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The ground-state phase diagram of a Heisenberg spin- 1
2 system on a two-leg ladder with rung alternation

is studied by combining analytical approaches with numerical simulations. For the case of ferromagnetic leg
exchanges a unique ferrimagnetic ground state emerges, whereas for the case of antiferromagnetic leg exchanges
several different ground states are stabilized depending on the ratio between exchanges along legs and rungs.
For the more general case of a honeycomb-ladder model for the case of ferromagnetic leg exchanges besides the
usual rung-singlet and saturated ferromagnetic states we obtain a ferrimagnetic Luttinger liquid phase with both
linear and quadratic low-energy dispersions and ground-state magnetization continuously changing with system
parameters. For the case of antiferromagnetic exchanges along legs, different dimerized states including states
with additional topological order are suggested to be realized.
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I. INTRODUCTION

Spin- 1
2 Heisenberg two-leg ladder systems have attracted

a great deal of interest both from experiment and from the-
ory [1]. Ladders with antiferromagnetic exchange along rungs
and antiferromagnetic [2–4] as well as ferromagnetic [5,6]
exchanges along legs have been realized experimentally.

For the case of a ladder with ferromagnetic legs and
a uniform interleg (rung) exchange, so called rung-singlet
or saturated ferromagnetic phases are realized depending
on whether the interleg coupling is antiferromagnetic or
ferromagnetic.

For the case of a ladder with antiferromagnetic legs
and uniform rung coupling it has been established that for
antiferromagnetic interleg coupling a rung-singlet phase is
realized, whereas for ferromagnetic rung coupling a Haldane-
like phase is stabilized. Both phases are stable both in weak
rung-coupling and in strong rung-coupling limits. The weak
rung-coupling limit is a proper limit for effective field theory
bosonization analyses [7], where in the case of uniform rung
exchanges, in the lowest (first) order of the interchain coupling
the relevant operators (in the renormalization-group sense)
are present that at low energies drive the system towards the
strong-coupling fixed points of the rung-singlet and Haldane
states for positive and negative rung exchanges respectively.

Stability of a unique ground state from arbitrary weak
(nonzero) up to arbitrary strong interleg exchanges is due to
the fact that the ladder system is nonfrustrated. The question
that we are going to address in our work is what happens when
the ladder system is frustrated by rung exchange alternating
in sign from rung to rung. Frustration in this case, for both
signs of exchanges along the ladder legs, will be caused by the
presence of an odd number of antiferromagnetic exchanges in
the elementary closed path that is a ladder plaquette in our
case.

We will use different complementary analytical ap-
proaches: strong-rung coupling expansion for strongly coupled
legs and bosonization for weakly coupled antiferromagnetic
legs. To cover the intermediate regimes we will use numerical
techniques. We will as well consider the more generalized case

of a rung-alternated model where we will relax the constraint
of equal absolute value of exchanges along the even and odd
rungs.

II. MODEL OF FRUSTRATED SPIN LADDER

In this work we study a Heisenberg spin- 1
2 model defined

on a two-leg ladder with L rungs and with alternating rung
exchanges, depicted in Fig. 1,

H = J

L∑
j=1

2∑
l=1

Sl,j Sl,j+1 + J⊥
L∑

j=1

(−1)j S1,j S2,j , (1)

where Sl,j are spin- 1
2 operators acting on spins on the j th rung

of the l = 1,2 leg. For definiteness we will put J⊥ � 0; the
case of J⊥ � 0 will be recovered by one-site translation of the
ladder along the legs.

The anisotropic XY case of Eq. (1) was studied recently in
the context of single-component hard-core bosons on a two-leg
ladder at half filling with a flux π per plaquette [8,9]. It was
shown that depending on the ratio of strengths of exchanges
along ladder legs and rungs there are two different ground-state
phases. For |J | � J c

xy , where J c
xy � 2/3J⊥ and for the XY case

the sign of J is irrelevant, the ground state was shown to be
a vortex-liquid Mott insulator, a state with gapped magnetic
excitation (excitations changing total Sz), however having a
gapless mode to nonmagnetic excitation. For |J | � J c

xy the
ground state was shown to be a fully gapped nondegenerate
state, adiabatically connected to the J = 0 case where the
ground state is of simple product form and is composed of
alternating Sz = 0 components of triplets and singlets from
rung to rung. The presence of multiple ground states when
changing a single parameter (here the ratio of exchanges along
legs and rungs) is an indicator of frustration present in the
system.

