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Quantum Monte Carlo studies of spinons in one-dimensional spin systems
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Observing constituent particles with fractional quantum numbers in confined and deconfined states is an
interesting and challenging problem in quantum many-body physics. Here, we further explore a computational
scheme [Y. Tang and A. W. Sandvik, Phys. Rev. Lett. 107, 157201 (2011)] based on valence-bond quantum Monte
Carlo simulations of quantum spin systems. Using several different one-dimensional models, we characterize
S = 1

2 spinon excitations using the intrinsic spinon size λ and confinement length � (the size of a bound state). The
spinons have finite size in valence-bond-solid states, infinite size in the critical region (with overlaps characterized
by power laws), and become ill defined (completely unlocalizable) in the Néel state (which we stabilize in one
dimension by introducing long-range interactions). We also verify that pairs of spinons are deconfined in uniform
spin chains but become confined upon introducing a pattern of alternating coupling strengths (dimerization) or
coupling two chains (forming a ladder). In the dimerized system, an individual spinon can be small when the
confinement length is large; this is the case when the imposed dimerization is weak but the ground state of the
corresponding uniform chain is a spontaneously formed valence-bond solid (where the spinons are deconfined).
Based on our numerical results, we argue that a system with λ � � is associated with weak repulsive short-range
spinon-spinon interactions. In principle, both the length scales λ and � can still be individually tuned from small
to infinite (with λ � �) by varying model parameters. In contrast, in the ladder system the two lengths are always
similar, and this is the case also in the weakly dimerized systems when the corresponding uniform chain is in the
critical phase. In these systems, the effective spinon-spinon interactions are purely attractive and there is only a
single large length scale close to criticality, which is reflected in the standard spin correlations as well as in the
spinon characteristics.
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I. INTRODUCTION

In one-dimensional (1D) strongly correlated systems, the
emergence of fractional quantum numbers is a generic con-
sequence of collective behaviors [1]. In the exactly solv-
able critical S = 1

2 antiferromagnetic (AFM) spin chain, the
fundamental excitations are solitonlike quasiparticles (kinks
and antikinks), called spinons, which carry spin 1

2 [2,3].
Similar objects exist also in the valence-bond-solid (VBS)
state stabilized by frustrated interactions [4]. A bound state
of spinons can be induced in the Heisenberg chain by an
external magnetic field [5]. In higher dimensions, in systems
with long-range AFM order, the fundamental excitations are
magnons with spin 1, as explained successfully by spin-wave
theory [6]. Spinon excitations are associated with spin-liquid
ground states, which have no broken symmetries described
by conventional local order parameters (but do have nonlocal,
topological order) [7]. In two-dimensional (2D) AFM systems,
deconfined spinons should emerge when a transition into
a VBS state is approached, according to the theory of
“deconfined” quantum-critical points [8–10].

The search for spinons has been a quest in experimental and
theoretical condensed-matter physics for decades, primarily
because the fractionalization of excitations is a characteristic
of exotic collective quantum many-body states, such as the
spin liquids [7,10,11]. Moreover, in some cases the mechanism
of confinement of spinons is a condensed-matter analog of
the confinement of quarks in quantum chromodynamics. In
this paper, building on a previous brief presentation [12], we
will explore systems where confinement and deconfinement
of spinons can be detected and characterized using large-scale
quantum Monte Carlo (QMC) simulations in the valence-

bond (VB) basis. We here focus on a range of different 1D
systems but note that the same ideas have also already been
applied to 2D systems in the context of deconfined quantum
criticality [13].

The starting point of our studies is the S = 1
2 AFM

Heisenberg chain, defined by the Hamiltonian

H = J

N∑
i=1

Si · Si+1, (1)

where the nearest-neighbor coupling J > 0, N is the total
number of spins, and we apply periodic boundary conditions.
We will add other interactions to this model later, in order
to bring the system to the different types of ground states
mentioned above.

The ground state of the plain Heisenberg model (1) can in
principle be solved exactly by the Bethe-ansatz approach [14],
but in practice many of its salient features, such as the
power-law decaying spin-spin correlations, were found using
the bosonization method [15]. Reflecting the deconfined
spinons, the lowest excited states of the Heisenberg model
form bands of degenerate singlets and triplets [5,16,17]
with the energy ε1(q) as a function of the total momentum
q of the state being ε1(q) = (π/2)J | sin(q)|, which was
first calculated by des Cloiseaux and Pearson using the
Bethe ansatz [16]. Forming all possible combinations of two
spinons propagating independently with fixed momenta, q̃1

and q̃2 with q = q̃1 + q̃2 give a continuum above the lower
bound and an upper bound given by ε2(q) = πJ | sin(q/2)|.
A large spectral weight between these bounds (concen-
trated close to the lower bound because of matrix ele-
ments [18]), which is detectable in inelastic neutron scattering
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experiments [19], is considered a good indicator of spinons in
one dimension.

The continuum spectrum of spinons has been observed in
weakly coupled-chain compounds such as copper pyrazine
dinitrate and KCuF3 at zero magnetic field [19,20], while
in nonzero magnetic fields incommensurate modes have
been observed [20,21]. In another chain compound, CuCl · 2
(dimethylsulfoxide), there is an effective internal staggered
magnetic field present, and spinon bound states have been
observed [22]. In addition, in the spin ladder system
(C5H12N)2CuBr4, it was reported that the magnon could be
fractionalized into spinons by tuning the external magnetic
field [23]. The above experimental results can be modeled
using the Heisenberg Hamiltonian (1) including the other
effects mentioned above (external fields, interchain couplings).
In addition to neutron scattering, other experimental signals of
spinons have also been proposed [24]. So far, however, all the
experimental probes give indirect information on the existence
of spinons and not much information on the properties of
spinons other than their dispersion and excitation continuum.

Motivated by the ongoing interest in the quantum physics
of fractionalization, in this paper we are interested in ex-
ploring other aspects of spinons and their confinement-
deconfinement transitions. Using the QMC approach intro-
duced in Refs. [12,25] and used in Ref. [13] to study 2D
systems, we here explore a wider range of 1D systems where
confinement and deconfinement can be studied systematically
under various conditions. The method operates in a basis of
VBs (two-spin singlets) and unpaired spins and allows us to
compute quantities defining the size of an isolated spinon as
well as the size of an S = 1 bound state. We also show that
the same length scales appear in standard spin correlation
functions, but are harder to access there in practice because
the signal only appears in the differences between correlations
in different spin sectors (and is therefore very noisy in QMC
calculations of large systems).

The structure of the rest of the paper is as follows: In Sec. II,
we introduce the projector QMC method and calculate ob-
servables used to characterize spinons. In Sec. III, we present
results for the J -Q chain model [12,25], which undergoes a
quantum phase transition from the Heisenberg critical phase to
a spontaneously symmetry-broken valence-bond solid (VBS).
This system has deconfined spinon excitation in the entire
range of the ratio Q/J of the Heisenberg exchange J and
a multispin coupling Q. To achieve confinement, in Sec. IV
we introduce a staggered pattern of J interactions, as recently
done also in an investigation of spinons binding to a static
impurity [26]. In Sec. V, we study spinon confinement when
two Heisenberg chains are coupled to form a ladder. In Sec. VI,
we discuss the fact that the same length scales that appear in our
VB-based definition of spinons can also be identified in the fine
structure of the spin-spin correlations in the higher-spin states,
thus confirming that these length scales are not basis dependent
and can be investigated using other methods as well. We
summarize our work and discuss future prospects in Sec. VII.

