interactions,
the XZY − YZX ones and the XZX + YZY ones, which
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are considered separately in Secs. IV and V, respectively.
Our main focus is on the ground-state magnetization and
polarization (zero-temperature properties) as well as on the
magnetoelectrocaloric effect (finite-temperature properties).
We summarize our findings and sketch perspectives for further
work in Sec. VI. Details of some calculations are presented in
two appendices.

II. SPIN-1/2 XY CHAINS AUGMENTED BY KNB
MECHANISM

In this paper, we consider N spins 1/2 placed on a
one-dimensional linear-chain lattice. We start with the “bare”
Hamiltonian of the spin system

H0 = HJ + HE + HK + HZ, (2.1)

which contains, in general, the ordinary two-spin isotropic XY

interactions,

HJ = J
∑

n

(
sx
n sx

n+1 + sy
n s

y

n+1

)
(2.2)

(we may set J > 0 without sacrificing generality), the three-
spin interactions of two types [20,21],

HE = E
∑

n

(
sx
n sz

n+1s
y

n+2 − sy
n sz

n+1s
x
n+2

)
,

(2.3)
HK = K

∑
n

(
sx
n sz

n+1s
x
n+2 + sy

n sz
n+1s

y

n+2

)
,

as well as the Zeeman interaction of the spins with a z-aligned
external magnetic field H:

HZ = −H
∑

n

sz
n. (2.4)

Boundary conditions are not considered explicitly for thermo-
dynamically large systems N → ∞.

In our study, we assume that the spin model arises from
a more fundamental electronic model for which the KNB
scenario [5] holds. This means that the electric polarization
of the bond between the neighboring sites n and n + 1 to be
denoted by pn,n+1 is determined by the spin current jn,n+1

according to Eqs. (1.1)–(1.3). In our model, the chain runs
along the x direction in the real space, i.e., eij = (1,0,0)
in Eqs. (1.1) and (1.3). Furthermore, the x, y, and z axis
in the real space and in the spin space coincide. Then
pn,n+1 ∝ (0, − jz

n,n+1,j
y

n,n+1), i.e., the bond polarization has
zero x component.

The spin-current operator satisfies the lattice version of the
continuity equation, dsα

n /dt = −divjα
n , α = x,y,z, where the

discrete divergence operator acts in the real space. Consider
at first the isotropic XY interactions only [i.e., E = K = 0 in
Eqs. (2.1)–(2.4)]. For the z component of the current through
the bond we find:

dsz
n

dt
= −i

[
sz
n,HJ + HZ

] = −
(
jz

n+ 1
2
− jz

n− 1
2

)
= −divjz

n,

j z

n+ 1
2

≡ J
(
sx
n s

y

n+1 − sy
n sx

n+1

)
. (2.5)

If the spin-1/2 isotropic XY chain comes from an underlying
electronic model for which the KNB mechanism works, then
each bond has the polarization pn,n+1 ∝ (0, − jz

n,n+1,j
y

n,n+1)

with jz
n,n+1 = jz

n+ 1
2

given in Eq. (2.5) which may manifest

itself in the presence of an electric field. Let E be a y-aligned
external uniform electric field [i.e., the electric field vector
is (0,E,0)]. Then the Hamiltonian of the model H0 has to
be supplemented with the term −E

∑
n p

y

n,n+1 ∝ E
∑

n j z
n,n+1,

and we arrive at [31]

H = J
∑

n

[
sx
n sx

n+1 + sy
n s

y

n+1 + E
(
sx
n s

y

n+1 − sy
n sx

n+1

)]

−H
∑

n

sz
n. (2.6)

One may calculate the magnetic moment Mz = ∑
n〈sz

n〉
and the polarization P y ∝ −J

∑
n〈sx

n s
y

n+1 − s
y
n sx

n+1〉 for spin
model (2.6) using the standard Jordan-Wigner fermionization
method [17], see Ref. [31] and Sec. III.