III. STRONG RUNG-COUPLING LIMIT

Let us start from the limit |J | � J⊥. For J = 0, even rungs
in the ground state form rung-singlet states, whereas odd rungs
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FIG. 1. Geometry of the two-leg ladder with alternated rung
exchanges. Antiferromagnetic couplings are chosen along the even
rungs, J⊥ > 0.

form rung-triplet states. Hence for J = 0 the ground state
manifold is 3L/2 times degenerate. Treating J perturbatively,
integrating out singlets that occupy even rungs, we obtain an
effective Hamiltonian describing a collection of odd rungs,

H 1
eff = J 3

16J 2
⊥

L/2∑
j=1

Tj Tj+1 + O(J 4), (2)

where Tj = S1,2j+1 + S2,2j+1 are effective S = 1 spins
formed along the odd rungs. Because the exchanges along
both legs have equal strengths the lowest, second order in the
J contribution to the effective spin-1 chain formed on odd
rungs vanishes. The ground state of our model Eq. (1) for
|J | � J⊥ will be hence a direct product of singlets formed on
even rungs and the ground state of a Heisenberg spin-1 chain
formed on odd rungs. Depending on the sign of J the ground
state of this Heisenberg spin-1 chain is either a ferromagnetic
state (J < 0), or a Haldane state (J > 0) [10]. For the original
Hamiltonian Eq. (1) the ferromagnetic state of the effective
S = 1 chain Eq. (2) is the half-ferromagnetic state with the
ground-state total spin equal to half of the maximum possible
value, ST = L/2. This state will be called a half-ferro state.
The state realized for 0 < J � J⊥ has been called the H1

state in a recent investigation on the effect of anisotropies on
this state [11]. For the rung-alternated ladder with J > 0 it
was shown that the application of an external magnetic field
induces the half-magnetization plateau state [12].

IV. WEAK RUNG-COUPLING LIMIT, BOSONIZATION

In the other limit J � J⊥ we use the bosonization ap-
proach [7]. We represent spin operators with the help of
bosonic operators:

Sl,j → a[Jl,L(x) + Jl,R(x) + (−1)j Nl(x)]. (3)

Decoupled chains have Néel-like quasi-long-range order and
the above representation captures the important low-energy
fluctuations by smooth bosonic fields, at wave vector 0 and
π . Uniform spin magnetization is represented in terms of
chiral currents Jl,L/R of a level-1 SU(2) Wess-Zumino-Witten
model perturbed by marginally irrelevant current-current inter-
actions, describing an isolated antiferromagnetic Heisenberg
chain [13].

We will need the following important operator product
expansion (OPE) rules [14]:

J a
l,L/R(x,τ )Nb

l (x ′,τ ′) = ±iδabεl(x ′,τ ′) + iεabcN
c
l (x ′,τ ′)

4π [v(τ − τ ′) ± i(x − x ′)]
,

(4)

where v = πJ/2 is the spin-wave velocity of the Heisenberg
spin- 1

2 chain, known from the Bethe ansatz solution, and on
the right-hand side the dimerization operator εl , that is the
continuum limit of (−1)j Sl,j Sl,j+1 has appeared.

Treating the interchain coupling J⊥ perturbatively for
J⊥/J � 1 in the continuum limit the staggered interchain
coupling, H⊥ = J⊥

∑L
j=1(−1)j S1,j S2,j , has the following

form in terms of smooth bosonic fields:

H⊥ =
∫

dxH⊥(x) = J⊥
∫

dx[J1,L(x) + J1,R(x)]N2(x)

+ J⊥
∫

dx[J2,L(x) + J2,R(x)]N1(x). (5)

The H⊥ perturbation has nonzero conformal spin and does
not open a gap in the first order of J⊥. The relevant scalar
operator from interchain exchange comes in the second order
of J⊥ coupling. Using OPE for the same-leg operators at short
distances, Eq. (4), and integrating with the relative coordinates
we obtain in the order J 2

⊥ the following relevant contributions
that should be added to the effective Hamiltonian describ-
ing the long-wavelength properties of decoupled bosonic
chains,

∼ −J 2
⊥

∫
dx[3ε1(x)ε2(x) − 2N1(x)N2(x)]. (6)

At this point it is convenient to introduce four Majorana
fermions [15]. The perturbation that we identified in Eq. (6)
is translated as a mass term of triplet and singlet Majorana
fermions and the complete ladder Hamiltonian in Majorana
basis looks like