II. METHODS AND CALCULATED OBSERVABLES

We use VB projector QMC (VBPQMC) algorithm, which
has been described in detail in Refs. [12,27,28]. Here, we

first briefly review the essential ideas underlying simulations
of spin systems with this algorithm, and then focus on the
definitions of spinon quantities and how to evaluate them.

A. VB basis and projector QMC method

Searching for the ground state of a Hamiltonian H , we
start with a “trial” wave function and write it as the linear
superposition of all eigenstates of H as

|�〉t =
∑

n

cn|�n〉. (2)

We then operate with H a number m times on this trial state
to project out the ground state |�0〉:

(−H )m|�〉t = c0(−E0)m
[
|�0〉 +

∑
n>0

cn

c0

(
En

E0

)m

|�n〉
]
,

(3)

where, since normally E0 < 0, we have added a minus sign
in front of H . Provided that |En/E0| < 1 for all n > 0, which
can always be accomplished by adding some negative constant
to H , the ground state is projected out when m → ∞.

While the ground-state projection approach formulated
above is completely general, the use of the VB basis has distinct
advantages [29,30], as the spin of the trial state can be chosen
to match that of the ground state under investigation. For the
bipartite spin models we are interested in here, if the number
of spins N is even, then the ground state is a singlet and a VB
basis state can be written as

|Vα〉 =
N/2∏
i=1

|a,b〉i , (4)

where |a,b〉i is the ith VB (singlet):

|a,b〉i = 1√
2

(|↑a(i)↓b(i)〉 − |↓a(i)↑b(i)〉), (5)

with a(i) and b(i) sites on sublattices A and B, respectively.
The trial state can be expanded in these VB basis states as

|�〉t =
∑

α

fα|Vα〉, (6)

where the coefficients fα � 0, reflecting Marshall’s sign rule
for the ground state of a bipartite system [31,32]. It should
be noted that the VB basis is overcomplete and, therefore, the
expansion coefficients fα are in principle not unique, which,
however, is not explicitly of importance in the work discussed
here. What is important is that the basis is nonorthogonal, with
the overlap between two states given by [31,32]

〈Vα|Vβ〉 ∝ 2nloop−N/2, (7)

where nloop is the number of loops in the transition graph
formed when superimposing the bond configurations of |Vα〉
and |Vβ〉. An example with nloop = 2 is shown in Fig. 1(a).
Expectation values of interest can normally also be expressed
using transition graphs, e.g., for studying the spin-spin corre-
lation operator

Ĉ(r) = 1

N

N∑
i=1

Ŝi · Ŝi+r , (8)
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(a)

(b)

(c)

FIG. 1. (Color online) Transition graph formed by bra (upper,
black) and ket (lower, green) valence bond states on a spin chain.
Part (a) shows an S = 0 state on an even number of sites. In (b)
the number of sites is odd and there is an unpaired spin in both the
bra and the ket states. Part (c) shows an S = 1 configuration, where
there are two unpaired spins. In VBPQMC simulations, the distance
distribution of the unpaired spins in (b) gives information on the size
of an individual spinon, while the size of an S = 1 bound state of two
spinons is reflected in the distance distribution of unpaired spins on
different sublattices in (c).

we need matrix elements of the form

〈Vα|Ŝi · Ŝj |Vβ〉
〈Vα|Vβ〉 =

{±3/4, i,j in same loop,

0, i,j in different loops,
(9)

where the + and − signs in front of 3
4 applies for sites on the

same and different sublattices, respectively. Other examples of
transition-graph estimators, e.g., dimer-dimer correlations of
the form

D̂xx(r) = 1

N

N∑
i=1

(Ŝi · Ŝi+x̂)(Ŝi+r · Ŝi+r+x̂), (10)

have been discussed in Refs. [30,33].
In the “double projection” version of the VBPQMC

method [29] that we use here, bra and ket VB states are
generated stochastically by operating on the bra and ket
versions of the trial state with strings of m Hamiltonian terms
(operators defined on bonds or groups of bonds for J and Q

interactions, respectively). The probability of the bra 〈Vα| and
ket |Vβ〉 appearing together is given by

Pα,β = gαgβ〈Vα|Vβ〉, (11)

where the unknown coefficients are such that
∑

α gα|Vα〉
approaches the ground state of H when m → ∞ and ex-
pectation values in this ground state are obtained using the
stochastically generated transition graphs 〈Vα|Vβ〉. For details
of the computational procedures, which make use of very
efficient loop updates, we refer to Ref. [27].

For the trial state, we normally choose an amplitude-product
state [31], where the coefficients fα in (6) are simple products
of amplitudes hα(r) corresponding to bond lengths r:

fα =
N/2∏
i=1

hnα(r)
α (r), (12)

where nα(r) is the number of bonds of length r in VB config-
uration α. These amplitudes can in principle be determined
variationally [27,31,34] to optimize the trial state, but in
practice such optimization is not crucial and the simulations
converge well regardless of the details of the trial states. We
typically choose a power-law form, e.g., hα(r) = r−2. The
bond configurations of the trial state are sampled stochastically
as well [27].

Our VBPQMC calculation projects out the lowest state
with given total spin S = 0 as discussed above, or higher
spins, as will be discussed further in the following. With
periodic systems, the momentum is also a good quantum
number and is determined by the trial state. With the simple
amplitude-product trial states we are using, the momentum can
be obtained very easily by translating the bonds by one lattice
spacing. If the number of bonds is odd, i.e., the number of sites
is of the form N = 4n + 2 for some integer n, this results in a
negative phase, and, thus, the momentum k = π . Otherwise,
for N = 4n, there is no phase and k = 0. These are exactly the
momenta of the ground states of bipartite spin chains.

B. Generalized VB basis for S > 0

In addition to the use of the VB basis for singlet ground
states, extensions of the VB basis with unpaired spins also
provide a natural and convenient way to describe excitations
with higher spin [12,25,28]. In our study of spinons, we will
study systems with one or two unpaired spins. In the former
case, the total number of sites N is odd, and a generalized VB
state can be written as

|Vα(r)〉 =
[

(N−1)/2⊗
i=1

|a,b〉αi
]

⊗ |↑r〉, (13)

where the notation explicitly indicates the location r in the
chain of the unpaired spin and α labels the possible (N − 1)/2-
bond configurations with this site excluded. For system with
even N and two unpaired spins, analogously an extended VB
basis state is written as

|Vα(ra,rb)〉 =
[

N/2−1⊗
i=1

|a,b〉αi
]

⊗ |↑ra
〉 ⊗ |↑rb

〉, (14)

with N/2 − 1 singlet pairs and two unpaired spins on different
sublattices. These extended VB bases are also overcomplete
and nonorthogonal in their respective total-spin sectors S, and,
if we choose (as we do here) the unpaired spins to have Sz

i = 1
2 ,

the z projection of the total spin is Sz = S.
The transition graphs shown in Figs. 1(b) and 1(c) have

open strings [with an open string of length zero being a special
case corresponding to a bra and ket spinon residing on the
same site, an example of which is seen in Fig. 1(c)] in addition
to loops. If we fix the spin-z orientation of the unpaired spins,
as we do here, the strings do not contribute to the weight
(since they only have one allowed state, in contrast to the two
allowed states of each loop) and the overlap of two states is still
given by Eq. (7). Note, in particular, that the unpaired spins
can be at different lattice locations and the states still always
have nonzero overlap. The strings do contribute to expectation
values.

