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Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic
resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences.
However, current implementations of DNP require cryogenic temperatures and long times for achieving high
polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C
nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit
a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this
polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed
by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random
orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and
coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction
with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an
off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect
which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a
protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented
ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin
polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result
in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and
hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) [1,2] and magnetic
resonance imaging (MRI) [3] have evolved to be powerful
techniques to extract molecular-level information in a wide
variety of physical, chemical, and biological applications.
Recently, 13C based MRI has emerged as a platform enabling
essentially background-free imaging of nonproton nuclei
with the additional possibility for the local and permanent
destruction of the signal by means of radio frequency (rf)
pulses [4]. However, the low signal-to-noise ratio for 13C based
MRI is not sufficient for most clinical and research applications
due to the combination of a relatively low gyromagnetic ratio of
13C and of the low natural abundance of this nucleus. Several
strategies have been proposed to enhance the sensitivity of
13C based MRI. Particularly promising in this context is the
hyperpolarization of the 13C nuclei, i.e., the generating of
a large, nonthermal 13C nuclear-spin polarization. Indeed,
hyperpolarized 13C based MRI has shown exciting potential
for in vivo applications, especially for metabolic imaging
[5–7]. One of the most powerful methods for the generation
of hyperpolarization is dynamic nuclear polarization (DNP)
[8–12], in which a large polarization of electron spins is
transferred to nuclear spins, resulting in an enhancement of
the MRI signal by several orders of magnitude.

Over the last decade, several breakthroughs have oc-
curred in the manufacturing, surface treatment, and use of
nanoparticles for biomedical applications [13]. Biocompatible
nanoparticles present an attractive platform for hyperpolariza-
tion, as they can be functionalized for molecular specificity,

can exhibit long nuclear-spin-relaxation times, and contain
numerous nuclear spins of a single species (e.g., carbon).
Long-lived hyperpolarization has been demonstrated in silica
nanoparticles [14] and nanodiamonds [15,16], using standard
DNP protocols, i.e., transferring the high thermal electron spin
polarization at cryogenic temperatures in a strong external
magnetic field to nuclei. Nanodiamonds in particular offer
exciting possibilities as novel hyperpolarized probes. In
addition to excellent biocompatibility [17], the possibility
for surface functionalization and nuclear-spin-relaxation time
of several minutes [18], nanodiamonds contain crystal point
defects with unique optical and magnetic properties. Amongst
these the negatively charged nitrogen-vacancy (NV) center
stands out as its electron spin can be polarized over 95% within
microseconds by optical pumping while exhibiting a relaxation
time in the millisecond range even at room temperature [19]. In
combination with the ability for transferring this near perfect
electron-spin polarization to surrounding nuclear spins by
means of microwave radiation, nanodiamond optical DNP
promises to overcome the severe limitations on the maximally
achievable polarization at room temperature by currently
available methods. This would establish the NV center electron
spin as a promising candidate for achieving nanodiamond
hyperpolarization at ambient conditions—room-temperature
optical DNP.

Previous work has demonstrated that in bulk diamond
electron-spin polarization of the NV center can be generated
and subsequently be transferred via hyperfine interactions to
nearby nuclei. This polarization can then be detected indirectly
via the NV center [15,20–27] or directly via an NMR scanner
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[28]. To this end, in bulk diamonds a high magnetic field is
aligned with the natural quantization axis of the NV center
to enable optical pumping to a specific electron-spin state.
Controlled interaction of the electron spin with specific nearby
nuclear-spins species can then be achieved for example by the
application of continuous-wave microwave (MW) radiation
applied to the NV center electron spin [24]. When the Rabi
frequency of the microwave driving field matches the Larmor
frequency of a specific nuclear-spin species [achieving a
Hartmann-Hahn (HH) resonance [29]], flip-flops can occur
between the microwave dressed states of the electron spin of
the NV center and the surrounding 13C nuclear spins [30–32]
as was recently demonstrated experimentally [24].

However, medical MRI applications require large ensem-
bles of nanodiamonds. In such ensembles (powder or solution)
the angle between the external magnetic field and the orienta-
tion of NV centers and therefore their natural quantization axis
is randomly distributed. This brings about several challenges
for achieving high levels of hyperpolarization that need to
be addressed by means of carefully designed protocols. First,
the energy levels of the NV spin are then distributed over
a large energy range of possible values so that the applied
microwave field will be resonantly coupled to an exceedingly
small fraction of the NV spins. Second, in an external magnetic
field, additional limitations concern the optical polarization of
the NV spins. In particular, the NV spins will be initialized to
different states relative to the laboratory frame depending on
their angle with the external magnetic field, thus resulting in a
small net polarization.

In this work we show how to address these challenges to
achieve a radical enhancement of the hyperpolarization in a
nanodiamond ensemble. To this end we use an off-resonant
driving and the integrated solid effect (ISE) for the NV center
spin, resulting in a robust spin-polarization transfer between
the NV and nuclear spins. A very large fraction of the NV elec-
tron spins can be coherently coupled to neighboring nuclear
spins. Additionally, adiabatic rotation of the magnetic fields,
or the Brownian rotation of the nanodiamonds themselves (in
powder or solution respectively), is proposed for extending
the polarization scheme to almost the entire nanodiamond
ensemble. We also discuss the effect of spin diffusion induced
by the nuclear dipole-diploe interactions which will further
support the polarization of large volumes.

It should be noted that the principles of optical DNP that
we develop in this work can be transferred to any color
center that possesses an electron spin in the ground state
and admits optical pumping of this electron spin. The paper
is organized as follows. In Sec. II we present the coherent
coupling and polarization of a single nuclear spin near a
randomly oriented NV spin. This serves the introduction of the
principal challenges in nanodiamond ensemble polarization,
the discussion of the robust initialization and construction of
suitable dressed states for the NV center electron spin, and
the realization of near resonant coupling with the nuclear
spin by using off-resonant driving and the integrated solid
effect. In Sec. III, we introduce mechanisms to extend our
polarization protocols to the entire nanodiamond ensemble,
both for nanodiamond powder and for nanodiamonds in a
solution. In Sec. IV, we consider our protocol for multiple 13C
nuclear spins and include the effect of dipolar coupling among

the nuclear spins and in particular the benefits of nuclear-spin
diffusion. In Sec. V we demonstrate the applicability of our
polarization schemes for another very broad range of NV
center orientations. In Sec. VI we take into account the effect of
depolarization processes on the efficiency of our polarization
protocol. Finally, the discussion and conclusion parts are given
in Secs. VII and VIII, respectively.

II. MAGNETIC MANIPULATION AND POLARIZATION OF
A SINGLE NUCLEAR SPIN NEARBY A RANDOMLY

ORIENTED NV SPIN

A. Difficulties from the random orientations

The nanodiamond ensembles that we are interested in are
realized as powder or solutions. In both cases the spatial
orientations of the nanodiamonds and therefore of the NV
centers hosted in them is random and uniformly distributed
across the full solid angle [see Fig. 1(a) for an illustration].
In the laboratory frame this leads to the lack of a common
quantization axis for the NV centers. We begin by describing
in more detail the two principal challenges that are being
imposed by these random spatial orientations: (1) The direction
of the natural quantization axis associated with the crystal-field

FIG. 1. (Color online) Schematic of dressed-state resonant cou-
pling of NV spins and nuclear spins in a nanodiamond ensemble
and energy-level diagrams. (a) The random orientations of the NV
spins are uniformly distributed over the unit sphere. Small yellow
circles represent examples with orientations indicated by red arrows
which represent the unit vector pointing from the nitrogen to the
vacancy of an NV center (see the example of such an NV center
in the dashed circle, the axis pointing along “N-V” forms the
natural quantisation axis). (b) Ground electronic spin states of an NV
center in a strong external magnetic field. Microwave driving fields
are applied off-resonantly achieving an effective resonant double
quantum transition between the state ms = +1 and ms = −1 in the
large detuning regime. (c) The effective coupling provides a dressed
state basis which then permits energy conserving flip-flops between
the dressed states and external resonant nuclear spins.
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energy splitting D is not controllable, resulting in a significant
variance of the energy levels in the presence of an external
magnetic field, and (2) optical pumping of the NV center
electron spins in an external magnetic field will not initialize
all NV center electron spins to the same state.