HM =
∫

dx
∑ [

3
γ=1

ivt

2

(
ψ

γ

L∂xψ
γ

L − ψ
γ

R∂xψ
γ

R

) + imtψ
γ

Lψ
γ

R

]

+
∫

dx

[
ivs

2

(
ψ0

L∂xψ
0
L − ψ0

R∂xψ
0
R

) + imsψ
0
LψR

]0

,

(7)

where the masses of Majoranas are mt ∼ 5J 2
⊥ and ms ∼ 3J 2

⊥.
Following the analyses of the ground states of the original
ladder system from Majoranas [7,14] we can conclude that the
ladder system for J⊥/J → 0 is in the phase that is adiabatically
connected to the rung-singlet phase of the uniform ladder
with antiferromagnetic exchanges. This is surprising, because
the spin exchanges are ferromagnetic along every other
rung.

Comparing the effective Hamiltonian Eq. (2) and the
original one Eq. (1) reveals a very important competition
for J > 0. Namely, for small 0 < J � J⊥ the next-nearest-
neighbor spins on the same chain belonging to the odd
rungs show antiferromagnetic tendencies, 〈Sl,2j+1Sl,2j+3〉 <

0, whereas for the single-chain dominated regime J � J⊥,
it is clear that 〈Sl,j Sl,j+2〉 > 0 for any l and j . There is no
such competition on the J < 0 side and hence the case of
ferromagnetic legs is simpler and for the entire region of
J < 0 the ferromagnetic phase of the effective spin-1 chain
is expected to be realized (for the original ladder it is the
half-ferro state with ground-state total spin ST = L/2).

So far, using analytical approaches, we have established
ground-state phases of rung-alternated Heisenberg spin- 1

2
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FIG. 2. (Color online) Analytically conjectured ground-state
phase diagram of rung-alternated Heisenberg ladder as function of
J . H1 denotes a Haldane phase, however only half of the rungs (odd
numbered rungs) provide the effective S = 1 spins, whereas the other
half (even numbered rungs) are in the approximate rung-singlet states
and mediate antiferromagnetic exchange among effective S = 1
spins.

ladder in the limiting cases of 0 < J � J⊥ and J � J⊥, where
a Haldane phase of effective S = 1 spins formed along the odd
rungs and a rung-singlet phase are stabilized respectively. The
conjectured sequence of phases with changing J is depicted
in Fig. 2.

To check whether there are additional phases for interme-
diate values of J ∼ J⊥ or there is a direct phase transition
between H1 and rung-singlet states, we will use numerical
approaches.

V. HONEYCOMB-LADDER MODEL

In this section we will study a slightly generalized case of
the rung-alternated ladder, introducing the additional param-
eter α that relaxes the condition of equal absolute values of
exchanges along even and odd rungs. This way we obtain a
SU(2) symmetric version of the so-called honeycomb-ladder
model (see Fig. 3)[16],

H = J⊥
L∑

j=1

[(−1)j + α]S1,j S2,j + J

L∑
j=1

2∑
l=1

Sl,j Sl,j+1. (8)

To simplify notations in the following we will set J⊥ = 1.
For α ∈ (−1,1) the spin system is frustrated, because the

number of antiferromagnetic bonds per ladder plaquette is odd.
We will study the ground-state phases for arbitrary values of
α and J (both negative and positive). The simpler case to start
from is J < 0.

A. Honeycomb ladder with ferromagnetic legs

For J < 0 we can estimate the boundary of the ferro-
magnetic phase. We derive the single-particle dispersions,
composed of four branches, since the unit cell contains four

α−
1

1,2jS
J

J S 2,2j

α+
1

S1,2j+1

S 2,2j+1

FIG. 3. Geometry of honeycomb-ladder model. For α = 0 the
rung-alternated ladder presented in Fig. 1 is recovered.

spins,

ε1(k) = α

2
+ J cos k, ε2(k) = α

2
− J cos k,

ε3(k) = −α

2
−

√
2 + J 2 + J 2 cos 2k√

2
, (9)

ε4(k) = −α

2
+

√
2 + J 2 + J 2 cos 2k√

2
.