184425-3



YING TANG AND ANDERS W. SANDVIK PHYSICAL REVIEW B 92, 184425 (2015)

It should be pointed out that, in periodic chains of odd size
N , which we use here to study a single unpaired spin in S = 1

2
states, there is magnetic frustration caused by the boundary
condition and the lattice is no longer strictly bipartite. Thus,
maintaining the updating rules in the simulations [27,35] the
VB singlets here can sometimes be formed between sites on the
same sublattices if we continue to label the sites as alternating
A and B, except for one instance of adjacent AA or BB sites
(in the simulation we do not explicitly label the sites and
there is no breaking of translational symmetry as we just use
the same updating rules for the bonds and unpaired spins as
for the even-N chains). The distance between the unpaired
spin in the bra and ket can then be an odd number of lattice
spacings (while it is always even in a true bipartite chain).
In many cases (which we will discuss in detail in Sec. III),
the system is completely dominated by short bonds and the
distance between the bra and ket spinon is then always even in
practice.

The trial states used for S > 0 calculations are simple
generalizations of the amplitude-product states discussed in
Sec. II A, with the wave-function coefficient given by Eq. (12)
with no dependence on the unpaired spins. In principle, one
could improve the trial states by factors depending on the
unpaired spins and spin-bond correlations as well (as recently
investigated in detail in Ref. [37]), but this is not necessary
here. Following the reasoning in Sec. II A, for S = 1, k = π

for N = 4n and k = 0 for N = 4n + 2, i.e., the momentum
difference with respect to the S = 0 ground state is π in both
cases, as it should be for the lowest triplet excitation. For
the S = 1

2 states, if we strictly label the sites with sublattice
labels A and B, there is a defect in the odd-N system, as
discussed above. However, in the simulations there are no
explicit references to sublattices and in effect the system is then
translationally invariant. Then, under the further assumption
that no bonds with length as large as N/4 are present (such
configurations having ill-defined signs) [36], the momentum is
k = 0 or π , for N of the forms 4n + 1 and 4n + 3, respectively.

C. Characterization of spinons in the VB basis

In order to study spinon sizes and confinement lengths, we
consider overlaps written in the form

1
2
〈�0|�0〉1

2
=

∑
r,r ′

∑
α,β

gα(r)gβ(r ′)〈Vα(r)|Vβ(r ′)〉, (15)

generalizing Eq. (11) to S = 1
2 (single-spinon) systems and

written explicitly using sums of terms with all possible
locations of the unpaired spins. We have an analogous form

1〈�0|�0〉1 =
∑
ra,rb

∑
r ′
a ,r

′
b

∑
α,β

gα(ra,rb)gβ(r ′
a,r

′
b)

×〈Vα(ra,rb)|Vβ(r ′
a,r

′
b)〉, (16)

for S = 1 (spinon-pair) systems.
The overlaps are not computed explicitly in the simulations

but serve as normalization factors and weights in the sampling
procedures, such that the different contributions to the above
sums appear according to their relative weights. The practical
simulation procedures for S > 0 are relatively straightforward
generalizations of the method with loop updates for S = 0. We

refer to Refs. [25,28,33] for technical details. In the following,
we discuss distribution functions used to characterize spinons.
We will here make us of the unpaired spins, although in
principle one can also define spinon quantities using the entire
strings, of which the unpaired spins are the end points.

1. Single-spinon distribution function

As discussed above, in the VBPQMC method the bra and
ket states are generated stochastically, and for S = 1

2 we can
use Eq. (15) to define a distribution of the separation of the
unpaired spins in the bra and ket states. Restricting ourselves
to a translationally invariant system we have the probability
of separation r − r ′ (up to an irrelevant normalization factor
which is easily computed at the end):

PAA(r − r ′) =
∑
α,β

gα(r)gβ(r ′)〈Vα(r)|Vβ(r ′)〉, (17)

where the subscript AA serves to indicate that the unpaired
spins should be on the same sublattice (because there is an
excess of one site on one of the sublattices, which is the
sublattice with the unpaired spin), which we can take as the A

sublattice. Thus, PAA(r) should vanish when the separation r is
an odd number of lattice spacings. Our basic assertion is that, if
spinons are well-defined quasiparticles of the system, then we
expect PAA to reflect the size and shape of an intrinsic “wave
packet” within which the net magnetization Sz = 1

2 carried by
the spinon is concentrated. We will show in the following that
1D VBS states are characterized by an exponentially decaying
overlap PAA(r) ∝ e−r/λ, and it is then natural to take λ as a
definition of the intrinsic spinon size.

We should here note again that, for a periodic system
with an odd number of sites, there is, strictly speaking, no
absolute distinction between the sublattices (i.e., the system is
strictly speaking not bipartite). However, when the system size
N → ∞ we in general expect the role of the boundary
condition to diminish and PAA(r) to tend to zero for any
given odd r . In Sec. III, we will discuss in detail how this
limit is approached, and we will also see an example (one
where spinons are not well-defined quasiparticles) where the
boundaries continue to play a role even for infinite size.

2. Two-spinon distance distribution function

In the case of S = 1 states (two spinons), we can define
several different distributions. Here, we will focus on the
separation of spinons on different sublattices in the bra and
ket:

PAB(ra − r ′
b) =

∑
α,β

∑
rb,r ′

a

gα(ra,rb)gβ(r ′
a,r

′
b)

×〈Vα(ra,rb)|Vβ(r ′
a,r

′
b)〉. (18)

In the case where a single spinon is a well-defined quasiparti-
cle, i.e., λ < ∞, we expect this quantity to give us information
on the confinement or deconfinement of two spinons. In the
former case, we will see that asymptotically PAB(r) ∝ e−r/�

and, thus, we consider � as a definition of the confinement
length scale (i.e., the size of the S = 1 spinon bound state).
We will see that deconfined spinons give rise to characteristic
broad distributions.
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We could also have defined the above distance distribution
with the two unpaired spins both in the bra or in the ket, and
we have also investigated it. This distribution typically does
not differ significantly from the one defined in Eq. (18).