1. Zero-field and external magnetic field distribution

The negatively charged NV center, in the following denoted
for brevity as the NV center, realizes in its ground state
an electronic spin triplet (S = 1) which exhibits a zero-field
splitting of D = (2π )2.87 GHz which separates the |ms = 0〉
state energetically from the degenerate |ms = ±〉 manifold.
The application of an external magnetic field, in the following
assumed to take the value B = 0.36 T, lifts this remaining
degeneracy such that the state ms = −1 is shifted below the
ms = 0 state [see Fig. 1(b)]. The zero-field splitting and the
Zeemann effect due to an external magnetic field of the NV
center are described by

HNV = �SD�S + γe
�B �S. (1)

Herein D denotes the orientation dependent zero-field splitting
tensor, γe = (2π )28.7 GHz/T the gyromagnetic ratio, �S the
electron spin-1 vector operator [33], and �B the magnetic
field vector. In the principal axis system defined by the NV
symmetry axes, the zero-field splitting tensor D is diagonal,

D = diag
(− 1

3D + E,− 1
3D − E, 2

3D
)
. (2)

Here E denotes the strain dependent contribution. It is worth
emphasizing that in the scenario that we are considering here,
the orientation of the symmetry axis of the NV center relative
to the external magnetic field is uniformly distributed over
the unit sphere. For the following it will be convenient to
conduct the discussion in the laboratory frame whose z axis
we define to take the direction of the externally applied strong
magnetic field, γeB � D. In this frame, the zero-field splitting
tensor D will have off-diagonal elements. As γeB � D these
off-diagonal elements are rapidly rotating so that their main
effect will be energy shifts of the diagonal element of the
Hamiltonian. The Hamiltonian can then be written as (see the
Appendix for details of the derivation)

H ′′
eff = [γeB + δ(θ )]Sz + D(θ )S2

z , (3)

where

D(θ ) = D[1 + 3 cos(2θ )] + 3E[1 − cos(2θ )]

4
,

δ(θ ) = γeB|G1|2
(γeB)2 − [D(θ )]2

+ |G2|2
2γeB

, (4)

θ is the angle between the magnetic field direction and the
NV axis and the Gi are given in the Appendix. Clearly,
the random orientations of the NV centers cause a variation
of the zero-field splitting D(θ ) across the entire interval
[−(2π )1.43 GHz,(2π )2.87 GHz] and δ(θ ) across the interval
[0 MHz,(2π )140 MHz] as shown in Fig. 2.

If we were to follow the scheme of Ref. [24], i.e., without
the combination of off-resonant drive and ISE technique that
we will present in this work, the uncertain detuning of the MW
frequency from the electronic resonance can reach the order
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FIG. 2. (Color online) (a) Zero-field distribution D(θ ) of the
NV spins in nanodiamonds with D = (2π )2.87 GHz and E =
(2π )20 MHz. (b) The second-order corrections which induce an
energy distribution δ(θ ).

of GHz, which in turn would prevent effective polarization
transfer.

2. Optical initialization of NV spins at the high
magnetic field limit

A second important difference between a randomly oriented
nanodiamond ensemble and a bulk diamond concerns the
optical polarization of electron spins of the NV center. For
bulk diamonds, the magnetic field can be aligned with the
principal axis of the NV center and the electronic spin of the
NV center can be optically polarized to the state |ms = 0〉
by illumination with a 532-nm green laser. However, for an
ensemble of randomly oriented nanodiamonds, even in the
limit of a strong magnetic field, the NV centers will be optically
pumped to the state |ms = 0〉θ that is defined by the relative
orientation of the NV center with respect to the externally
applied magnetic field which defines the laboratory frame.

As discussed in the Appendix, these two coordinate
systems can be transformed into each other and, employing
Szθ

= cos θSz − sin θ (cos φSx − sin φSy), we can express the
eigenstate |ms = 0〉θ in terms of the eigenstates |0〉,| ± 1〉 of
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Eq. (3), i.e., in the laboratory frame, as

|0〉θ = cos θ |0〉 + sin θ√
2

(eiφ|+1〉 − e−iφ|−1〉). (5)

If θ is large, the eigenstate |0〉 of the NV center in the laboratory
frame as given by Hamiltonian Eq. (3) differs significantly
from the zero-field eigenstate |0〉θ of the NV center. Hence
optical initialization of randomly oriented NV centers lead to
very different states depending on the orientation of the NV
center.

Notice though that for moderate misalignment between
the NV center orientation and external magnetic field, the
initialization of the NV center is well approximated by |0〉.
Indeed, for θ < 10◦, |〈0|0〉θ |2 > 0.97 and for θ < 20◦ we
find |〈0|0〉θ |2 > 0.88 which implies significant polarization
along the quantization axis defined by the external magnetic
field. Therefore, for all the orientations of the NV centers
that fall into two spherical sectors whose cone angle is 2θ ,
i.e., the two blue spherical sectors in Fig. 1(a), significant
optical polarization can be achieved. From now on, we define
a deviation by θ to imply that the symmetry axis of the NV
spins falls within these two spherical cones.

B. The main ideas

The main idea that we will develop in this section consists of
three main ingredients, namely (i) the generation of an energy
gap between electronic states that is relatively robust with
respect to variations in the relative orientation between the NV
center and an external magnetic field, and at the same time (ii)
a strong coupling between these electronic states and nuclear
spins. Finally, (iii) the integrated solid effect is employed
to achieve additional robustness against imperfections. All
this is achieved by the use of dressed states in a ladder-type
configuration in which the single quantum transitions are far
detuned and the double quantum transition is nearly resonant
(see Fig. 3).

In such a setting, that is for a detuning on the single
quantum transition D(θ ), the effective Rabi frequency and

0
0

FIG. 3. (Color online) The level structure of the three-
level Hartmann-Hann. A gap is created between the |+〉 =

1√
2
(|+1〉 + |−1〉) and the |−〉 = 1√

2
(|+1〉 − |−1〉) states. This gap

is robust to changes in the one photon detuning [D(θ )] and is also
robust to small changes in the two-photon detuning [δ(θ )]. Due to the
fact that the coupling to the nuclei is via the dressed states (|+〉,|−〉)
and not the bare states, the coupling is not decreased due to the off
resonant drivings.

thus the energy splitting on the double quantum transition is
proportional to �2/D(θ ), in which � is related to the Rabi
frequency of the applied microwave field and defined later.
In leading order in θ , this suffers a variation that is of the
order of �2/D2(θ ) ∂D(θ)

∂θ
θ . This contrasts with the case of

the detuned driving single quantum transition only. In that
case the effective energy gap is proportional to

√
D2(θ ) + �2

which, if D(θ ) � �, suffers a variation that is of order
∂D(θ)

∂θ
θ . Therefore the variation in the former is suppressed

by a factor of �2/D2(θ ) compared to the latter. This makes
it much easier to achieve and maintain a Hartmann-Hahn
resonance.

The second crucial ingredient is related to the fact that
the coupling between the electron spin and the nuclear
spins is mediated by terms of the form Sz ⊗ Iz. In a far-
detuned single quantum transition the eigenstates involved in
the Hartmann-Hahn resonance are |ms = 0〉 + �

D(θ) |ms = +1〉
and |ms = +1〉 − �

D(θ) |ms = 0〉. As these states are close to
being eigenstates of Sz they hardly couple and in consequence
the electron-nuclear coupling is suppressed by a factor propor-
tional to �

D(θ) when compared to the coupling between states
with equally weighted superpositions |ms = 0〉 ± |ms = +1〉
which one would have obtained for resonant driving. Crucially,
thanks to the small detuning on the double quantum transition
we obtain |ms = −1〉 ± |ms = +1〉 which leads to a strong
coupling between electron and nuclear spins if a Hartmann-
Hahn resonance is realized (see right-hand side of Fig. 3). The
latter is relatively robust thanks to the strong detuning on the
single quantum transitions.

So far we have ignored additional energy shifts on the
double quantum transition δ(θ ) which will lead to a loss of
the Hartmann-Hahn resonance. In order to confer additional
robustness to our scheme, rather than aiming to maintain a
fixed Hartmann-Hahn resonance, we consider an adiabatic
sweep of the external magnetic field on the double quan-
tum transition where start and endpoint of the sweep are
chosen such that intermittent Hartmann-Hahn resonances are
guaranteed. This technique, the integrated solid effect, allows
polarization transfer from a large fraction of the NV electron
spins to their surrounding nuclear spins.

Therefore, the resonant double quantum transition that is
mediated by far-detuned single quantum transitions combines
robustness with strong electron-nuclear coupling. It is this idea
and its combination with the integrated solid effect that we are
going to develop and analyze in detail for realistic experimental
parameters and various imperfections in this section.