The chemical potential is attached to the minimum of the
ε1(k) band, realized at k = 0, μ = α/2 + J . By looking at
the single magnon instability we estimate the boundary of the
fully polarized state, equating the chemical potential to the
minimum of the ε3(k) band, which is given for any system size
by

αFM = −
√

1 + J 2 − J � − 1

2|J | for |J | � 1. (10)

Next, for |J | � 1 the single-particle dispersion bands
become flat and we can estimate the transition from the
ferrimagnetic state into the half-ferro state with total S = L/2
by equating the chemical potential with the maximum of the
ε3(k) band realized at k = ±π/2,

αc = −J − 1 + O(J 2). (11)

Transitions induced by changing α < 0 can be understood
in a simple way for |J | � 1. In the half-ferro state for α ∼ −1,
spins on even sites form rung singlets, whereas on odd sites
spins form effective spins 1. The effective spin-1 chain, formed
by spins on odd sites, is in the fully polarized phase as
follows for J < 0 from Eq. (2). The interaction between
the spins belonging to even sites along the leg direction
is mediated by intermediate S = 1 spins (all of which are
pointing in the same, spontaneously chosen, direction due
to the fact that they are in fully polarized ground state)
and this interaction is ferro since J < 0. Hence, the system
is equivalent to the direct product of the ferro state of the
spin-1 chain (formed by spins belonging to odd sites) and a
two-leg spin ladder with antiferromagnetic exchange along
rung and ferromagnetic exchange along legs [17] (the ladder
is formed by spins belonging to even sites). Decreasing α

weakens the antiferromagnetic coupling along the rung and the
effective magnetic field (produced by the fully polarized neigh-
boring spin-1 chain) induces two consecutive second-order
commensurate-incommensurate transitions, first one from a
rung-singlet state of the two-leg ladder (with ferromagnetic
legs and antiferromagnetic rungs) to an intermediate Luttinger
liquid state with finite polarization and then to a fully polarized
state [18].

Single-magnon (equivalently hard-core boson) dispersions
as presented in Fig. 4 shed light on the evolution of the
low-energy excitation spectrum of model Eq. (8) as a function
of α for α < 0 and J < 0 and fully confirm the above picture
anticipated from the interpenetrating spin-1 chain and the
two-leg ladder with ferromagnetic legs and antiferromagnetic
rung exchanges. For α < −√

1 + J 2 − J the system is in the
ferromagnetic state and the low-energy excitation is a conven-
tional ferromagnetic magnon, with the ∼ cos k-like gapless
quadratic dispersion shown in Fig. 4(a). At the boundary
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FIG. 4. (Color online) Single-particle dispersion relations (a)
deep in ferro state, (b) at the boundary of ferro and ferri states, (c)
inside ferri state, (d) at the boundary of ferri and half-ferro states, and
(e) inside the half-ferro state. The dashed line indicates the chemical
potential.

between ferromagnetic and ferrimagnetic phases there are two
quadratic dispersions, two kinds of magnons with the mass
ratio of

√
2 presented in Fig. 4(b). Inside the ferrimagnetic

state the ground-state total spin changes continuously, L/2 �
ST � L, and there are two different kinds of dispersions: one
quadratic at low momenta and a second one that is linear shown
at ±kF in Fig. 4(c), giving Luttinger-liquid-like properties.
At the boundary between ferrimagnetic and half-ferro states
again two quadratic in momenta low-energy dispersions are
present shown in Fig. 4(d) and inside the half-ferro state
with ST = L/2 only one magnon branch with ∼ cos k-like
quadratic low-energy dispersion remains as shown in Fig. 4(e).
Both phase transitions, from ferromagnetic to ferrimagnetic
and from ferrimagnetic to half-ferro states are second-order
commensurate-incommensurate phase transitions, where the
linear mode disappears in favor of a quadratic dispersion. The
overall gapless quadratic mode remains in the background,
due to the spontaneously broken SU(2) symmetry in all phases
where the ground state is not a global spin singlet. This makes
SU(2) symmetric honeycomb-ladder model Eq. (8) for J < 0 a
very attractive and simple case to study the behavior known as
unsaturated ferromagnetism, an effect that has been noticed
to occur in other frustrated systems [19–23]. With further
increase of α to positive values there is a phase transition
from the half-ferro to the rung-singlet state, not captured by
the single-particle picture.

S

S

S

S

J

J

Jx

r

2,2j−1

1,2j+1

2,2j+1

1,2j−1

FIG. 5. Effective model for spins belonging to odd rungs valid
for α � 1 and J � 1, where spins belonging to even rungs form
approximate rung-singlet states. Phase transitions are expected for
Jr < 0.