Next we consider the model with the three-spin interactions,
see Eq. (2.3). Placing the system in a uniform external electric
field (0,E,0), we have to add to the Hamiltonian H0 the term
−EP y. Following previous studies on the magnetoelectric
effect in the spin-1/2 J1-J2 chain [34–36], we take for
the required polarization operator the following expression:
P y = ∑

n p
y

n,n+1 ∝ −∑
n j z

n,n+1 with jz
n,n+1 = jz

n+ 1
2

given in

Eq. (2.5). Then the Hamiltonian of the spin system becomes

H = J
∑

n

[
sx
n sx

n+1 + sy
n s

y

n+1 + E
(
sx
n s

y

n+1 − sy
n sx

n+1

)]

+E
∑

n

(
sx
n sz

n+1s
y

n+2 − sy
n sz

n+1s
x
n+2

)

+K
∑

n

(
sx
n sz

n+1s
x
n+2 + sy

n sz
n+1s

y

n+2

)

−H
∑

n

sz
n. (2.7)

As previously, the magnetic moment Mz = ∑
n〈sz

n〉 and the po-
larization P y ∝ −J

∑
n〈sx

n s
y

n+1 − s
y
n sx

n+1〉 for spin model (2.7)
can be calculated rigorously within the frames of the Jordan-
Wigner fermionization approach [17], see Sec. III. It should
also be noted here that models similar to the one given in
Eq. (2.7) have been considered recently [compare Eq. (2.7) to
Eq. (2.1) of Ref. [31] or to Eq. (2.2) of Ref. [33]], however,
they contain the two-spin interactions only. As is shown
below, the three-spin interactions lead to new features of the
magnetoelectric effect.

Interestingly, for the spin model defined in Eqs. (2.1)–(2.4)
we may also consider the three-spin-interaction contribution to
the spin current in the KNB formula for the bond polarization
[Eq. (1.3)] (see Ref. [37]) and remain to face an exactly
solvable spin model. Indeed, using the continuity equation
for the required z component of the spin-current operator we
find:

dsz
n

dt
= −i

[
sz
n,HE + HK

] = − jzn+1 − jzn−1

2
= −divjzn,

jzn+1 ≡ −2E
(
sx
n sz

n+1s
x
n+2 + sy

n sz
n+1s

y

n+2

)
(2.8)

+ 2K
(
sx
n sz

n+1s
y

n+2 − sy
n sz

n+1s
x
n+2

)
.

Therefore in the presence of the electric field (0,E,0) we face
the Hamiltonian similar to the one given in Eq. (2.7) but
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with

E → E + 2KE, K → K − 2EE . (2.9)

Clearly, all averages are calculated now with this new
Hamiltonian (2.7), (2.9). The magnetic moment is given
by Mz = ∑

n〈sz
n〉, whereas the polarization is now the

sum of the two terms, P y ∝ −J
∑

n〈sx
n s

y

n+1 − s
y
n sx

n+1〉 and
Py ∝ ∑

n(2E〈sx
n sz

n+1s
x
n+2 + s

y
n sz

n+1s
y

n+2〉 − 2K〈sx
n sz

n+1s
y

n+2 −
s
y
n sz

n+1s
x
n+2〉), see Eq. (2.8). Again these quantities can be

calculated rigorously using the Jordan-Wigner transformation
to fermions [17], see Sec. III.

In summary, based on the KNB scenario for magnetism-
driven ferroelectricity [Eqs. (1.1)–(1.3)] and choosing specific
exchange interactions, lattice geometry, and direction of
external fields, we arrive at simple spin models which are
expected to mimic basic features of some multiferroics. In
contrast to the previously considered similar exactly-solvable
models of magnetism-driven ferroelectricity [31–33], we have
also taken into consideration the three-spin interactions. A
more realistic description of multiferroics of spin origin leads
to more sophisticated spin models (see, e.g., Refs. [34–37]),
and their further analysis involves approximations. The merit
of the introduced models is their exact solvability. In the
following sections we rigorously examine some aspects of
the magnetoelectric effect in spin models defined in Eq. (2.6),
Eq. (2.7), and Eqs. (2.7), (2.9).