3. Same-sublattice distribution in two-spinon states

We will also study the analog of the S = 1
2 quantity PAA(r)

[Eq. (17)] in the triplet state, defined as

P ∗
AA(ra − r ′

a) =
∑
α,β

∑
rb,r

′
b

gα(ra,rb)gβ(r ′
a,r

′
b)

×〈Vα(ra,rb)|Vβ(r ′
a,r

′
b)〉, (19)

where we use the ∗ superscript to distinguish this distribution
from the single-spinon distribution (17). We can define P ∗

BB

in the same way, and use P ∗
AA(r) = P ∗

BB(r) to improve the
statistics. We will see that, under certain conditions, P ∗

AA of
the triplet state contains the same information for the spinon
size λ as the S = 1

2 quantity PAA, and we can use this property
of the S = 1 state to characterize the intrinsic spinon size also
in cases where the S = 1

2 state breaks translational invariance
and is not appropriate for use with our calculations presuming
translational invariance (the two-leg ladder system being such
an example, which will be studied in Sec. V).

III. DECONFINED SPINONS IN UNIFORM SPIN CHAINS

We here first test the concepts and methods for a class of spin
chains, the J -Q3 model, which can be tuned between a ground-
state phase with properties similar to the standard critical
Heisenberg chain and a VBS phase with VBs crystallizing
on alternating nearest-neighbor bonds. In the critical state,
spinons are rigorously known to be elementary excitations
based on the exact Bethe-ansatz wave function of the plain
Heisenberg chain, and in a VBS state there are also strong
arguments for spinons [4]. In either case, a pair of spinons
can be regarded as a kink and an antikink of an ordered (in the
case of the VBS) or quasiordered (in the critical state) medium.
There is no apparent confining potential between these defects
in one dimension (and clearly any effectively attractive
potential would lead to a bound state and confinement of the
spinons in the ground state, although deconfinement could still
take place at higher energy). Our calculations show explicitly
that there are instead weak repulsive interactions, the effects
of which diminish with the system size, thus leading to
independently propagating spinons in the thermodynamic limit
down to the lowest energies. We will also investigate a modified
J -Q3 model with long-range interactions, which hosts a Néel
ordered ground state. Here, spinons are not expected to be
deconfined and we investigate the breakdown of the spinon as
well-defined quasiparticle in this case.

A. Results for the J- Q3 chain

We here consider the 1D J -Q3 chain Hamiltonian [12]

H = −
N∑
i

(JCi,i+1 + Q3Ci,i+1Ci+2,i+3Ci+4,i+5), (20)

where Cij is a singlet-projection operator on two sites,

Ci,j = 1/4 − Si · Sj, (21)

and the J term is simply the standard antiferromagnetic
Heisenberg interaction. We here use the Q3 term with three
projectors, as its ground state at the extreme point J = 0 is
more strongly VBS ordered than that of the Q2 model with
only two projectors.

When the coupling ratio g = Q3/J is small, the system
remains in the Heisenberg-type critical state, where the spin-
spin correlation function C(r), i.e., the expectation value of
Eq. (9), has the asymptotic form C(r) ∼ ln1/2(r)/r [15,38,39].
When g is large, the Q3 term enforces VBS ordering and
C(r) is exponentially decaying. The VBS state is twofold
degenerate. The physics of this phase transition is identical (in
the sense of universality) [12,35] to that in the frustrated J1-J2

chain, where spinons in the VBS state were discussed on the
basis of a variational state by Shastry and Sutherland [4,40]. In
field-theory language, the phase transition is driven by the sign
change of a marginal operator, and this operator is also the root
cause of the logarithmic correction to C(r) in the critical phase.
Exactly at the critical VBS transition point the correlations
decay as 1/r with only very small corrections. The transition
point of the J -Q3 model is at gc = (Q3/J )c ≈ 0.1645, as
determined from level spectroscopy [12] (excited-state singlet-
triplet crossing [41]) and VBPQMC calculations of correlation
functions [35].

Although we do not expect the Hamiltonian (20) to be
naturally realizable in any specific material, the fact that it
has the same kind of ground-state phases as the more realistic
frustrated J1-J2 chain still makes its physics interesting, and
not being frustrated in the standard sense it is not associated
with sign problems in QMC simulations. The same physics
of spontaneous dimerization also occurs in spin chains with
phonons (often called spin-Peierls systems) [42]. We expect
the properties of spinons to be discussed below to apply also
to frustrated chains and spin-Peierls systems.

1. Single spinons in states with total spin 1
2

We here first investigate PAA(r) as defined in Eq. (17) to
study the size of spinons in the VBS phase at different coupling
ratios g = Q3/J . In Fig. 2(a), we see that the intrinsic spinon
wave packet has a pronounced exponential decaying form
PAA(r) ∝ e−r/λ, showing that spinons indeed are well-defined
quasiparticles of the VBS, with a characteristic size λ. The
spinon size decreases with increasing g (going deeper into the
VBS phase), with λ = 30.0(1) when g = 1 and λ = 9.2(1)
when g → ∞ (the pure Q3 model). When λ is large, there are
also significant deviations from the pure exponential form for
a range of small r , indicating crossover behaviors to a different
form obtaining when g → gc. As shown in Fig. 2(b), exactly
at the transition point gc the decaying form is indeed no longer
exponential, instead it is very well described by r−α with the
power α = 0.500(2). Our physical interpretation of this result
is that the spinon at the transition point can be considered only
as a marginally well-defined quasiparticle in real space.

As we discussed in Sec. II B, for N odd there is a
complication with the periodic boundaries, which renders
the system nonbipartite in principle. The distance between
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FIG. 2. (Color online) Single-spinon overlap distribution in the
J -Q3 chain. (a) Exponential decays indicating well-defined quasi-
particles in VBS states at different values of g = Q3/J . The size λ

of the spinon (the inverse of the slopes of the lines on the lin-log
plot) diverges as the critical point is approached. Panel (b) shows
that the spinon is marginally defined at the critical point, with the
overlap decaying as a power law with exponent α = 0.500(2) (with
a fitted line to the even-r points shown for N = 1025). The even-odd
oscillations are due to the frustration caused by the single-spinon
defect in a periodic chain (with the odd-r contributions only possible
in a nonbipartite system). The effects of frustration for r less than
N/2 diminish as the chain size increases.

the unpaired spin in the bra and ket can then be odd.
However, the probability of these odd distances is exceedingly
small in the VBS state of the N = 1025 chains used in
Fig. 2(a), but in the critical-chain results in Fig. 2(b) we
clearly can see nonzero odd-r probabilities. Relative to the
even-r probabilities, for fixed r they decrease rapidly as N

grows, while approaching the even-r probabilities as r → N/2
(and, interestingly, the odd branch follows almost an inverse
of the behavior of the even branch, increasing as r−0.5 in
the relevant range of r). In our simulations we neglect the
nontrivial (non-Marshall) signs in the wave function arising
from the even-length bonds (where we define the length as the
shortest of the two possible distances between the two paired
spins under the periodic boundary conditions), but we find it
unlikely that this approximation would affect our conclusions
on the nature of the spinon as these signs also are due to
boundaries and we are interested in the thermodynamic limit.
We will also see further in what follows that we obtain the same
exponential (for g < gc) or power-law (for g = gc) decay also
in P ∗

AA [Eq. (19)] in the chains with two unpaired spins, where
the lattice remains bipartite and there are no frustration effects.
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 N=513
 N=1025

101 102

r
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P AA
(r

)

g=0
g=0.05
g=0.1
gc=0.1645

(a)

(b)

FIG. 3. (Color online) (a) Single-spinon distribution function at
the VBS transition point and inside the critical phase (g � gc =
0.1645) computed using chains of length N = 513. (b) The data at gc

for several system sizes, rescaled such that data collapse is achieved.
The lines in both (a) and (b) correspond to the r−1/2 form.