1. Double quantum transition

For illustration of the basic idea, let us first consider a
system that is composed of an NV center and a single 13C
nuclear spin in a nanodiamond of random orientation. In the
laboratory frame the applied magnetic field defines the z axis,
the NV is placed at the origin of the coordinate system, and
the 13C nuclear spin, placed near the NV center, is situated
at position �r . A microwave (MW) field of frequency ωM is
applied as off-resonant drive of the spin transitions |−1〉 ↔
|0〉 and |0〉 ↔ |+1〉 while approximately satisfying a double
resonance condition, that is 2ωM

∼= E|+〉 − E|−〉. We chose
circular polarization but linear polarization would suffice. The
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Hamiltonian of the whole system is then

H = �M (Sx cos ωMt + Sy sin ωMt) + [γeB + δ(θ )]Sz

+D(θ )S2
z + g[�S �I − 3(�S · �er )( �I · �er )] + γnBIz, (6)

in which g = μ0

4π

γeγn

r3 with r = |�r| denoting the distance from

the NV spin to the nuclear spin and �er = �r/r . �I is the spin- 1
2

vector operator of the nuclear spin with the gyromagnetic ratio
γn and �M = √

2� is the Rabi frequency of the driving field.
Assuming a point-dipole interaction and neglecting the contact
term we obtain

He � �M (Sx cos ωMt + Sy sin ωMt)

+ [γeB + δ(θ )]Sz + D(θ )S2
z + γnBIz

− gSz

{
3ez

r

(
ex
r Ix + ey

r Iy

) + [
3(ez

r )2 − 1
]
Iz

}
. (7)

In the interaction picture with respect to H0 = ωMSz, the
Hamiltonian is given by

H ′ = �(|−1〉〈0| + |0〉〈+1| + H.c.)

+ γnBIz + D(θ )S2
z + 
Sz + Sz · A · �I , (8)

in which A = g
√

1 + 3(ez
r )2 �h = A�h is the hyperfine inter-

action tensor for the nuclear spin, with �h determined by
er : hx = 3ex

r e
z
r/

√
1 + 3(ez

r )2, hy = 3e
y
r e

z
r/

√
1 + 3(ez

r )2, and
hz = [3(ez

r )2 − 1]/
√

1 + 3(ez
r )2. The detuning 
 is given by


 = γeB + δ(θ ) − ωM, (9)

which is a function of the NV orientation due to the
second-order energy correction δ(θ ).

Since the nuclear coordinate system is arbitrary, we can
redefine it by following the method in Ref. [24]. The z axis
is chosen to coincide with the external magnetic field, and we
define the y axis to be perpendicular to both magnetic field
direction and �h. In the new nuclear coordinate system, the
Hamiltonian is given by

H ′′ = �(|−1〉〈0| + |0〉〈+1| + H.c.) + D(θ )S2
z + 
Sz

+ γnBIz′ + Sz(ax ′Ix ′ + az′Iz′ ) (10)

where Iz = Iz′ and az′ and ax ′ are the elements of the secular
and pseudosecular hyperfine interactions, respectively.

In what follows we assume that (i) |D(θ )| � 
 which
implies that the microwave driving field tends to be far
detuned from the single quantum transitions |−1〉 ↔ |0〉 and
|0〉 ↔ |+1〉, and (ii) |D(θ )| � � such that the Rabi frequency
is significantly smaller than the detuning [see Fig. 1(b)].
This will allow us to remove level |0〉 adiabatically from
the dynamics to achieve a simplified effective Hamiltonian,
Eq. (16).

To this end, we consider the dominant parts of Eq. (10)
by neglecting the nuclear spins as well as 
Sz. In the basis
{|+1〉,|0〉,|−1〉} we therefore consider

HNV =
⎛
⎝D(θ ) � 0

� 0 �

0 � D(θ )

⎞
⎠. (11)

The eigenstates and eigenenergies of HNV are

|μ∓〉 = 1√
2 + X2±

(|+1〉 + |−1〉 − X±|0〉), (12)

ωμ± = 1

2
[D(θ ) ±

√
8�2 + D2(θ )] (13)

and

|λ〉 = 1√
2

(|+1〉 − |−1〉), (14)

ωλ = D(θ ) (15)

with

X±(D(θ ),�) = D(θ ) ±
√

8�2 + D2(θ )

2�
.

For |D(θ )| � � we have two cases: D(θ ) > 0 leads to
X−(D(θ ),�) ∼ 0 and X+(D(θ ),�) � 1, while D(θ ) < 0
results in X+(D(θ ),�) ∼ 0 and X−(D(θ ),�) � 1.

In both cases, two of the eigenstates are approximately
given by |±〉 = 1√

2
(|−1〉 ± |+1〉) and form an effective two-

level system while the state |0〉 does not participate in the
dynamics because for |D(θ )| � � it is far detuned. We will
now focus attention on these two states |±〉 and write the
Hamiltonian Eq. (10) in the subspace spanned by {|+〉,|−〉} to
find

H± � ±�effσz + 2
σx + γnBIz′ + 2σx(ax ′Ix ′ + az′Iz′ )

(16)

in which H+ and H− correspond to the cases D(θ ) > 0 and
D(θ ) < 0, respectively. Here

�eff = 1
2 [−|D(θ )| +

√
8�2 + D2(θ )]

and σz = 1
2 (|+〉〈+| − |−〉〈−|), σx = 1

2 (|+〉〈−| + |−〉〈+|),
Iz′ = 1

2 (|↑〉〈↑| − |↓〉〈↓|), and Ix ′ = 1
2 (|↑〉〈↓| + |↓〉〈↑|). Fur-

thermore |↓〉 and |↓〉 denote the ground and excited states of
the nuclear spin.

For the final step, we now restrict attention to the case
where θ ∈ [0◦,20◦] in which case D(θ ) > 0 and we consider
Hamiltonian H+. In matrix notation, the electronic part of the
Hamiltonian Eq. (16) then takes the form

H
 =
(

�eff
2 



 −�eff
2

)
. (17)

The eigenstates and eigenenergies are

|χ−〉 = cos
ζ

2
|−〉 − sin

ζ

2
|+〉,

|χ+〉 = cos
ζ

2
|+〉 + sin

ζ

2
|−〉, (18)

ωeff = ±
√


2 + �2
eff

4
,

in which arctan ζ = −

�eff/2 , 
 and �eff are dependent on the

angle θ between NV orientations and applied magnetic field.
Defining Pauli operators σx̃,σỹ,σz̃ in the eigenbasis of H
 we

184420-5



CHEN, SCHWARZ, JELEZKO, RETZKER, AND PLENIO PHYSICAL REVIEW B 92, 184420 (2015)

find

H+ = 2ωeffσz̃ + γnBIz′

+ 2(σx̃ sin ϕ + σz̃ cos ϕ)(ax ′Ix ′ + az′Iz′ ), (19)

in which the angle ϕ is determined by

sin ϕ = �eff√
4
2 + �2

eff

.

The Hamiltonian H+ can be simplified further under two
main assumptions, namely (i) ax ′ � γnB, that is, for weakly
coupled nuclear spins, and (ii) | γnB

2 − ωeff| � ax ′ that is, we
satisfy a Hartmann-Hahn condition. Then the polarization
transfer dynamics is described by

Htrans = 2ωeffσz̃ + γnBIz′ + 2az′ cos ϕσz̃Iz′

+ ax ′ sin ϕ

2
(|χ+,↓〉〈χ−,↑| + H.c.), (20)

where 2az′ cos ϕσz̃Iz′ does not affect the flip-flop interaction.
Let us briefly highlight the key difference of this off-

resonant driving in comparison to previously introduced
polarization schemes, namely its relatively high robustness
with respect to the angle θ between the external magnetic field
and the natural quantization axis of the NV center. If we were to
follow the scheme of Ref. [24], even for θ = 1◦, the detuning of
the MW frequency from the NV electronic resonance exceeds
(2π )1 MHz, which prevents efficient polarization transfer [for
θ = 20◦ we find (2π )500 MHz detuning]. In our scheme,
for as long as D(θ ) � �, the energy difference between
the states |−〉 and |+〉 scales as 2�2/D(θ ) and so does the
effective Rabi frequency �eff . For deviation θ ∈ [0◦,20◦], if
� = (2π )65 MHz, the effective Rabi frequency is roughly
within [(2π )3 MHz,(2π )3.6 MHz], which narrows the range
of the detuning of the resonant frequency.