B. Effective model for α � 1 and |J| � 1

For α � 1 and |J | � 1 we can derive an effective model for
spins on odd rungs by integrating out spins belonging to even
rungs that are in rung-singlet states. To capture the difference
between J < 0 and J > 0 cases we have to go beyond the
lowest (second) order in interrung coupling J that we treat in
perturbation theory. To the third order in J the effective ladder
model formed by spins belonging to odd rungs is given by the
following Hamiltonian (see Fig. 5):

Heff = J||
L/2∑
j=1

[S1,2j−1S1,2j+1 + S2,2j−1S2,2j+1]

+ Jx

L/2∑
j=1

[S1,2j−1S2,2j+1 + S1,2j+1S2,2j−1]

+ Jr

L/2∑
j=1

S1,2j+1S2,2j+1, (12)

where

J|| = − J 2

2(α + 1)
− J 3

4(α + 1)2
,

Jx = J 2

2(α + 1)
+ 3J 3

4(α + 1)2
, (13)

Jr = α2 + J 2 − 1

α + 1
+ 3J 3

2(α + 1)2
.

Interchanging legs with diagonals of the effective model
presented in Fig. 5 by interchanging spins on every other
rung, the model Eq. (12) for parameters given in Eq. (13)
is equivalent to a two-leg spin ladder with antiferromagnetic
legs, ferromagnetic diagonals, and rung exchange that changes
from antiferromagnetic to ferromagnetic with decreasing α.
For the two-leg antiferromagnetic ladder weakly coupled by
competing diagonal and rung exchanges (where bosonization
is applicable) three phases are expected to be stabilized with
decreasing α: rung-singlet, dimer, and Haldane phase [14].
Parameters of our effective model are outside the weak-
coupling limit, but later with the help of numerical simulations
we will show that the same sequence of phases are also
realized in our effective model Eq. (12). In particular, the
dimerization pattern of the original ladder model will be dimers
formed along next-nearest-neighbor diagonals, involving spins
belonging to odd rungs.
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C. Vicinity of α � −1, 0 < J � 1

For J > 0 and 0 < J � 1 we can as well estimate possible
ground states around α � −1, where we can borrow the results
from the mixed diamond chain [24,25]. For J = 0 and α = −1
the spins belonging to even rungs are disconnected and spins
belonging to odd rungs in the ground state are in the spin-triplet
configuration, forming S = 1 spins. For 0 < J � 1 there is a
competition in the nature of the exchange between the spins
belonging to the even rungs: for α > −1 the direct exchange
S = 1 is antiferromagnetic, whereas the exchange mediated
by nearby S = 1 spins is ferromagnetic. For α < −1 there is
no such competition and effective spins S = 1 are formed on
each rung.

One possibility that the above-mentioned competition for
α > −1 gets resolved is that some of the even rungs choose
to be in the triplet state and others in the singlet state
periodically alternating as happens in the mixed-diamond
chain [24] where a consecutive odd number of M rung triplets
(coupled antiferromagnetically with each other by J > 0) will
be sandwiched between the rung singlets. Coupling an odd
number M of S = 1 spins by antiferromagnetic exchange and
assuming open boundary conditions, the M-rung segment will
be in the triplet state in the ground state, forming an effective
S = 1 spin. The approximate rung singlets in the case of a
rung-alternated ladder (as opposed to the exact rung singlets
realized in mixed-diamond chain [24] that cut the chain) will
mediate an effective antiferromagnetic exchange among the
above-mentioned effective S = 1 spins formed by M-rung
segments, giving rise to generalized Haldane states with an
enlarged unit cell composed of M + 1 ladder plaquettes. Such
a state for M = 3 is depicted in Fig. 6 and called Haldane
dimer.

There are in total five different ground states in the mixed-
diamond chain when changing the equivalent of α from α >

−1 to α < −1 with M = 1,3,5,7 and M = ∞. The M = 1
case is equivalent to the H1 state, a Haldane state of S = 1 spins
formed on odd rungs, and the M = ∞ case is equivalent to
the Haldane state of the effective S = 1 spins formed on every
rung. For the spin- 1

2 ladder with alternated rungs M = 1,3,5
and M = ∞ are suggested to have finite extent in the presence
of exchange anisotropy [25].

α+
1

S=1 S=1
S=0 S=0

α−
1

magneticferroanti exchange

FIG. 6. Cartoon of one of the possible ground-state configurations
of the Haldane-dimer phase that can be realized for α � −1, 0 < J �
1. Spins encircled by open rectangles form approximate rung-singlet
state, whereas those encircled by shaded rectangles form rung-triplet
states. Six spins encircled by the dotted rectangle form effective
S = 1 spins which are connected via intermediate singlets to produce
an effective Haldane chain. In the mixed-diamond chain the singlets
depicted above are exact eigenstates and they do not mediate any
exchange among the effective S = 1 spins.