Given the fact that the exponent α of the critical spinon
overlap in Fig. 2(b) is very close to 1

2 , and the behavior is seen
to remarkable consistency over two orders of magnitude of
r , we conjecture that the exponent should in fact be exactly
1
2 . It is tempting to associate it with the square root of the
spin correlation function C(r) = 1/r , although we have not
tried to formally compute this quantity within the bosonization
approach (which in principle should be possible [43]).

Another interesting question to ask is as follows: How
is the critical ∼r−1/2 form of the single-spinon distribution
PAA(r) at gc changed when going further into the critical
region (g < gc)? The logarithmic correction to the correlation
function 1/r is a well-known consequence of the presence
of a marginal operator, as mentioned above. One would then
expect corrections to PAA(r) as well. As seen in Fig. 3(a),
PAA(r) indeed changes noticeably when moving away from
the transition point into the g < gc critical phase. The behavior
can be fitted to a power law with exponent depending on g, but
most likely the r−1/2 behavior persists for all 0 � g � gc and
it is only the strength of a logarithmic correction that changes.
While the data can be fitted to the r−1/2 with a multiplicative
logarithmic correction, the power of the logarithm is not clear,
and further quantitative studies of this behavior would require
much longer chains.

In Fig. 3(b), we further analyze the behavior at gc for
different system sizes, regraphing the even branch of Fig. 2(b)
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FIG. 4. (Color online) Two-spinon distance distribution in VBS
states of the J -Q3 chain at (a) fixed g = 4 and different chain lengths,
and (b) fixed chain length N = 256 and different coupling ratios. The
y and x axes have been rescaled with N and 1/N , respectively, in
order to achieve data collapse for large r in (a). The increase in
the small-r distribution for the lowest g value in (b) shows that the
effective short-distance spinon-spinon repulsion becomes weaker as
the system approaches the the transition point (gc = 0.1645).

such that data collapse is achieved: NPAA versus r/N . An
interesting aspect of these results is that there are no noticeable
enhancements due to the periodic boundaries at the longest
distances r ∼ N/2 (which are typically seen prominently in
correlation functions), with the power law describing the data
very well from the smallest to largest distances for all system
sizes.

2. Two spinons in states with total spin 1

Next, we consider chains with even N and two unpaired
spins. The distribution function PAB(r) here reflects the
effective mutual interaction between two spinons, mediated
by the background of singlets. For a confining case, we would
expect to observe PAB(r) ∝ e−r/�, with a finite confinement
length �. Deconfinement should be signaled by a divergence
of �. Results for the J -Q3 chain in the VBS phase, graphed
in Fig. 4, show distribution functions with no decay at long
distances. Instead, PAB(r) exhibits a very broad maximum at
the largest distance, which we naturally interpret as resulting
from a weak repulsion between two spinons. As shown in
Fig. 4(a), the repulsion diminishes somewhat when tuning
down the coupling ratio toward the critical point, where,
apparently, increasing quantum fluctuations (including an
increasing fraction of long VBs) reduce the repulsive potential.
The range of r over which the distribution is almost flat
increases essentially proportionally with N . In Fig. 4(a), we

100 101 102

 r
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P AB
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)

 g=0.0
 g=0.05
 g=0.1
 gc=1.645
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L=512
L=1024
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FIG. 5. (Color online) Distribution of spinon separations in S =
1 states at and below the VBS transition point gc; in (a) for fixed chain
length N = 512 and varying g, and in (b) at gc for different chain
lengths. The lines going through the gc points have slope 0.7.

have multiplied the distribution function with N for several
N at a fixed g inside the VBS phase, and find that the curves
collapse well on top of each other for r/N roughly in the
range 0.1 to 0.5. This indicates that the effective interactions
are short range in nature, with spinons far away from each
other behaving as free particles. Clearly, all these results point
to deconfined spinons, as expected. While the details of the
cause of the repulsive potential are uncertain, it is clear that
the sign of the effective interaction is crucial for deconfinement
(at the lowest energies studied here); any weak attractive
potential would bind the spinons, while short-range repulsive
interactions aid deconfinement.

Results for PAB(r) at the VBS transition and inside the
critical phase are shown in Fig. 5(a), while results for several
chain lengths at the critical point are shown with rescaled
axis to achieve data collapse in 5(b). The critical distribution
is also here consistent with a power law PAB(r) ∼ rγ , with
γ ≈ 0.7 (and with a prefactor decreasing with the system size).
Based on these results, one may argue that the effective spinon-
spinon interactions become increasingly long ranged as gc

is approached from the VBS side, although the short-range
part is decreasing, based on the fact that distribution at short
distances grows upon decreasing g. Inside the critical phase
there are again likely logarithmic corrections, and the trend of
decreasing effective short-distance spinon-spinon interactions
continues as g decreases.
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FIG. 6. (Color online) The same-sublattice distribution function
for S = 1 states at three different values of the coupling ratio. The
corresponding distributions PAA(r) for the S = 1

2 states at the same
couplings are shown in lighter (brown) color and they coincide very
closely with the S = 1 functions (thus, demonstrating that the single-
spinon size can be obtained also from the S = 1 simulations). The
system size here is N = 1024 for S = 1 and 1025 for S = 1

2 .

Next, we consider the same-sublattice distribution function
P ∗

AA(r), defined in Eq. (19). Since the spinons are deconfined
and typically are further away from each other than the
single-spinon length scale λ, one would expect that P ∗

AA(r)
contains essentially the same information as the single-spinon
function PAA(r) for the S = 1

2 state, defined in Eq. (17). This
is indeed the case in the VBS phase, as demonstrated in
Fig. 6. Clear exponential decays are observed, and the results
coincide almost perfectly with the previous results for PAA(r)
in Fig. 2(a).

To reiterate what is going on here, the two spinons in the
S = 1 state are on different sublattices, and the unpaired spin
on sublattice A in the ket state is correlated to the one on the
same sublattice in the bra state, to within the length scale λ

that we have argued describes the internal spinon size. The
same holds for the unpaired bra and ket spins on sublattice B.
Due to spinon deconfinement, the A and B spinons are not
bound to each other, however, and typically are far away from
each other. Under these conditions, the distribution functions
PAA(r) and P ∗

AA(r) are essentially the same.
To illustrate this point more explicitly, in Fig. 7 we plot

results in the VBS state and approaching the critical point
for the spinon-size estimates λ and λ∗ [extracted from the
distribution functions PAA(r) and P ∗

AA(r)], together with the
standard spin correlation length ξc [obtained from the spin-spin
correlation function (9)] and the VBS correlation length ξd

[extracted from dimer-dimer correlation function (10)]. It can
be seen that λ and λ∗ are almost identical to each other, as
expected. The four lengths ξc, ξd , λ, λ∗ diverge at a similar
rate upon approaching the critical point gc = 0.1645. Since
the phase transition from the ordered VBS state to the critical
state in the 1D J -Q3 model is similar to a 2D classical
Kosterlitz-Thouless (KT) transition, we fit these four lengths
with functions to the form of the correlation length in that
case ξ ∼ aeb/