2. Integrated solid effect

In the discussion so far, we have assumed that the electron
spin of the NV center is held continuously at a Hartmann-Hahn
resonance with a specific target nuclear spin to achieve polar-
ization transfer. In practice, however, this will only capture
a small fraction of the NV centers and nuclear spins as the
resonance condition will depend on 
 = γeB + δ(θ ) − ωM

which in turn is a function of the angle θ via δ(θ ) [Fig. 2(b)].
In the range θ ∈ [0◦,20◦], we have δ(θ ) ∈ [0,(2π )45 MHz],
as shown in Fig. 2(b) which can lead to a violation of the
Hartmann-Hahn resonance for a large fraction of the NV
centers. In order to achieve polarization transfer for a larger
fraction of the NV centers, we will use our ability to control
the strength of the externally applied magnetic field or the
frequency of the applied microwave field to implement a sweep
of 
.

In order for us to understand qualitatively the conditions
that such a sweep has to satisfy, we briefly examine the energy-
level diagram of a system consisting of one electron and one
nuclear spin as described by Eq. (20). This reveals that there
are two resonance points A1 and A2 for 
 = ±
HH owing to
the symmetry of the Hamiltonian. In a fully adiabatic sweep,
polarization would exchange twice and result in a vanishing net
polarization transfer. Hence the sweep rate needs to be chosen

such that around the Ai the system becomes nonadiabatic for
the two branches including |χ+,↓〉 and |χ−,↑〉 as this will lead
to an approximately 50% probability for polarization transfer.
At the same time the sweep has to remain adiabatic with respect
to the energy gap for transitions between the {|χ+,↓〉,|χ−,↑〉}
and the {|χ+,↑〉,|χ−,↓〉} manifold as transitions between these
two manifolds, induced by nonadiabaticity or in fact dephasing
events, would lead to depolarization. These requirements set
some limitations on the sweep rate that are, fortunately, not
too stringent.

The quasiadiabatic sweep described above realizes an
instance of the so-called integrated solid effect (ISE) [34] and
can achieve polarization transfer between a large fraction of
the NV spins and nuclear spins. Therefore, magnetic control
of the nuclear spin and efficient polarization exchange become
possible even for relatively large angles between the natural
quantization axis of the NV center and the external magnetic
field. In the following we will examine this idea in more detail.

Let us now examine two regimes of the quasiadiabatic
transfer described above, namely (i) those parts of the sweep
parameters that are far from the Hartmann-Hahn resonance
points A1 and A2 which will lead to an upper bound on the
sweep rate, and (ii) the behavior around the Hartmann-Hahn
resonances which will provide lower bounds on the sweep rate.

For regime (i), as the coupling between electron and nuclear
spin is negligible, it suffices to examine the electronic part of
Eq. (16), that is

H ′

 =

(
�eff

2 
(t)

(t) −�eff

2

)
, (21)

in which 
(t) = γeB − δ(θ ) − ωM . For simplicity we assume
the detuning to vary at a constant rate v > 0, i.e., 
(t) =

(ti) + vt , where 
(ti) is the initial detuning at the start
of sweep. According to the quantum adiabatic condition we
require, at all times, that

〈E1m(t)|Ė1n(t)〉
|E1m(t) − E1n(t)| � 1, m �= n, (22)

where E1m(t) and E1n(t) are the instantaneous eigenvalues,
|E1m(t)〉 and |E1m(t)〉 are the eigenstates of effective Hamilto-
nian H
, respectively. Then the condition for the sweep to be
adiabatic is given by

�2
eff

|v| � 1. (23)

Adiabatic evolution implies that the initial eigenstate of
this Hamiltonian H
 will remain close to the instantaneous
eigenstate at any time during the sweep. In particular, during
approach to the Hartmann-Hahn resonances and indeed during
the entire sweep there will be no transitions of the type |χ−,↓〉
to |χ+,↓〉 which, as is easily seen by examination of Fig. 4,
would have a depolarizing effect in the subsequent sweep.

To gain a feeling for the upper limit on the sweep
rates that this implies for typical experimental parameters
suppose as in the previous section that � = (2π )65 MHz
so that in the range θ ∈ [0◦,20◦] we find �eff in the
range [(2π )3 MHz,(2π )3.6 MHz]. This in turn implies that
v < (2π )10MHz/μs guarantees that the adiabatic condition
is satisfied. As shown in Fig. 2(b) in this range we have
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FIG. 4. (Color online) Eigenenergies of Eq. (20) for B = 0.36 T
in which | ax′ sin ϕl

2 | = (2π )0.5 MHz, �eff = (2π )2.2 MHz (dot-dashed
red line), �eff = (2π )3 MHz (dotted green line), �eff = (2π )3.6 MHz
(dashed blue line). The level diagram shows the progression of the
eigenvalues of the Hamiltonian during the ISE sweep. Energies of the
states |χ+,↑〉 and |χ−,↓〉 (solid blue line) for �eff = (2π )2.2 MHz
are included. Transitions from states represented by solid blue lines
to state represented by dashed lines may lead to depolarization of the
nuclear bath.

δ(θ ) ∈ [0,(2π )45 MHz]. Suppose a sweep rate v =
(2π )6MHz/μs, then no more than 10 μs are required to
cover all NV centers within θ ∈ [0◦,20◦]. Experimentally such
sweep rates are easily obtained using arbitrary wave form
generators.

Let us now proceed to discuss case (ii), namely the sweep
around the Hartmann-Hahn resonances which will provide
lower bounds in the sweep rate. Near the resonant points, the
effective Hamiltonian Eq. (20) in the subspace spanned by
{|χ+,↓〉,|χ−,↑〉} is well approximated by the matrix form

Hl
mat =

(
(−1)lv(t − tl) cos ϕl

ax′ sin ϕl

2
ax′ sin ϕl

2 (−1)l+1v(t − tl) cos ϕl

)
.

(24)

Here l = 1,2 corresponds to points A1 and A2, and near these
two points we make use of the expansion

ωeff(t) = ωeff(tl)+∂ωeff(t)

∂t
|tl (t − tl)=(−1)lv(t−tl) cos ϕl.

According to Landau-Zener (LZ) theory [35], transitions are
possible between two approaching levels as a control parame-
ter is swept across the point of minimum energy splitting. The
asymptotic probability of a LZ-tunneling transition is given by

PLZ = e−2πμ (25)

where, by virtue of the Hartmann-Hahn condition γnB =√
4
2 + �2

eff at resonant points A1 and A2, we find

μ =
(

ax′ sin ϕl

2

)2

2|v| cos ϕl

= �2
effa

2
x ′

8|v|(γnB)
√

(γnB)2 − �2
eff

.

This enters the unitary transformation

Nl =
(√

1 − PLZeiϕ̃s −√
PLZ√

PLZ

√
1 − PLZe−iϕ̃s

)
(26)

that is taking place when traversing the avoided crossing. Here
ϕ̃s = ϕs − π/2 is due to the Stokes phase ϕs .

The full sweep takes the system from 
 � 0 to 
 � 0
across both A1 and A2. At each resonance point polarization
transfer is possible between the electron and the nuclear spins
[36]. Consider a sweep starting at 
(0) � −�eff for which
the electron spin is initialized in state |χ−〉 and the adiabatic
condition Eq. (23) is satisfied. If the nuclear spin is initially
found in state |↓〉, the electron-nuclear system will start and
finish the sweep in state |χ−,↓〉, i.e., the nuclear polarization
is unchanged. If on the other hand the nuclear spin is initially
found in state |↑〉, the evolution of the system will start
in |χ−,↑〉. In this case the probability for experiencing a
polarization transfer at the end of the full sweep, that is, finding
the system in state |χ+,↓〉, is given by

P = Pmax sin2[�St ]

= 4PLZ(1 − PLZ) sin2[�St ]. (27)

Here �St is determined by the initial phase of the system and
the phases acquired during the adiabatic evolution and the
nonadiabatic transitions. We do not discuss these dynamical
phase shifts in detail as they depend on details of the evolution
and orientations that vary from NV center to NV center
and it is therefore reasonable to assume that �St is random
[37,38]. Hence, when averaged over many sweeps, the average
polarization transfer probability is given by

P = 2PLZ(1 − PLZ),

as shown in Fig. 5. The value of PLZ and hence the maximum
P = 2PLZ(1 − PLZ) is determined by the hyperfine coupling
strength ax ′ , the rate of the ISE sweep v, and to a lesser extent
on the strength of the applied microwave field.