To close the section, we make a remark concerning
the three-spin interactions which are present in Eq. (2.7).
Obviously, the spin model with two-spin interactions only (2.6)
describes the influence of E on Mz or of H on P y . However,
from symmetry arguments it is clear that Mz = 0 if H = 0
independently on E or P y = 0 if E = 0 independently on H,
see the paragraph after Eq. (3.6) in Sec. III. In contrast, in the
presence of the three-site interactions (2.3), these symmetry
arguments do not work anymore, and one may expect a
nontrivial magnetoelectric effect when Mz is influenced by
E even for H = 0 or P y is influenced by H even for E = 0.
Rigorous calculations reported in Secs. IV and V support these
expectations.

III. EXACT SOLUTIONS

Spin-1/2 models given in Eqs. (2.6), (2.7), and (2.7), (2.9)
are exactly solvable via the Jordan-Wigner transformation to
fermions [17], see Appendix A. In the fermionic picture we
face noninteracting spinless fermions with known energies
εκ , and thus many statistical mechanical calculations can be
easily carried out. For the Helmholtz free energy per site we
find [25,30]

f (T ,H,E) = − T

2π

∫ π

−π

dκ ln
(

2 cosh
εκ

2T

)
, (3.1)

where for model (2.7)

εκ = −H + J cos κ + JE sin κ

− E

2
sin(2κ) − K

2
cos(2κ). (3.2)

In the case of model (2.6) one has to put E = K = 0 in
Eq. (3.2), whereas in the case of model (2.7), (2.9) one has
to make the replacement (2.9) in Eq. (3.2).

In what follows we are interested in the magnetization
and the polarization for the spin models at hand. For the
magnetization per site we have

m = mz = 1

N

∑
n

〈
sz
n

〉 = 1

2π

∫ π

−π

dκnκ − 1

2
,

nκ = 1

1 + e
εκ
T

, 0 � nκ � 1. (3.3)

For the polarization per site for spin model (2.7) we have

p = py ∝ − J

N

∑
n

〈
sx
n s

y

n+1 − sy
n sx

n+1

〉

= − J

2π

∫ π

−π

dκ sin κ nκ . (3.4)

While calculating the polarization per site for spin
model (2.7), (2.9), we have to use the energy spec-
trum (3.2), (2.9) and in addition to the contribution py given
in Eq. (3.4) to calculate the second term py ,

p = py ∝ 1

N

∑
n

(
2E

〈
sx
n sz

n+1s
x
n+2 + sy

n sz
n+1s

y

n+2

〉

− 2K
〈
sx
n sz

n+1s
y

n+2 − sy
n sz

n+1s
x
n+2

〉)

= − 1

2π

∫ π

−π

dκ[E cos(2κ) − K sin(2κ)]nκ. (3.5)

Furthermore, we are interested in the entropy (per site) for
the spin models at hand. It immediately follows from Eq. (3.1)
through the relation s = −∂f/∂T ,

s = 1

2π

∫ π

−π

dκ
[
ln

(
2 cosh

εκ

2T

)
− εκ

2T
tanh

εκ

2T

]
. (3.6)

As emphasized in the end of the previous section, the
introduced three-spin interactions are essential for the ap-
pearance of the nontrivial magnetoelectric effect. This is
clearly seen from formulas (3.2)–(3.4) in the fermionic picture.
Obviously, for T = 0 we have nκ = 0 if εκ > 0 and nκ = 1 if
εκ < 0. Therefore, for E = K = 0 we have

∫ π

−π
dκnκ = π

if H = 0 independently on E , and hence the ground-state
magnetization (3.3) is zero. Furthermore, for E = 0 we have
nκ = n−κ if E = 0 independently on H, and hence the ground-
state polarization (3.4) is zero. In the presence of the three-site
interactions the used symmetries of εκ (3.2) may be broken
and the obtained conclusions do not hold anymore.