√
g−gc , where a,b are fitting parameters. Due

to the statistical errors and the small number of data points,

0 2 4 6 8 10
 g-gc

101

102  ξc
 ξd
 λ
λ*

FIG. 7. (Color online) Spin and dimer correlation lengths ξc and
ξd along with the spinon size measured in the S = 1

2 and 1 states,
λ and λ∗, upon approaching the critical point gc = 0.1645 from the
VBS phase in 1D J -Q3 model. Since this transition is of the KT type,
we fit the data to the form aeb/

√
g−gc (solid lines).

we cannot determine these fitting parameters very precisely.
Representative curves from these fits are shown in Fig. 7. We
also notice in Fig. 7 that the spinon size λ extracted this way
is much larger than the correlation lengths ξc and ξd , which
we will discuss again later in Sec. VI, in connection with the
correlation functions in S = 1

2 or 1 states (which, we argue,
should also contain the spinon size).

As shown in Fig. 8, the S = 1 function P ∗
AA(r) inside the

critical phase exhibits an interesting crossover behavior, most
clearly visible at g = gc. The behavior at short distances is well
described by the same r−1/2 behavior as the corresponding
single-spinon function in Fig. 3. However, at larger distances
the behavior changes to ∝1/r . We do not have any explanation
for this behavior and it would be interesting to investigate it
within bosonization.

B. Breakdown of spinons as quasiparticles of a Néel state
in one dimension

In a long-range-ordered Néel AFM state, the elementary
excitations are spin waves (magnons) carrying spin S = 1.
It is then interesting to ask how the change in the nature
of the excitations is manifested in our spinon distribution
functions if the system can be driven to a Néel state. The
continuous spin-rotational symmetry of the ground state of the
Heisenberg or J -Q chains cannot be spontaneously broken,
however, according to the Mermin-Wagner theorem [44].
We can circumvent this limitation on 1D ground states by
including long-range interactions, in which case the theorem
does not apply. We here consider unfrustrated power-law
decaying interactions defined by the Hamiltonian

H =
N∑

i=1

N/2∑
odd r

JrSi · Si+r ,Jr > 0, (22)

where there are no couplings for even separations of spins,
while for odd separations the coupling is Jr = 1/rα . A
similar Hamiltonian was studied before in Ref. [45], where
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FIG. 8. (Color online) Same-sublattice distribution functions for
S = 1 states in the critical phase. (a) Shows results for different
coupling ratios for fixed system size N = 512, while in (b) results at
gc are rescaled to achieve data collapse for several system sizes. The
lines have slope 1

2 and 1 for small and large r , respectively.

it was found that by tuning the decay exponent α the system
undergoes a continuous phase transition from critical states
when α > αc to a long-range-ordered Néel states when α <

αc. The critical power depends on details, e.g., on the strength
of the nearest-neighbor coupling, and in the cases studied in
Ref. [45] αc ≈ 2.2. In Ref. [46], frustration was added to the
model in order to drive it to a VBS phase. In our study, we are
just interested in studying an example of a 1D Néel state and
choose Jr = r−3/2 (odd r) in Eq. (22), for which we verified
that indeed the system is AFM ordered.

We investigate the single-spinon distribution function
PAA(r) in an S = 1

2 state for odd N . In Fig. 9, we plot PAA(r)
scaled by N versus r for different system sizes and find good
convergence as a function of the system sizes, although the
error bars are large at the largest distances. The behavior here
is quite different from the previous cases, Figs. 2 and 3, with
(i) no vanishing of the probability of odd-r separation and
(ii) no decay of the rescaled function. The latter behavior
indicates that the spinon here is not a well-defined particle,
with no concentration of the net magnetization to within an
intrinsic wave packet. This is of course not surprising, in
the sense that spinons are not expected to be the elementary
quasiparticle excitations of the Néel state. We had also already
found above that in the critical state the quasiparticles are only
marginal, characterized by power-law overlaps (and hence
any further enhancement of antiferromagnetic correlations
should completely destroy the spinons). It is still interesting to

100 101 102 103

 r

2

2.5

 N
P(

r)

 N=257
 N=513
 N=1025

FIG. 9. (Color online) Size-scaled spinon overlap function in a
Néel-ordered chain with total S = 1

2 , computed for chain lengths
N = 257, 513, and 1025. The asymptotically flat (with even- and
odd-r branches) distribution shows that the spinon is not a well-
defined quasiparticle in the Néel state, as expected. The inset shows
the tail of the spinon overlap function of Néel-ordered chains with a
clearer view of the N = 217 and 513 data.

see that the breakdown of the spinons as quasiparticles can be
explicitly observed in the distribution function PAA(r).

IV. SPINON CONFINEMENT ARISING FROM
MODULATED COUPLINGS

In order to observe confinement of spinons, we here
use a generalized version of the J -Q3 model with different
nearest-neighbor coupling constants on even and odd bonds.
The Hamiltonian is

H = −
∑
even i

(J1Ci,i+1 + J2Ci+1,i+2)

−Q3

∑
i

Ci,i+1Ci+1,i+2Ci+2,i+3. (23)

When the modulation parameter ρ = J2/J1 �= 1, the Hamilto-
nian itself breaks translational invariance and there is no longer
a VBS phase transition with spontaneously broken symmetry.
If we start in a spontaneously formed VBS (Q3/J1 > gc)
for ρ = 1, the ground state is doubly degenerate, but once
ρ > 1 the degeneracy is broken and the ground state is unique.
This is expected to confine the spinons, as the string of
out-of-phase bonds formed between two separated spinons
is now associated with an energy cost increasing linearly with
the separation, instead of the energy only being associated with
the domain walls when ρ = 1. This model was also studied
in the presence of an impurity in Ref. [26], and it was found
that the localization length of the magnetization distribution
forming around the impurity could be tuned by ρ. It was argued
that two regions of confinement could be defined: (i) strong
confinement, where the size of the bound state is similar to the
standard spin correlation length, and (ii) weak deconfinement,
where the bound state is much larger than the correlation
length. Here, we find similar behavior for two spinons binding
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FIG. 10. (Color online) Spinon distribution functions in the
J1-J2-Q3 chain with Q3/J1 = 4 and several values of the modulation
parameter ρ = J2/J1. (a) Shows exponential decays PAA(r) ∼ e−r/λ

of the single-spinon distribution function of the S = 1
2 state, demon-

strating well-defined spinons with finite intrinsic size λ. In (b),
spinon confinement for ρ �= 1 is demonstrated in the spinon-distance
distribution function PAB (r) ∼ e−r/�. The size of the bound state
(the confinement length scale) decreases as the coupling modulation
is increased. Data for ρ = 1 are graphed for comparison; in this case,
the spinons are deconfined and the distribution function does not
decay with the separation.

to each other instead of a static impurity. A priori it is not
clear that the situations are identical, as the impurity-spinon
and spinon-spinon potentials are not identical (since a dynamic
spinon perturbs its singlet environment differently than a static
impurity).