J
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FIG. 7. (Color online) Fidelity susceptibility of the rung-
alternated ladder with antiferromagnetic legs for periodic boundary
conditions and three different system sizes. In DMRG calculations
periodic boundary conditions are assumed (restricting considerably
the available ladder lengths) to avoid degeneracies of the Haldane-like
states due to edge spins for the open boundaries.

VI. NUMERICAL RESULTS

A. Rung-alternated ladder

Initially we will present our numerical data for the α = 0
case corresponding to the rung-alternated ladder model Eq. (1).
For the case of ferromagnetic legs we systematically obtain
(from both large scale density-matrix renormalization-group
(DMRG) approach [26,27] as well as the Lanczos algorithm for
both periodic and open boundary conditions) that the ground
state belongs to the multiplet with total spin half of the maximal
possible value, ST = L/2 for any J < 0.

In the following we will discuss J > 0, where we predicted
at least two different phases in the limiting cases J �
1 and J � 1 respectively. In Fig. 7 we plot the fidelity
susceptibility [28–31] with changing control parameter J for
different system sizes,

χL = − 2

L
lim

δJ→0

ln |〈ψ0(J )|ψ0(J + δJ )〉|
(δJ )2

, (14)

where |ψ0(J )〉 is the (nondegenerate) ground-state wave
function for the corresponding parameter J . We see that there
is a well pronounced peak in the fidelity susceptibility and
the height of the peak increases with system size, whereas
the width decreases. We extrapolate the location of the peak
to J = Jc1 � 0.45 in the thermodynamic limit. Thus, we can
estimate the extent of the H1 phase for α = 0 as 0 < J � Jc1.
Note that the rather similar estimate of Jc1 follows from the
position of the level crossing of the lowest excited states, which
are triplet with momentum k = π in the H1 phase (J < Jc1)
and triplet with k = 0 in its neighboring phase (J > Jc1).

B. Honeycomb ladder with ferromagnetic legs: J < 0

We start by presenting our numerical data with the case
of ferromagnetic legs. We use the DMRG approach in
order to access large system sizes. In Fig. 8 we plot for the
honeycomb-ladder with ferromagnetic legs the ground state
multiplicity as a function of α for J = −1, which is a typical
behavior in the whole J < 0 region. The boundary of the
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FIG. 8. (Color online) DMRG results for the lowest energy levels
in different total Sz subspaces relative to the lowest energy in the
Sz = 0 subspace as function of α for J = −1 and L = 96 rungs for
open boundary conditions. The dashed line indicates the boundary of
the ferromagnetic state.

ferromagnetic phase is captured exactly from the spin-wave
instability (indicated by the dashed vertical line in Fig. 8).
Here we only present the data from which we determined the
boundaries of the half-ferro state.

We see from this plot that for J = −1 the half-ferro state
ST = L/2 is sandwiched between α � −0.2 and α � 0.36.
Note that for 0.36 < α < 0.4 the excitations from the singlet
ground state to low total spin states (ST = 1 and 2 are
presented) become practically gapless, thus we cannot rule out
the existence of an intermediate thin phase between half-ferro
and rung-single states based on our numerical data.

For values of α < −0.2 energies of the lowest states with
Sz > L/2 merge gradually with the ground state (only one
state Sz = L/2 + 1 is indicated in Fig. 8) until the energy
of the fully polarized state with Sz = L becomes degenerate
with the ground-state energy for α � αFM , αFM (J = −1) =
1 − √

2 � −0.414.

C. Honeycomb ladder with antiferromagnetic legs: J > 0

For the J > 0 case we start presenting numerical data near
the point α � 1 for small J with changing α. To distinguish
different phases it is useful to start from looking at the gap
between the ground state and lowest excited states. In Fig. 9 we
depict the lowest excited states as a function of α. We use the
effective model Eq. (12) to reach system sizes of L = 12 rungs,
that is equivalent to L = 24 rungs for the Honeycomb-ladder
model Eq. (8). We have checked that for available system size
(up to L = 12 for the Honeycomb-ladder model) agreement
between the low energy levels of effective and full models
is perfect for small J values. In Fig. 9 we present the level
spectroscopy results for J = 0.1 (a) and J = 0.2 (b) for the
effective model Eq. (8). In an antiferromagnetic ladder with a
uniform antiferromagnetic exchange the lowest excited state in
the rung-singlet phase is a triplet state with wave vector k = π

in units of the ladder lattice constant. Since in our model the
unit cell is made of two plaquettes, in the rung-singlet phase
of the Honeycomb ladder (in the phase that is adiabatically
connected with a rung-singlet phase of the uniform ladder,
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Δ E