For the sake of simplicity in the following analysis we
distinguish two different types of three-spin interactions,
XZY − YZX type, i.e., K = 0 (Sec. IV) and XZX + YZY

type, i.e., E = 0 (Sec. V). From previous studies [20–
23,25,30], we know that for E = 0 both models [see Eqs. (2.1)–
(2.4)] exhibit three phases in the ground state: High-field
ferromagnetic phase and, depending on the relation between
two- and three-spin interactions, two different spin-liquid
phases. In the fermionic picture different phases correspond to
different Fermi-surface topology (different number of Fermi
points) for fermions. Furthermore, these models are known to
exhibit a nonzero magnetization in zero magnetic field [20,21].
Clearly, for E 	= 0 both types of three-spin interactions are
present in the analysis of the magnetoelectric effect.
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IV. THREE-SPIN INTERACTIONS OF X ZY − Y ZX TYPE

In this section we consider the case of the XZY − YZX

three-spin interaction, i.e., E 	= 0, K = 0 (J = 1). From the
ground-state phase diagram of the model (2.7) with E = 0 (see,
e.g., Ref. [30]), we know that it makes sense to distinguish three
representative values of E, for example, E = 0.5, E = 1, and
E = 2. For these cases we calculate the ground-state phase
diagram in the plane H-E which indicates phases having
different numbers of Fermi points [see Fig. 1 for model (2.7)
with E = 2], and the ground-state [38] magnetization and
polarization [see Fig. 2 for model (2.7) with E = 0.5 and
E = 2: m(H) (bold solid), p(H) (bold dashed) at E = 0 and
m(E) (bold solid), p(E) (bold dashed) at H = 0]. Furthermore,
we calculate the low-temperature entropy in the planeH-E [see
Fig. 3 for model (2.7) with E = 2 at T = 0.09].

Let us discuss the obtained results. The physics of the
model along the line E = 0 in the plane H-E is well
understood [20,23,30]. While H increases from −∞ to
∞ the system passes from the ferromagnetic phase to the
ferromagnetic phase over the spin-liquid I phase if |E| < 1
or over the spin-liquid I phase, the spin-liquid II phase, and
again the spin-liquid I phase if |E| > 1. The sequences of
phases for the latter case with E = 2 can be followed in
Fig. 1 along the line E = 0. In the presence of the electric
field E 	= 0, the system exhibits the same phases separated
by quantum phase transition lines and two quantum triple

FIG. 1. (Color online) Magnetization (upper panel) and polariza-
tion (lower panel) at very low temperature (T = 0.005) along with
the ground-state phase diagram (black solid lines separate different
phases) of model (2.7) with J = 1, E = 2, and K = 0.

FIG. 2. (Color online) Dependencies of magnetization (bold
solid) and polarization (bold dashed) at T = 0.005 on the magnetic
field at E = 0 (first row) and on the electric field at H = 0 (second
row) for model (2.7) with J = 1, E = 0.5 (left column) or E = 2
(right column), and K = 0. By thin lines we show magnetization
(thin solid) and polarization (thin dashed) for model (2.7), (2.9) with
J = 1, E = 0.5, 2, and K = 0.

points [39]. Ground-state dependences m(H) (solid lines) and
p(H) (dashed lines) atE = 0 for E = 0.5 and E = 2 are shown
in the first row in Fig. 2. These dependences are trivial only in
the ferromagnetic phase, when m(H) = ±1/2 and p(H) = 0.
In both spin-liquid phases, not only is the magnetization
influenced by the magnetic field but the polarization, even
for E = 0, is also affected by the magnetic field. Furthermore,
from the ground-state dependences m(E) and p(E) at H = 0
(the second row in Fig. 2), one can see that in both spin-liquid
phases not only does p depend on E but m, even for H = 0, is
also governed by E .