We first test for confinement deep inside the VBS phase
at g = Q3/J1 = 4. As shown in Fig. 10(a), the spinon size
λ computed from PAA(r) in the S = 1

2 ground state becomes
smaller when the confining potential increases (tuning ρ from
1 to 8). Figure 10(b) shows that the confinement length �

indeed becomes finite once we tune ρ off 1. For ρ very close
to 1 it is difficult to extract � because we also need to satisfy
L � � and the calculations become very demanding. Upon
increasing ρ we find that � approaches λ.

An interesting observation in Fig. 10(b) is the maximum
developing in PAB(r), seen around r = 20 for ρ = 1.1 and
moving to R = N/2 at the uniform point ρ = 1. In Sec. III, we
already argued that there is an effective short-range repulsive
interaction between the spinons in the uniform chains, and it
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FIG. 11. (Color online) The same quantities as in Fig. 10 but with
the ratio Q3/J1 = gc = 0.1645. Here, the tuning of the modulation
parameter ρ toward 1 corresponds to approaching a critical point.

is natural that these interactions should persist also for some
range of ρ away from 1, although there is also an attractive
part binding the spinons. Thus, we arrive at the conclusion that
when ρ is close to 1 there is a short-range repulsion followed
by the linear confining attractive potential at longer distances.
Judging from the fact that the maximum probability moves
toward r = 0 for larger modulation parameters, ρ = 2,8 in
Fig. 10(b), the role of the short-range repulsion diminishes
(leading to the spinon core being “crushed”) relative to the
linear attractive confinement potential, which grows with ρ.
The cases of λ ≈ � and maximum probability at r = 0 seem
very similar to the case of “strong confinement” by an impurity
in Ref. [26], while the case of remaining effects of repulsions
pushing the maximum probability away from r = 0 is like the
“weak confinement” case. It would be interesting to compare
the two cases more quantitatively, but we leave this for future
studies.

We also observe similar behaviors in the dimerized model
at the critical Q3/J1 value, as shown in Fig. 11. The main
difference is that now the spinon size λ diverges as ρ → 1,
instead of tending to a finite value in the VBS phase. Both
length scales are actually smaller than in the VBS phase for
larger ρ, e.g., for ρ = 2, � ≈ 2.42(1) at gc while � ≈ 3.78(4)
at g = 4. This implies that the imposed dimerization in the
critical region has a stronger effect than in the ordered VBS
phase. In the critical region, all lengths diverge, and, therefore,
once we add the explicit dimerization ρ �= 1 it dominates the
physics immediately. In contrast, in the VBS phase there are
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competition effects between the spontaneous VBS and the
explicit dimerization, which apparently reduce the effects on
the spinon size and confinement length. Also, here we can
see a maximum in PAB(r) away from r = 0, and � here is
somewhat larger than λ. It would be interesting to study in
detail the divergence of these lengths as ρ → 1 and compare
them with both the spin and VBS correlation lengths (and also
to compare with the impurity-binding case), but we also have
to leave this for future studies.

V. HEISENBERG LADDERS

Another way to confine the spinons of the Heisenberg
chain is to couple two chains into a ladder, described by the
Hamiltonian

H = J1

L∑
i=1

(
S1

i · S1
i+1 + S2

i · S2
i+1

) + J2

∑
i=1

S1
i · S2

i , (24)

where the superscripts 1 and 2 label the two chains, J1 is
the nearest-neighbor coupling within the chains, and J2 is
the interchain (rung) coupling. It is known that any interchain
coupling J2 opens a gap in the excitation spectrum and changes
the critical correlations to an exponentially decaying form [47].
This is true for ladders with any even number of legs, while
odd-leg ladders are critical and exhibit the universality of the
single chain [48]. The situation here is similar to single chains
of Heisenberg-coupled integer or half-odd-integer spins, with
the former always being gapped according to the now well-
confirmed “Haldane conjecture” [49]. The integer-S chains
have localized spinons at the ends of open chains, and this
is also the case (perhaps less surprisingly) in open ladders
where a spin is removed from each end. We here investigate the
spinon confinement mechanism in the periodic, translationally
invariant ladder.

Gapped triplons (S = 1), which are the low-lying excita-
tions of ladder systems, have already been observed in the
excitation spectrum of real materials by inelastic neutron
scattering [23]. It has been argued that this observation
makes the ladder system the simplest condensed-matter system
where one can in practice realize a phenomenon similar to
quark confinement in particle physics [50]. The energy gap,
spin-triplet dispersion relation and the dynamic spin structural
factor of the Heisenberg two-leg ladder model have also been
extensively studied by numerical methods [47].

We begin by discussing the standard spin-spin correlation
function in the S = 0 ground state. We fit it to the form C(r) ∝
e−�/ξ when g = J2/J1 > 0, and will later compare the spinon-
related length scales with the correlation length ξ . Results are
shown in Fig. 12. Note that it is very difficult to extract ξ when
g is small, as ξ then becomes large and the system size has to be
even larger L � ξ . The inset of Fig. 12 illustrates this problem
for g = 0.1. We here focus on rung couplings sufficiently large
for extracting ξ reliably based on our available ladder sizes.

We now turn to the characterization of the spinons. In
the two-leg ladder, it is not possible to study a system with
an odd number of spins N (N = 2L) without breaking the
translational symmetry of the system (which is a much more
severe issue than the boundary subtleties in the single chain,
discussed in Sec. II B, which do not ruin the translational
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FIG. 12. (Color online) Spin correlation function in Heisenberg
ladder systems. Here, the intrachain coupling J1 = 1 and results are
shown for several values of interchain couplings J2. C(x,0) decays
exponentially when J2 �= 0 and exhibits the power-law decay of the
isolated chain when J2 = 0. In the inset, the correlations are large
distances on a log-log scale at J2 = 0 and 0.1. Because here the
system length L is smaller than the correlation length, it is not yet
possible to observe the exponential decay.

symmetry). We here only discuss calculations in the S = 1
state for even N and present results for the distributions P ∗

AA(r)
and PAB(r) in Fig. 13. As we discussed in Sec. III, P ∗

AA(r) can
reliably give the intrinsic spinon size λ if this length scale
is smaller than the size � of the bound state; in principle,
one would expect to need � � λ but in practice, as shown
in Figs. 6 and 10, it seems to work also otherwise. In the
ladder, the length λ∗ as extracted from P ∗

AA(r) is always very
similar to � from PAB(r), however, and, therefore, it is not
clear whether λ∗ can be interpreted strictly as the size of an
individual spinon, although based on the previous comparisons
one may well argue that it is the case. In the ladder systems,
λ∗ is even somewhat larger than �, e.g., at J2 = 1, λ∗ ≈ 3.9,
and � = 3.5.

We recently studied a 2D J -Q3 model with a VBS state [13].
In that case, an individual spinon in an S = 1

2 state can be
studied and we found that the so extracted λ is considerably
smaller than the bound state of two spinons. We interpreted this
as being due to a softness of the extended spinons, which are
expected to be a kind of vortices in 2D. Such soft spinons shrink
when they are subject to mutual attractive interactions and
form a pair. Also, there the single-spinon length λ∗ extracted
from the S = 1 state is somewhat larger than �. Given this
similarity, we also interpret λ∗ ≈ � in the Heisenberg ladder
as due to softness of the spinons [51].