PLZ

FIG. 5. (Color online) Double-passage transition. A schematics
of a pair of the adiabatic energy levels as in Fig. 4. At each crossing
there is a probability of PLZ for a Landau-Zener transitions. The lines
with one (two) arrows show the two paths where the transition to the
upper level happens during passage of the first (second) resonance
point. The average probability for a polarization transfer at the end
of the completed passage is given by 2PLZ(1 − PLZ).
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FIG. 6. (Color online) The maximal polarization transfer Pmax as a function of the effective coupling �eff . (a) �eff = (2π )3.6 MHz (b)
�eff = (2π )3 MHz; (c) �eff = (2π )2.3 MHz.

It is straightforward to see that Pmax and hence P vanish
for both v � 0 and v → 0, corresponding to the diabatic
and adiabatic sweep. The maximum value is achieved for
PLZ = 1/2 and the parameters for achieving this maximum
are quite flexible; see Fig. 6. Pmax remains high across a
wide range of sweep rates as shown in Figs. 6(a) and 6(b).
Note furthermore, that for a given sweep rate we obtain
efficient polarization transfer to the nuclear spins in a
broad range of different microwave Rabi frequencies; see
Fig. 6. For example, for �eff = (2π )3.6 MHz, a speed v =
(2π )6MHz/μs can obtain Pmax > 0.2 in the coupling range
ax ′ ∈ [(2π )0.18,(2π )0.9] MHz. Furthermore, a slower sweep
gives a better polarization transfer for a smaller effective Rabi
frequency and a weaker coupling strength between the electron
spin and the nuclear spin. In order to polarize the nuclear spins
with larger distance from the NV spin, one can slow down the
ISE sweep, or increase the Rabi frequency of the microwave
field, as shown in Fig. 6(c).

C. Preparation of the initial state

So far we have assumed the preparation of a specific
initial state in the polarization sequence to be achieved with
perfect fidelity. However, due to the random orientations of
the NV centers, optical pumping leads to the initialization
of the electron spin of the NV center in a wide range of
different states. Furthermore, due to the broad distribution
of zero-field splittings of the NV center in randomly oriented
nanodiamonds, any applied microwave field will experience
an uncertain and potentially large detuning from the electronic
resonance. This presents challenges to the preparation of the
electron spin of the NV center in the initial state that is required
for our polarization scheme. We address these challenges
with an adiabatic sweep of the frequency of the microwave
field which we will show to deliver robust and rapid state
preparation.

Let us consider as an example the initialization of the NV
center in the state |−1〉. For moderate θ optical pumping will
lead to a state that possesses a significant overlap with |0〉.
In order to map this state to the target |−1〉, we make use of
the fact that in the relatively high magnetic fields that we are
considering (e.g., B ∼= 0.36 T) the energy gap on the |−1〉 ↔
|0〉 transition is very different from the energy gap of the
|0〉 ↔ |+1〉 transition. Hence it is possible to use a circular
polarized microwave driving field

Hdr = �M−(Sx cos ω−t + Sy sin ω−t), (28)

in which �M− = √
2�− is the Rabi frequencies of the MW

field, with frequency ω− to drive dominantly the |−1〉 ↔ |0〉
transition. The resulting effective two-level system consisting
of the states |0〉 and |−1〉 can be described in the matrix
representation by

H0,−1 =
(


MW (t)/2 �−
�− −
MW (t)/2

)
, (29)

in which 
MW (t) = γeB + δ(θ ) + D(θ ) − ω−(t). Now we
assume that ω−(t) experiences a constant rate sweep such
that 
MW (t) = 
MW (ti) + 
̇−(t − ti). We set ti = 0 for sim-
plicity. The condition for the sweep to be adiabatic is then

8�2
−

|
̇−| � 1. (30)

Adiabatic evolution implies that the initial eigenstate of this
Hamiltonian H0,−1 will remain close to the instantaneous
eigenstate at any time during the sweep. The eigenstates and
eigenenergies are

|E±(t)〉 = ζ∓
1 (t)|−1〉 ± ζ±

1 (t)|0〉,

E±(t) = ±
√

[
MW (t)/2]2 + �2−, (31)

with ζ±
1 =

√
E+(t)∓
WM (t)

2E+(t) . If at the start of the sweep

WM (0) < 0 and |
WM (0)| � 2�− and the electron spin is
prepared in the state |0〉, the state will evolve along the path
|E+(t)〉 to end in the state |−1〉.

As an example, consider a Rabi frequency �− =
(2π )20 MHz and θ ∈ [0◦,20◦]. Then a sweep from 
WM (ti) >

(2π )160 MHz to 
WM (tf ) < −(2π )160 MHz includes all
NV centers in the sweep. For |ω1(tf ) − ω1(ti)| = ω̇1tf �
(2π )870 MHz we require tf � [ω1(tf ) − ω1(ti)]/8�2

− =
0.04 μs to achieve adiabaticity. Hence very high fidelity
preparation of the state |−1〉 can be achieved within 0.4 μs
which is faster than the optical polarization cycle.

So far we have assumed that the optical initial state |0〉
is well prepared. However, for the relatively high magnetic
fields that we are considering, the optical initial state is
given by |0〉θ = cos θ |0〉 + sin θ√

2
(eiφ|+1〉 − e−iφ|−1〉)] [see

Eq. (5)]. For a perfect adiabatic sweep we obtain the average
polarization in the range θ ∈ [0◦,20◦] as

PN1 =
∫
S

(
cos2 θ − sin2 θ

2

)
dS

S
. (32)
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FIG. 7. (Color online) A simple flow diagram of the entire
polarization scheme: For a given direction of magnetic field, the large
box includes numerous polarization cycles (each polarization cycle
includes optical initialization of the NV spin, adiabatic preparation
of the state |−1〉, and then polarization transfer by matching a H-H
resonance condition by using off-resonant microwave driving and the
ISE technique). After the adiabatic rotation of the magnetic field (the
thick black arrow represent the magnetic field orientation which is
rotated to another direction denoted by the dashed blue arrow) we
repeat our polarizing cycles to achieve the polarization of additional
nuclear spins.

Here S is the surface area of the two sectors within θ

deviation and dS is the corresponding area element. The
reachable polarization for nearby nuclear spins and the average
polarizations are PN1 = 0.91 for θ ∈ [0◦,20◦].

D. Polarizing cycles and effective ranges

We can now summarize the polarizing cycles as follows
(see also the black box of the flow diagram Fig. 7): (i)
Optical pumping initializes the NV spin and (ii) a subsequent
adiabatic transfer brings the electron spin to the |−1〉 state.

(iii) By using off-resonant driving and a quasiadiabatic sweep
across two Hartmann-Hahn resonance points (ISE technique)
polarization is transferred from the NV spin to the nuclear spin.
Steps (i)–(iii) are repeated as required. This method has two
primary advantages: (1) the impact of the random orientations
is minimized, and NV spins in a wide range of orientations
are still accessible for polarization. (2) Using this method, the
coupling strength between the NV and nuclear spins is doubled
because it involves the double quantum transitions between the
states |−1〉 and |+1〉.

In Fig. 8 we simulate many cycles of this polarization
protocol for a system of one NV center and a single nuclear
spin under the assumption that the NV center is initialized to
the state |−1〉 as an example. The initial density matrix of
the unpolarized nuclear spin is ρ0 = I/2, with I being the unit
matrix. For the state ρk of the nuclear spin after the kth iteration
of the polarization protocol we have the following relation:

ρk+1 = tre[Ut (ρk ⊗ |χ−〉〈χ−|)U †
t ], (33)

where Ut = e− ∫
iHtransdt is time evolution operator and Htrans

is the Hamiltonian Eq. (20); we denote by 
t the sweep time
and by tre the trace over the electron spin. The polarizing P is
defined as P = 〈Iz′ 〉/〈Iz′ 〉0 with 〈Iz′ 〉 denoting the expectation
value of the nuclear spin and 〈Iz′ 〉0 the expectation value of the
completely polarized state.