π
π
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0.9 0.92 0.94 0.96 0.98
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0.002

0.004

0.006
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k=    triplet
k=    singlet

α

ΔE
(b) J=0.2

π
π

FIG. 9. (Color online) Lanczos results of the lowest excited states
relative to the ground state obtained for L = 12 rungs of the effective
model Eq. (12) for (a) J = 0.1 and (b) J = 0.2. A similar picture
is expected to hold for the Honeycomb-ladder model with L = 24
rungs for the same extent of α and J . Periodic boundary conditions
are used that allows us to assign a definite lattice momentum to each
level.

but with a unit cell half of the Honeycomb-ladder model) the
lowest excited triplet should have momentum k = 2π in the
units of the Honeycomb-ladder unit cell that is equivalent to
k = 0 momentum.

We see that with decreasing α below α = 1 the gap to
the lowest excitation (triplet state with k = 0 momentum)
shows a minimum and then with reducing α this lowest triplet
excitation level crosses with the lowest excited singlet state
that has momentum k = π . Note that for any J > 0 and any α

the ground state is a spin singlet state with k = 0 momentum.
There is a finite extent in α where the lowest excited state
is a singlet state with k = π . With further reducing α there
is a level crossing between the lowest spin singlet excitation
with k = π and spin triplet excitation with k = π . The spin
triplet excitation with k = π in units of Honeycomb-ladder
unit cell is the lowest excitation on top of the Haldane state
that is defined on the effective spin-1 chain with the same
unit cell as the original microscopic model. One can use
the above-mentioned two level crossings in excited states to
estimate the stability region of the intermediate dimer phase.
In fact with increasing system size the singlet excitation at
k = π should get degenerate with the ground-state singlet in
the dimerized phase. The boundary between the rung-singlet
and dimer states can be estimated from the position of the
minimum of the gap of the k = 0 triplet state.
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FIG. 10. Numerical ground-state phase diagram of the
honeycomb-ladder model in the parameter plane (J,α). NNND-dimer
stands for next-nearest-neighbor diagonal dimer phase where dimers
are formed along next-nearest-neighbor diagonals involving spins of
odd rungs. In the vicinity of α = −1 and for 0 < J � 1 before the
transition from Haldane-dimer to Haldane phase additional phases
may occur (e.g., with M = 5 and M = 7 as discussed in previous
sections). In dimer phases ground states are doubly degenerate in the
thermodynamic limit.

Comparing the energy levels of the effective ladder model
Eq. (12) for different system sizes with L � 12 rungs we see
that the energy of the singlet state with k = π momentum
decreases faster, with increasing the system size, than energies
of the triplet states in the parameter region where the dimerized
phase is expected.

The numerical ground-state phase diagram of the
honeycomb-ladder model obtained with the help of DMRG
simulations is presented in Fig. 10. For J < 0 there are four
different phases realized with decreasing α: rung singlet, half-
ferro, ferrimagnetic, and ferromagnetic. For the case J > 0 the
rung-singlet state, the H1 and the conventional Haldane state,
and different dimerized states, NNND and Haldane dimer, are
realized. Between the NNND-dimer and Haldane-dimer states
we cannot locate numerically the phase transition line, neither
can we exclude emergence of an intermediate (gapless) state
located around α = 0.

It is worth noting that the topology of the H1 phase realized
for J � 0 can be captured by studying one plaquette of the
ladder, L = 2. Consider, e.g., the α = 0 case. For this case for
J < 1/

√
2 a triplet state is realized as ground state, whereas

for J > 1/
√

2 the ground state becomes a singlet, a direct
product of the singlet states on the first chain (two-site chain)
and on the second chain (that is an exact eigenstate for any J

in the case of a single plaquette). Hence at J = 1/
√

2 there
is a triplet-singlet level crossing in the ground state of one
plaquette. The (threefold) degeneracy of the ground state for
small values of J is a particular case and stems from the fact
that there is only one effective spin 1 (formed on one of the
two rungs). As soon as the number of ladder plaquettes is
increased and more than one effective spin 1 is formed on
odd rungs the ground state becomes a singlet (for periodic
boundary conditions) for the whole range of J > 0 and there
is no level crossing in the ground state any more. However,
when one assembles many plaquettes into the ladder geometry,
instead of the level crossing, one can identify the avoided level
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χ
L
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15
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L=16
L=24