VI. DETECTING SPINONS IN SPIN CORRELATIONS

The definitions � and λ of the spinon length scales are
closely tied to the VB basis, and the underlying distribution
functions are not directly physically measurable quantities.
It is therefore interesting to investigate whether the same
length scales also appear in bona fide quantum-mechanical
expectation values as well. The natural candidate is the
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FIG. 13. (Color online) Spinon distribution functions in S = 1
states of Heisenberg ladders with different rung couplings J2. Both
distribution functions are exponentially decaying for J2 = 0.5, 1, and
2, while for J2 = 0.1 the system size is not sufficiently large for
observing the expected asymptotic exponential decay.

standard spin correlation function using the operator (8) in
the total-spin sectors with S = 1

2 and 1. It is clear that these
correlations overall should not differ significantly from those
in the ground state with S = 0 and we therefore look explicitly
at at the difference between the two correlation functions,
defining

�S(r) = CS(r) − C0(r), (25)

where the subscript in CS indicates the spin sector in which the
correlations are computed. We plot the absolute value of these
functions for a J -Q3 chain in Fig. 14(a) and for a J1-J2-Q3

chain with a small modulation parameter ρ = 1.1 in Fig. 14(b).
In both cases, Q3 is relatively large, so that the uniform J -Q3

chain is deep inside the VBS phase.
For S = 1

2 , we find an almost pure exponential decay in
Fig. 14(a), with a decay constant almost the same as the single-
spinon size λ obtained previously for this VBS state. As shown
in Fig. 7, λ > ξc, and, thus, the excess correlations in the S = 1

2
state decay slower than those in the S = 0 state and it is natural
to associate these correlations with the intrinsic spinon size.
We conclude that λ is an actual physical characteristic of the
S = 1

2 state, observable in the long-distance decay of �1/2(r).
In the S = 1 state, we find an interesting structure, where

at short distances the behavior follows closely the same
exponential decay as in the S = 1

2 state, while for larger
distances there is a rather dramatic change, with a phase shift in
the staggered correlations (which here is not seen directly as we
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10-7

10-6

10-5

10-4

10-3

Δ s(r
)

ΔS=1(r)

ΔS=1/2(r)

0 20 40 60 80 100
r

10-6

10-5

10-4

10-3

Δ S(r
)

ΔS=1/2 (r)  odd
Δ S=1/2 (r)  even
ΔS=1(r)  odd
ΔS=1 (r)  even

J1/J2=1.1

J1J2Q3 Chain

JQ3 Chain

 L=512
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(b)

(a)

FIG. 14. (Color online) Absolute value of the spin correlation
function in the S = 1

2 and 1 state, after subtraction of the S = 0
correlation function according to Eq. (25). (a) is for a J -Q3 chain
with Q3/J = 4 and (b) is for a J1-J2-Q3 chain with J2/J1 = 1.1
and Q3/J1 = 4. In both cases, the chain length is L = 512. The
sharp dips where the relative errors are large for the S = 1 quantities
correspond to phase shifts [in S1(r) and �1(r)]. In (b), the even-r and
odd-r branches are graphed in different colors to show the even-odd
effects, while in (a) these effects are too small to be visible. All lines
correspond to exponential fits.

are graphing only the absolute value, but the shift is reflected
indirectly in the sharp dip to very small value within a narrow
r range), followed by a flattening out of the correlations. The
phase shift and subsequent flattening out can be understood in
terms of deconfined spinons in the following way: Since we are
looking at a state with total Sz = S = 1, the spin correlations at
long distances are completely dominated by the contributions
from the unpaired spins and their transition-graph strings
(the singlet background, corresponding to the loops in the
transition graphs, having exponentially decaying correlations).
Since these spinons are fixed in the “up” state and always
reside on different sublattices, we will get positive (negative)
contributions from odd (even) distances, in contrast to the
normal phase of the correlations an antiferromagnet, which
is negative (positive) at odd (even) distances. We find the
standard phase of the correlations in the S = 1 state as well at
short distances. Given this, there must be a phase shift at some
distance r . The exact location of the phase shift depends on
the model parameters and the chain length in a way which we
have not yet disentangled.

As shown in Fig. 15, in the case of the ladder systems
we do not find any phase shifts and in all cases studied the
correlation difference between the S = 1 and 0 is essentially
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FIG. 15. (Color online) Spin correlation difference for Heisen-
berg ladder systems in the S = 1 sector. The lines show exponential
fits.

a pure exponential form. In the ladder we have not found any
case where � is significantly larger than λ and most likely
these quantities both diverge in the same way as J2/J1 → 1.
There is therefore no clear regime of weak deconfinement,
although the term may be misleading when the length scales
both do become large. We therefore suggest the term marginal
deconfinement to describe this scenario.

VII. SUMMARY AND DISCUSSION

We have used a computational technique based on valence-
bond projector QMC simulations to study the spinon size λ

and the confinement length � in 1D spin systems. We found
that when a system has only one unpaired spinon, the overlap
between valence-bond states with unpaired Sz = 1

2 moment
residing at distance r away from each other decays as e−r/λ

in a gapped VBS, where we interpret λ as characterizing the
intrinsic spinon size. In a critical state, the overlap instead
decays as r−1/2, which we interpret as spinons that are only
marginal particles, on the verge of losing their identities
as quasiparticles. When the system has two spinons, the

distribution’s function for the distance between them decays as
e−r/� if the spinons are confined (which we have studied using
a modulated pattern of weak and strong coupling constants,
which leads to a linear spinon-binding potential), with �

characterizing the size of the bound state. For deconfined
spinons (which we have studied in VBS states and critical
states), we found that the distribution function instead exhibits
a broad peak at the largest separation, demonstrating a
weak repulsive potential between the spinons. We studied
the Heisenberg two-leg ladder system. By tuning the rung
coupling, the system can be driven from a deconfining phase
(two decoupled chains) to a confining phase. In this case, the
spinon size is always similar to the size of the bound state.

In the Bethe-ansatz solution of the Heisenberg chain,
spinons are noninteracting particles (kinks and antikinks),
but it should be noted that these particles are obtained from
the original spin degrees of freedom using a highly nonlocal
transformation. What we have probed here is instead more
direct measures of the spatial “concentration” PAA(r) of the
total magnetization of a single spinon, and the correlations
between (essentially) the center of mass of two such distribu-
tions PAB(r). Since our calculation projects out the lowest state
with given total spin, in the case of S = 1 the total momentum
k = π (in the case of a chain with N = 4n sites). Therefore, the
spinons here are not propagating, having individual spin 0 and
π (these giving the lowest possible energies in light of the des
Clauseaux-Pearson dispersion). In principle, our calculations
can also handle total momentum away from k = π , but in
practice, due to phase problems in the Monte Carlo sampling,
we are restricted to momenta close to 0 and π .

In the future, it would be interesting to more exhaustively
characterize all the length scales of the system (including
λ, �, as well as the spin and VBS correlation lengths) and
their divergences under the various conditions afforded by the
models we have performed initial studies on here.
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