Finally, as we have discussed in the previous sections, the
ISE requires an adiabatic slow passage. For θ ∈ [0◦,20◦] we
find δ(θ ) ∈ [0,(2π )45 MHz] and in order to include the entire
range of detunings in the sweep we can estimate the required
polarizing time. At a sweep rate of v = (2π )6MHz/μs we find

t ∼ 10 μs. In Fig. 8(a), assuming the perfect initialization of
the NV spin in the state |−1〉, we take one nuclear spin with the
typical coupling ax ′ = (2π )0.6 MHz as an example to demon-
strate the polarization transfer [the nuclear spin is about 0.5 nm
from the NV spin and az′ = (2π )0.64 MHz]. Here the polariza-
tion transfer after the first cycle, P1, does not quite achieve the
maximum possible value in Fig. 6 due to the existence of the
phase shift �St ; more precisely P1 = 0.58 < Pmax = 0.7 when
�eff = (2π )3 MHz [see both Figs. 6(b) and 8(a)]. Simulations
for different hyperfine couplings are shown in Fig. 8(b).
Again the sweep rate v = (2π )6MHz/μs and polarization
is transferred to the nuclear spins with different coupling to
the NV spin, which agree with Fig. 6. Additionally, slowing
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FIG. 8. (Color online) Exact polarization dynamics with B = 0.36 T, v = (2π )6MHz/μs and 
t = 10 μs: (a) The coupling strength is
given as ax′ = (2π )0.6 MHz, �eff = (2π )3 MHz (blue circles), and �eff = (2π )3.6 MHz (red triangles). (b) We have �eff = (2π )3.5 MHz,
ax′ = (2π )0.7 MHz (red triangles), ax′ = (2π )0.5 MHz (green cubes), and ax′ = (2π )0.3 MHz (blue circles). (c) Exact polarization dynamics
with v = (2π )0.8MHz/μs, 
t = 50 μs, and �eff = (2π )2.3 MHz, ax′ = (2π )0.3 MHz (red triangles), and ax′ = (2π )0.1 MHz (blue circles).
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down the ISE sweep, as shown in Fig. 8(c) for a sweep rate
v = (2π )0.8MHz/μs we can polarize more distant nuclear
spins with a coupling strength ax ′ = (2π )0.1 MHz, which
corresponds to a distance of about 1 nm from the NV center.
This coupling is approaching the limitation of our polarization
scheme, since the rotating-frame spin-lattice relaxation time
of NV spin in nanodiamonds is estimated to be about 100
μs which places a lower limit of the duration of the full
sweep [39].

III. BENEFIT OF ADIABATIC ROTATIONS

The NV polarization in our scheme is limited by the
adiabatic sweep range and efficiency of the initialization of
NV spins, enabling the polarization up to a maximum angle
between NV center and external magnetic field. As discussed
above, our scheme certainly performs well for NV centers
whose orientation forms an angle of less than 20◦ from
the externally applied magnetic field (and may potentially
work for somewhat larger angles). It is however desirable to
extend the polarization to a larger fraction of the nanodiamond
ensemble, ideally covering the entire solid angle. One method
for achieving this applies an adiabatic change of the orientation
of the magnetic field relative to the NV center, either by rotation
of the magnetic field or by rotation of the nanodiamond.
For example, following the magnetic field rotation to the Z′
direction, another set of NV centers with orientations in a solid
angle (shown in red in Fig. 9) around the new magnetic field
direction will participate in the polarization dynamics while the
NV centers in the original orientations (the blue cone in Fig. 9)
will be inactive. Hence previously polarized nuclear spins will
not be affected by the polarization sequences, but these nuclear
spins may use this “idle” time to spread their polarization by
spin diffusion across larger volumes until further rotations
subject them to another polarization cycle.

More specifically, let us consider the rotation of the mag-
netic field as an example. The Hamiltonian that is describing
the rotation of the magnetic field from the Z direction to the

Z′ direction is given by

HB = γNBZ[cos(ϑ̇ t)IZ + sin(ϑ̇ t)IX] = γNBZIϑ(t),

where ϑ(t) = ϑ̇ t is the angle between the rotated magnetic
field and its initial direction and γNBZ = (2π )4 MHz.

Similar to the discussion in the initialization scheme, the
well-known adiabatic condition requires ϑ̇ � 2γNBZ . For a
rotation by ϑ = 180◦ this leads to the condition tr � 0.078 μs
for the minimal rotation time tr . This implies that tr ∼= 0.78 μs
will ensure adiabaticity and minimal perturbation of nuclear
spin polarization for a rotation to an arbitrary orientation. This
rotation time is much shorter than even a single polarization
cycle. Hence, after running a few polarization cycles that
achieve a high net polarization of nuclear spins for NV centers
oriented along the Z direction, we can adiabatically rotate the
magnetic field to another direction. The polarization of the
nuclear spins will then be achieved for this new direction,
as shown in Fig. 9. Note though that the rapid rotation of a
strong magnetic field is challenging. Hence one needs to resort
either to a mechanical rotation of the sample as a whole or,
as explained in the next section, make use of the Brownian
rotation of nanodiamonds in solution.

In addition to the rotation of the externally applied magnetic
field for nanodiamond powder, another option consists of
the use of random Brownian rotations of nanodiamonds in
a solution. If the Brownian rotation is sufficiently slow to
satisfy our adiabatic rotation condition, the polarized nuclear
spins will maintain their polarization in the direction of the
externally applied magnetic field. The time scale of Brownian
rotations is determined by [40]

τB = 3VH η

kT
, (34)

where k is the Boltzmann constant, T is the temperature, VH is
the hydrodynamic volume of the particle, and η the viscosity
of the surrounding carrier liquid. Note that the hydrodynamic
volume is an effective volume that includes both the true
particle volume and the volume of a fluid that is displaced
when the particle rotates due to particle-fluid interaction. A

Z’
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Another rota�on 
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Polarizing 

cycles
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Step4

Z

StAdiaba�c rota�on 

Z

Polarizing cycles

Z
Step1(a)

Z
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(b)

FIG. 9. (Color online) (a) Diagram of adiabatic rotating direction of the magnetic field. Blue spherical sectors present θ◦ deviation tolerance
for Z direction of the magnetic field. Magnetic field is rotated by angle ϑ to get red spherical sectors with the half angle of the cone angle θ ′ to
be involved. (b) Flow diagrams of polarizing steps of our scheme related to the adiabatic rotations of the magnetic field. The small blue and red
arrows are the nuclear spins nearby the different NV spins in different spherical sectors. Four steps are given for our polarizing scheme. We use
two-dimensional plotting for simplicity, the sphere is presented by a circle, and the areas formed by the dashed lines denote the corresponding
spherical sectors. It is shown by the arrows that all the nuclear spins follows the rotated magnetic fields.
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typical average hydrodynamic diameter for nanodiamonds
of 30 nm in water gives a Brownian relaxation time of
τB � 9 μs, which is comparable with our polarizing cycle
time. One can increase the Brownian relaxation time by using
nanodiamonds with a larger diameter, a more viscous fluid, or
lower temperatures. Additionally, surface coating can increase
the average hydrodynamic diameter, i.e., after adsorption of
ferritin the diameter of nanodiamond was determined to be
85 nm [41].

Here we assume that the hydrodynamic diameter of
nanodiamond is 85 nm, and the Brownian relaxation time is
τB � 205 μs. On average after a time τB , the nanodiamonds
will have rotated to another random direction, and different
NV centers will now participate in the polarization dynamics of
nearby nuclear spins while other NV centers will be inactive as
they are effectively decoupled from their neighboring nuclear
spin due to the absence of a Hartmann-Hahn condition. When
an NV center “leaves” the coherent exchange range via a
random rotation, the polarization of the polarized nuclear
spins will still be transferred to the other nuclear spins by
spin diffusion. Considering maximum of 20◦ deviation, 6% of
the NV spins are involved at each given time, and each NV
will be in this range after 16 random rotations on average.

IV. INTERNUCLEAR INTERACTION
AND SPIN DIFFUSION

So far, we have considered polarization of an individual nu-
clear spin and have therefore ignored the effects of internuclear
coupling on both the polarization cycle and on the nuclear-spin
polarization diffusion towards more distant nuclear spins
that are not directly interacting with the NV center. This
section discusses these effects of nuclear dipolar interactions.
Considering our off-resonant driving in the dressed state basis
and the suitable rotating frame, the effective Hamiltonian of
the whole system consisting of an NV spin and its nearby
nuclear spins can be written as

Htot ≈ HNV + Hhf + Hd−d + HNu. (35)

Here HNV denotes the NV center effective energy Hamilto-
nian, Hhf is the effective electron-nuclear hyperfine interac-
tion, Hd−d is the dipole-dipole coupling among nuclear spins,
and HNu is the magnetic field splitting of nuclear spins,

HNV = 2
(t)σx + �effσz, (36)

Hhf �
∑

i

σx

(
2ax ′

i
I x ′
i + 2az′

i
I z′
i

)
, (37)

Hd−d �
∑

ij,j>i

dij [ �Ii
�Ij − 3( �Ii · �erij

)( �Ij · �erij
)], (38)

HNu =
∑

i

γnBI z′
i , (39)

with ax ′
i

and az′
i

denoting the hyperfine coupling strength
between the ith nuclear spin and the electron spin. dij = μ0

4π

γnγn

r3
ij

is the coupling strength between the i and j nuclear spins. with
rij = |�rij | denoting the distance between the two nuclear spins
and �erij

= �rij /rij . The i and j indices are summed over all
nuclei.