For the model at hand we can easily rigorously obtain
further details about the behavior of relevant quantities.
Consider, e.g., the ground-state polarization p(H) slightly
below the saturation field Hsat > 0 for model (2.7) with

FIG. 3. (Color online) Towards magnetoelectrocaloric effect for
model (2.7) with J = 1, E = 2, and K = 0: Entropy dependence on
magnetic and electric fields at low temperature T = 0.09 along with
the ground-state phase diagram (black solid lines separate different
phases).

184427-4



MAGNETISM-DRIVEN FERROELECTRICITY IN SPIN- . . . PHYSICAL REVIEW B 92, 184427 (2015)

J = 1, E = 0.5 at E = 0, see the corresponding panel in
Fig. 2. Clearly, the saturation field Hsat is defined by the
fermion energy spectrum (3.2), namely, −Hsat + cos κ∗ −
0.25 sin(2κ∗) = 0, where κ∗ is determined from the equa-
tion ∂εκ/∂κ|κ=κ∗ = − sin κ∗ − 0.5 cos(2κ∗) = 0, i.e., κ∗ ≈
−0.374 734. Therefore Hsat ≈ 1.100 917. Assume further
H = Hsat − δH, where δH > 0 is a small quantity. According
to Eq. (3.4), p = (cos κ∗

1 − cos κ∗
2 )/(2π ), where κ∗

1 ≈ κ∗ −
1.113 915

√
δH and κ∗

2 ≈ κ∗ + 1.113 915
√

δH. As a result,
at H = Hsat − δH we have p(H) ≈ −0.129 782

√
Hsat − H,

that is, the ground-state polarization emerges with the critical
exponent 1/2 as the control parameter H passes the critical
value Hsat.

The ground-state dependences of m and p + p on H and
E for model (2.7), (2.9) are shown in Fig. 2 by thin lines.
Within the fermionic picture (3.2), (3.4), (3.5), it can be
proved (Appendix B) that for this model p + p = 0 if E = 0
independently on H; see thin dashed lines in the two panels
from the first row in Fig. 2. For nonzero E , however, p + p is
influenced by H. Clearly, m at E = 0 for the model (2.7) and
the model (2.7), (2.9) is the same.

The ground-state phase diagram also manifests itself in
the dependence of the entropy s (3.6) on H and E at
low temperatures. The low-temperature entropy exhibits well
pronounced maxima along the quantum phase transition lines
and around the quantum triple points. These maxima become
sharper as the temperature decreases. If the system is placed
in a thermostat with the temperature T , �Q = T �S with
�S = S(H2,E2) − S(H1,E1) is the heat the system takes in
(if �S > 0) or gives out (if �S < 0) under the change of the
fields from the values H1,E1 to the values H2,E2. Clearly, the
system at hand exhibits a magnetoelectrocaloric effect, i.e.,
can be used for cooling/heating under a change of external
fields. The magnetoelectrocaloric effect is most pronounced
at low temperatures around the quantum phase transition lines
and around the quantum triple points, see Fig. 3.

V. THREE-SPIN INTERACTIONS OF X ZX + Y ZY TYPE

We pass to the case of the XZX + YZY three-spin
interaction, i.e., E = 0, K 	= 0 (J = 1). From the ground-state
phase diagram of the model (2.7) with E = 0 (see, e.g.,
Ref. [30]), we know that it makes sense to distinguish three
representative values of K , for example, K = 0.25, K = 0.5,
and K = 1.7. For these cases we calculate the ground-state
phase diagram in the planeH-E , which indicates phases having
different numbers of Fermi points [see Fig. 4 for model (2.7)
with K = 1.7], and the ground-state [38] magnetization and
polarization [see Fig. 5 for model (2.7) with K = 0.5 and
K = 1.7: m(H) (bold solid), p(H) (bold dashed) at E = 0 and
m(E) (bold solid), p(E) (bold dashed) at H = 0]. Furthermore,
we calculate the low-temperature entropy in the planeH-E [see
Fig. 6 for model (2.7) with K = 1.7 at T = 0.09].