(a)

α-1 -0.5 0 0.5 1

χ
L

0

0.2

0.4

0.6

0.8

1
L=12
L=16
L=24

(b)

FIG. 11. (Color online) Ground-state fidelity susceptibility per
site as function of α for (a) J = 0.4 and for J = 1 showing two peaks.
In DMRG calculations periodic boundary conditions are assumed to
avoid degeneracies of the Haldane-like states due to edge spins for
open boundaries.

crossing in the lowest energy singlet states of the finite ladder
(for system sizes L � 12 rungs), that is located at J ∼ 0.5
(data not shown).

The phase transition points indicated in Fig. 10 for J > 0
were obtained by studying the behavior of the fidelity suscep-
tibility as a function of α for different values of J as presented
in Fig. 11. For small values of J (roughly J < 0.5) the fidelity
susceptibility shows typically four well pronounced peaks,
whereas for J > 0.5 only two peaks are visible, one for posi-
tive and a second one for negative α. The peak for the α > 0
side becomes less and less pronounced with increasing J > 1.

To describe the regime corresponding to J � 1 in Fig. 12
we present the behavior of the lowest excitation gap as a
function of α using DMRG for a large value of J = 5. In order
to access large system sizes we use open boundary conditions.
One can see that with decreasing α first there is a minimum
in gap and then there is a cusplike behavior. Using the finite
system size data for systems with L = 48, 96, and 144 rungs
the position of the gap minimum in the thermodynamic limit
extrapolates clearly to negative values of α. Starting from the
rung-singlet phase, the gap decreases linearly with decreasing
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FIG. 12. (Color online) Gap between the ground state and the
first excited (triplet) state as function of α for J = 5 obtained by
DMRG using open boundary conditions.

α and the position of the minimum of the gap we interpret as
a boundary of the rung-singlet phase.

On the other hand, for J � 1, extending the bosonization
analyses to α �= 0 gives that for α > 0 the rung-singlet
phase smoothly evolves into the rung-singlet phase of the
uniform antiferromagnetic ladder realized for α � 1. For
α < 0 interestingly bosonization suggests the sequence of
two consecutive second-order phase transitions, first from
rung-singlet to an intermediate dimer phase and then from
dimer to Haldane phase with decreasing α. Hence we expect
to see two values of α < 0 where a gap should close in the
thermodynamic limit. Instead we see only one minimum in
the finite-size gap data presented in Fig. 12. The reason why
we do not see the second minimum may be the fact that
finite-size effects are still large (even for L = 144 rungs).
In addition, since we use open boundary conditions, it is
difficult to separate the true bulk gap from the boundary
gap of the Haldane phase (realized on the left side from the
kink in Fig. 12). It is desirable to study the gap for periodic
boundary conditions, however DMRG calculations become
less accurate and only much smaller system sizes can be
addressed.

VII. CONCLUSIONS

We have studied the ground-state phase diagram of the rung-
alternated SU(2) symmetric spin- 1

2 ladder. Both cases with
ferromagnetic as well as antiferromagnetic leg exchanges have
been considered. For the case of ferromagnetic legs we showed
that a unique ferrimagnetic ground state emerges, with ground-
state magnetization equal to half of the maximum possible
value, for arbitrary strength of the leg exchanges. The case of
antiferromagnetic leg exchange is much richer and depending
on the ratio of leg to rung couplings several different ground
states can emerge starting from the Haldane phase H1 for small
leg couplings and ending with the rung-singlet phase for strong
leg couplings. Based on Fig. 10 it is tempting to speculate that
dimer order extends to α = 0 and hence the intermediate phase
of rung-alternated ladder can be dimerized, even though we
have not succeeded in either directly measuring dimerization
order, or finding a second singlet state as the lowest excited
state of the finite chain or even resolving a finite excitation gap
numerically.

We have as well studied a generalization of rung-alternated
ladder: the spin- 1

2 Heisenberg system on honeycomb-ladder
lattice. For the case of ferromagnetic legs we have identified
a peculiar Luttinger liquid ferrimagnetic state, where the
ground-state magnetization changes continuously as a function
of system parameters and low-energy gapless excitations
consist of two branches one of which is linear and another
quadratic in momentum. For the case of antiferromagnetic
leg couplings different short-range ground states, including
those with possible Haldane-like topological order, have been
suggested to occur.
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