In order to estimate the effect of internuclear interactions
on the polarization transfer from the NV center to the nuclei in
the multiple nuclear-spins case we consider five nuclear spins
and one electron spin, including hyperfine and nuclear dipolar
couplings. After each polarization cycle, the electron spin is
re-initialized in the state |−1〉. The concatenated evolution of
the nuclear-spin density matrix is determined by an equation
analogous to Eq. (33). The initial density matrix of the five
unpolarized nuclear spins can be written as ρ0 = I/25, with I
being a unit matrix of dimension 25, and the time evolution
is given by the operator Ut = e−i

∫
Htotdt , with Htot denoting

the total Hamiltonian Eq. (35). The polarization is defined as
in Sec. II, Pk = 〈I k

z′ 〉/〈I k
z′ 〉0 in which the subscript k presents

different nuclear spins and P = 1
5

∑5
k Pk . We assume in these

simulations only nearest neighbor internuclear-spin coupling
with rates d12 = d23 = d34 = d45 = 2 kHz.

The simulation results are presented in Figs. 10(a)
and 10(b). We consider the case that the NV is strongly
coupled to all five 13C spins, ax ′

1
= (2π )0.7 MHz, ax ′

2
=

(2π )0.5 MHz, ax ′
3
= (2π )0.4 MHz, ax ′

4
= (2π )0.32 MHz,

and ax ′
5
= (2π )0.2 MHz. The polarization is built up for

all the five nuclear spins with different coupling to the NV
spin, which matches our theory. In this case, the coupling
between the nuclear spins is too small to affect the evolution
of the polarization dynamical built up [Fig. 10(a)]. Due to
small interaction among the nuclear spins, there is almost no
difference between polarization in the presence or absence of
the interactions among the nuclear spins, which means our
scheme works in the frozen core.

Now we would like to exemplify the benefits of internuclear
interactions which leads to nuclear-spin diffusion and a consid-
erable extension of the range of polarization. Suppose a typical
configuration of nuclear spins distributed around the NV. To
estimate the polarization efficiencies in a large system, we
adopted the simple spin temperature approximation, namely
neglecting the nuclear-spin coherence [42], which provides
a good estimation of polarization transfer efficiency when
the sweep time step is sufficiently small. This approximation
yields independent rate equations for each individual nuclear
spin and should give a conservative estimate for the achieved
polarization. For the 
t sweep times described above, this
approximation serves as a lower bound, as the achieved polar-
ization in one cycle with our scheme is higher than the polar-
ization achieved during the same time with small sweep steps.

For the diffusion step, the interaction between the nuclear
spins is taken into account, where we use the Gaussian approx-
imation for the nuclear spins. As is typical for paramagnetic
centers, the NV center strongly affects the spin diffusion in
nearby nuclear spins (the “frozen core”) due to the energy
mismatch caused by the SzIz hyperfine term. However, when
the NV center is in the |ms = 0〉 state, this energy mismatch is
suppressed and diffusion to external nuclear spins is allowed.
To give a conservative estimate, we assume that no diffusion
in the frozen core takes place when the NV center is in
the |ms = ±1〉 states. For this purpose, we simulate the NV
center as a classical spin with the probability of being in each
eigenstate given by the optical initialization corresponding to
the NV orientation.

As the nanodiamonds are in a solution, we assume that
the differences in polarization transfer for the different
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FIG. 10. (Color online) The polarization buildup for five nuclear spins for �eff = 3.23 MHz. The nuclear spins are strongly interacting with
the NV center spin, ax′

1
= (2π )0.7 MHz, ax′

2
= (2π )0.5 MHz, ax′

3
= (2π )0.4 MHz, ax′

4
= 0.32 MHz, and ax′

5
= (2π )0.2 MHz. (a) The blue

and red triangles denote the presence and absence of the interaction among the nuclear spins. Internuclear interactions do not lead to significant
changes in the polarization dynamics because the dipole-dipole interaction of nuclear spins is much smaller than the electron-nuclear coupling.
(b) The polarization dynamics of the individual nuclear spins in the set of five spins represented by different markers within different colors.
(c) Numerical simulation of the polarization buildup in a large number of polarization cycles in a system consisting of an NV spin and around
548 13C nuclear spins in a volume of 50 000 lattice sites by using Brownian rotation. The internuclear dynamics is treated within the bosonic
approximation and we simulate a polarization buildup time of 2 sec. The system benefits from polarization diffusion between nuclear spins
resulting in a high level of polarization.

orientations of the NV spins within the 20◦ deviation range
can be neglected. Consider a random configuration of nuclear
spins, with 548 nuclear spins in the vicinity of an NV center
(lattice of 50 000 nuclei per NV center) whose orientation
is within the 20◦ deviation range. The net polarization is
built up by using Brownian rotations as shown in Fig. 10(c).
There are two steps in the simulation. First, we assume
that the orientation of the NV center satisfies θ ∈ [0◦,20◦]
and we consider �eff = (2π )2.3 MHz, sweep rate of v =
(2π )0.8MHz/μs, and 
t = 70μs. The polarization transfer
from the NV center to the neighboring nuclear spins is achieved
by using our combination of off-resonantly driven double
quantum transition and the ISE technique. The polarizing
cycles are repeated during the Brownian relaxation time
τB = 205 μs. Second, after the Brownian relaxation time,
the nanodiamond is randomly rotated to another direction.
As we discussed in Sec. III, it takes roughly 3.5 ms for
the nanodiamond to rotate back to our maximal deviation
range for polarization, and nuclear-spin diffusion dominates
during this time period (taking into account the NV effect
on diffusion in the frozen core). In this step more distant
nuclear spins can become polarized by diffusion. These two
steps occur sequentially over a 2-sec time range. In line with
previous sections, the polarization is defined as = 〈Iz′ 〉/〈Iz′ 〉0,
where Iz′ = ∑M

i I z′
i , M is the number of the involved nuclear

spins. Interestingly, the slope of polarization is close to linear.
This demonstrates that in the long diffusion time, where the
nanodiamond is not involved in the polarization cycles, we do
not see a bottleneck caused by slow diffusion and significant
polarization is transferred from the NV spin to the nuclear
spins within each step 1. The final net polarization reaches 0.2,
equivalent to about 110 13C fully polarized spins are polarized
within 2 sec in our scheme.

V. A LARGE ANGLE POLARIZATION SCHEME

So far we have concentrated so far on a range of angles
θ ∈ [0◦,20◦] between the NV center and the external magnetic

field. Note however, that this is not the only range in which
efficient polarization transfer can be achieved. Indeed, we have
another interesting range of the NV orientations, concentrated
around the direction perpendicular to the magnetic field, i.e.,
θ ∈ [70◦,110◦], which involves 34% of the NV spins. Here the
condition D(θ ) < 0 leads to the Hamiltonian H− in Eq. (16).
Following steps that are analogous to those leading up to
Hamiltonian Eq. (20) we find for the subspace {|χ−,↓〉,|χ+,↑〉}

Hmatrix =
(

ωeff − γnB

2
ax′ sin ϕ

2
ax′ sin ϕ

2 −ωeff + γnB

2

)
. (40)

Suppose now that the NV center is initialized in state |−1〉
by using the off-resonant driving. Then we make use of
the ISE technique to sweep adiabatically across the two
possible Hartmann-Hahn resonance points of the dressed NV
spin and nuclear-spin pair. As a result the population is
transferred between |χ−,↓〉 and |χ+,↑〉, with the other states
being unaffected. As before, this allows the nuclear spins
to be polarized but now in a direction opposite to the case
θ ∈ [0◦,20◦]. In the following we discuss the details of this
case.