Again the properties of the model along the line E = 0
are well known [22,30]. As H varies from −∞ to ∞, the
system is driven by varying H from the ferromagnetic phase
to the ferromagnetic phase through the spin-liquid I phase
if |K| < 1/2 or through the spin-liquid I and spin-liquid II
phases (through the spin-liquid II and spin-liquid I phases) if
K > 1/2 (if K < −1/2). Ground-state dependences of m and

FIG. 4. (Color online) Magnetization (upper panel) and polariza-
tion (lower panel) at very low temperature (T = 0.005) along with
the ground-state phase diagram (black solid lines separate different
phases) of model (2.7) with J = 1, E = 0, and K = 1.7.

p (and p + p) on fields show nontrivial features only outside
the ferromagnetic phase. However, p(H) = 0 along the line
E = 0 that is obviously traced back to the symmetry εκ = ε−κ ,
see the first row in Fig. 5. Breaking this symmetry by switching
on E immediately results in influence ofH on p, see the second
row in Fig. 5. On the other hand, m is influenced by E even
at H = 0, see the third row in Fig. 5. Again the considered
model exhibits a magnetoelectrocaloric effect, which is most
pronounced at low temperatures around characteristic lines of
the ground-state phase diagram, see Fig. 6.

VI. CONCLUSIONS

We have considered simple but nontrivial models of a
multiferroic of spin origin. The main worth of the models is
their exact solvability: All relevant quantities can be calculated
rigorously and examined in detail. These studies may serve as
a benchmark for more realistic cases which are not exactly
solvable.

In contrast to free-fermion models studied earlier [31–33],
we include in the model the three-spin interactions of XZY −
YZX and XZX + YZY types. Due to these interactions the
magnetoelectric effect becomes especially interesting: Mag-
netization (polarization) can be induced and governed solely
by electric (magnetic) field. The considered models show
magnetoelectrocaloric effect, i.e., isothermally (adiabatically)

184427-5



OLEG MENCHYSHYN et al. PHYSICAL REVIEW B 92, 184427 (2015)

FIG. 5. (Color online) Dependencies of magnetization (bold
solid) and polarization (bold dashed) at T = 0.005 on the magnetic
field at E = 0 (first row) and E = 0.7 (second row) and on the electric
field at H = 0 (third row) for model (2.7) with J = 1, E = 0, and
K = 0.5 (left column) or K = 1.7 (right column). By thin lines we
show magnetization (thin solid) and polarization (thin dashed) for
model (2.7), (2.9) with J = 1, E = 0, and K = 0.5, 1.7.

varying fields noticeably change the entropy (temperature).
The effect is most pronounced at low temperatures around
peculiarities (quantum phase transition lines and quantum
triple points) on the ground-state phase diagram which is rather
rich in the presence of the three-spin interactions.

FIG. 6. (Color online) Towards magnetoelectrocaloric effect for
model (2.7) with J = 1, E = 0, and K = 1.7: Entropy dependence on
magnetic and electric fields at low temperature T = 0.09 along with
the ground-state phase diagram (black solid lines separate different
phases).

It should be stressed that some characteristic features of the
reported dependences for the polarization or the magnetization
on fields (e.g., emergence after passing a threshold value,
cusps, abrupt changes, etc.) can be seen in experimentally
measured data, see Ref. [2] and references therein. On
the other hand, the minimal model to describe such spin-
chain multiferroics as LiCu2O2 or LiCuVO4 is the spin-1/2
anisotropic Heisenberg model with the Hamiltonian

H0 =
∑

n

[
J1

(
sx
n sx

n+1 + sy
n s

y

n+1 + �sz
ns

z
n+1

)

+ J2
(
sx
n sx

n+2 + sy
n s

y

n+2 + �sz
ns

z
n+2

) − Hsz
n

]
, (6.1)

with ferromagnetic J1 < 0, antiferromagnetic J2 > 0, and
small easy-plane anisotropy � � 1, see, e.g., Ref. [37]. Unfor-
tunately, this more realistic model is not exactly solvable, and
all analytical theories (e.g., based on the Green-function for-
malism [40]) involve approximation. One way to examine this
model is to apply the Jordan-Wigner fermionization method.
Reformulation in terms of the Jordan-Wigner fermions applied
to the spin-1/2 J1-J2 chain (6.1) results in interacting fermions;
the resulting system can be treated further approximately
(see, e.g., Ref. [41]) and the results reported in our paper
for the model given in Eqs. (2.1)–(2.4) provide a reference
free-fermion limit of such a theory.

Finally, the considered models hold promise as a core
system permitting us to examine some other aspects of
multiferroics, e.g., the dynamical magnetoelectric effect [42].
The work in this direction is in progress.
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APPENDIX A: JORDAN-WIGNER TRANSFORMATION
AND THERMODYNAMIC FUNCTIONS

Let us consider statistical mechanical calculations for the
spin-1/2 chain model given in Eq. (2.7). First we introduce
the operators s±

j = sx
j ± is

y

j . Then we use the Jordan-Wigner
transformation to spinless fermions,

c
†
1 = s+

1 , c
†
j = ( − 2sz

1

)
. . .

( − 2sz
j−1

)
s+
j , j = 2, . . . ,N,

c1 = s−
1 , cj = ( − 2sz

1

)
. . .

( − 2sz
j−1

)
s−
j , j = 2, . . . ,N,

(A1)
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to get for the Hamiltonian (2.7) a bilinear Fermi form:

H =
∑

n

[
J + iJE

2
c†ncn+1 − iE + K

4
c†ncn+2 + H.c.

−H
(

c†ncn − 1

2

)]
. (A2)

This Hamiltonian can be brought into the diagonal form after
the Fourier transformation

c†κ = 1√
N

∑
n

e−iκnc†n, cκ = 1√
N

∑
n

eiκncn, (A3)

κ = 2πm/N , m = −N/2, . . . ,N/2 − 1 (we assume
without loss of generality that N is even), which
yields

H =
∑

κ

εκ

(
c†κcκ − 1

2

)
(A4)

with εκ given in Eq. (3.2).

The partition function of N Fermi oscillators (A4) can
be easily calculated, Z(T ,H,E,N ) = ∏

κ 2 cosh[εκ/(2T )]. It
yields the Helmholtz free energy per site given in Eq. (3.1). To
get the magnetization (3.3) and the polarization (3.4) one may
simply take the corresponding derivatives, i.e., m = −∂f/∂H
and p = −∂f/∂E .

APPENDIX B: GROUND-STATE POLARIZATION FOR
MODEL (2.7), (2.9) at E = 0

Consider the ground-state polarization p + p for
model (2.7), (2.9). According to Eqs. (3.4) and (3.5), we have
to calculate

− 1

2π

∫
	

dκ[J sin κ + E cos(2κ) − K sin(2κ)]. (B1)

Here 	 is the domain within the interval [−π,π ] where
εκ = −H + J cos κ − (E/2) sin(2κ) − (K/2) cos(2κ) < 0
(we consider the case E = 0). The antiderivate in Eq. (B1)
is −J cos κ + (E/2) sin(2κ) + (K/2) cos(2κ) = −εκ − H,
and therefore the resulting integral is zero since εκ = 0 at
the boundaries of the domain 	. Moreover, p + p = 0 for
model (2.7), (2.9) at E = 0 for nonzero temperatures too.
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