A. Initial polarization of the NV spins

We begin with a discussion of the initialization of the
NV center spins. As explained in previous sections, optical
pumping of the NV spins results in the |ms = 0〉 state in the
NV frame, that is

|0〉θ = cos θ |0〉 + sin θ√
2

(eiφ|+1〉 − e−iφ|−1〉),

where the states |0〉,| ± 1〉 are defined in the laboratory
frame. For θ ∈ [70◦,110◦] the population in state |0〉 is
very small and the initial state is well approximated by

1√
2
(eiφ|+1〉 − e−iφ |−1〉) which, in the relevant subspace

spanned by {|+1〉,|−1〉}, is unpolarized.
We address this problem by means of an adiabatic

sweep. For concreteness, consider � = (2π )20 MHz and an
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adiabatic sweep from 
WM (ti) = (2π )320 MHz to

WM (tf ) < −(2π )320 MHz. For a sweep range |ω1(tf ) −
ω1(ti)| � (2π )640 MHz, the time for an adiabatic sweep is
of the order of 0.4 μs. Such a sweep induces an adiabatic
population transfer from state |−1〉 to state |0〉 so that the state
of the NV center evolves to

|0〉θ−→ cos θ |−1〉 + sin θ√
2

(eiφ|+1〉 − e−iφ |0〉),

where we ignore any dynamical and geometric phase that has
been accumulated in the sweep. It is now crucial to note that
the state |0〉 does not contribute to the polarization dynamics
as it does not take part in the far detuned dynamics that is
induced by the applied microwave fields. Hence the relevant
quantity is the polarization in the subspace spanned by the
states {|+1〉,|−1〉}. Normalized by the population that is found
in this subspace we find

P r
N2

=
∫
S
Nr

(
sin2 θ

2 − cos2 θ
)
dS

S
, (41)

where Nr = 1/( sin2 θ
2 + cos2 θ ) is the normalized coefficient

and P r
N2

∼ 0.85.

B. The sweep range for ISE

Owing to the different behavior of the energy shifts
D(θ ) and δ(θ ) we need to change the sweep range in the
ISE. In order to achieve optimum polarization transfer, we
choose � = (2π )40.5 MHz, which results in a range of
effective Rabi frequency �eff ∈ [(2π )2.3 MHz,(2π )3.6 MHz].
The adiabatic slow passage needs to cross the range 
 ∈
[−(2π )21 MHz,(2π )21 MHz]. For a sweep rate of v =
(2π )6MHz/μs we estimate the required polarizing time as

t > 7 μs. Apart from these parameter changes, the principles
underlying our discussion of the polarization transfer in Sec. II
are still valid.

If we assume that the NV spin is initial polarized perfectly,
we have Pmax > 0.2 in a coupling range ax ′ ∈ [0.4,0.9]
for |�eff| = (2π )2.27 MHz in Fig. 6(c), compared to ax ′ ∈
[0.18,0.9] for |�eff| = (2π )3.6 MHz in Fig. 6(a). We can
say that our off-resonant driving and ISE technique allow
polarization transfer for all the NV orientations within θ ∈
[70◦,110◦]. Considering that the average polarization of the
NV spins in this case is about 0.5 and twice the effective Rabi
frequency range here, applying a single sweep speed becomes
not very efficient for all the NV orientations, especially for
the nuclear spins with weak couplings to the NV spin. As
we discussed, we have another choice: slowing down the ISE
sweep can involve the nuclear spins with weaker coupling to
the NV spin, i.e., as shown in Fig. 8(c), we can use another
a speed rate v = (2π )0.8MHz/μs (
t ∼ 50 μs) to make
it possible to polarize the 13C spins with coupling strength
ax ′ = (2π )0.1 MHz.

In conclusion, off-resonant driving and the ISE technique
allow for polarization transfer between the NV spin and its
surrounding nuclear spins, when the orientation of the NV
spin matches θ ∈ [70◦,110◦], but we need to sacrifice half the
population to provide a high initial polarization of the dressed
NV spins. On the other hand the fact that around 34% of the NV

centers participate in the polarization dynamics even without
magnetic field rotation is an attractive feature.

VI. DEPOLARIZING EFFECT

Our approach to increase the fraction of NV center that
participates in the polarization sequences by means of adia-
batic rotations may potentially have an undesired side effect
as nuclear spins that have been polarized for one magnetic
field orientation may be depolarized again when transferred
to a different magnetic field orientation. Consider for example
the case shown in Fig. 9 where, after polarization transfer is
achieved for the blue spherical sectors, the magnetic field is
rotated from the Z direction to a different direction Z′. If
the NV spins in the blue sectors have not been polarized in
advance and our combination of off-resonant driving and ISE
achieves a Hartmann-Hahn condition at some instant, then the
depolarized state of the NV center will be transferred to nuclear
spins, whose polarization reduces as a result. In the protocol
for the case θ ∈ [0◦,20◦] this depolarization is negligible due
to the rapid increase of the detuning δ(θ ) outside of this
range. Only NV centers in the range θ ∈ [20◦,25◦] may still
experience undesired resonances. As these NV centers are still
well initialized by means of optical pumping, depolarization
is negligible.

The situation is different and indeed more complex for
the second protocol that covers the range θ ∈ [70◦,90◦].
NV centers with orientations in the range θ ∈ [35◦,43◦] are
difficult to be polarized to the required state. Unfortunately,
they have almost the same energy distributions |D(θ )| and
δ(θ ) as the NV centers in the range θ ∈ [70◦,110◦]; see
Fig. 2. Our off-resonant driving and ISE technique scheme
can lead to Hartmann-Hahn resonances at some instant which
then cause polarization exchanges between the unpolarized
NV centers and the polarized nuclear spins. Thus, magnetic
field rotations could lead to depolarization dynamics in the
previously polarized nuclear spins for the protocol that is
adapted to the case θ ∈ [70◦,110◦].

We consider a simple system consisting of one NV and
one nuclear spin as an example for studying the depolarizing
effect of this case. The depolarizing cycle time is the same
as our polarizing cycle time, since every initialization process
is implemented on all the NV spins. Consider a nuclear spin
that is initially polarized and in contact with an unpolarized
electron spin ρe0 = I/2. The evolution of the nuclear-spin
density matrix is then given by

ρ → · · · U ′
t tre[U ′

t (|↓〉〈↓| ⊗ ρe0)U ′†
t ] ⊗ ρe0U

′†
t . . . , (42)

where U ′
t = e−i

∫
Hδ′

matrixdt is time evolution operator. Hδ′
matrix

is given by Eq. (20) with the choice �eff = (2π )3.5 MHz
and δ′ denoting that a magnetic field in the Z′ direction
is being considered. The polarization P of the nuclear spin
is defined as in Sec. II. As shown in Fig. 11, the nuclear
spin is depolarized very rapidly. The depolarization range
θ ′ ∈ [35◦,43◦] includes 9% of the NV orientations while the
range in which the polarization is active includes 34% of the
NV centers. Hence, although adiabatic rotation of the magnetic
field brings an unexpected depolarizing effect, it is nevertheless
quite attractive as the fraction of NV spins that are contributing
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FIG. 11. (Color online) The depolarization of the previously
polarized nuclear spin with B = 0.36 T, �eff = (2π )3.5 MHz, v =
(2π )6MHz/μs, and 
t = 10 μs. The coupling strength is given
as ax′ = (2π )0.3 MHz, (blue circles) and ax′ = (2π )0.6 MHz (red
triangles).

to the polarization transfer even without magnetic field rotation
strongly outweighs the small fraction of 9% of the NV centers
that suffer depolarization.

VII. DISCUSSION

To summarize, our polarization scheme for ensembles of
nanodiamonds (see Fig. 7 and Fig. 9) is as follows.

Step 1: A moderate to strong magnetic field is applied along
the Z direction (of order B = 0.36 T). A polarization cycle
consists of optically pumping and initialization of the NV
center spins, and the subsequent application of off-resonant
microwave driving and the integrated solid effect to realize
a robust adiabatic sweep across Hartmann-Hahn resonance
points. This achieves the coherent polarization transfer from
the NV center spins to the nuclear spins with a range of
orientations of the NV center relative to the magnetic field.
This polarization cycle is repeated several times.

Step 2: Adiabatic rotations (of the magnetic field or of the
nanodiamonds) change the magnetic field orientation relative
to the NV centers to a new Z′ direction, while the nuclear spins
follow the direction of the magnetic field.

Step 3: Repeat steps 1 and 2.
Apart from control imperfections, the achievable 13C-bath

spin polarization will be limited by the spin-lattice relaxation
time T1 of the nuclear spins. In recent experiments, by using
electron paramagnetic resonance (EPR), solid-state NMR, and
DNP techniques, a variety of nanodiamond samples, of varying
manufacturing processes and particle sizes, were examined
[16,18,43]. Several types of nanodiamonds, especially those
milled from diamonds produced from high-pressure, high-
temperature (HPHT) methods exhibit very long nuclear-spin
lifetimes, up to several minutes. As bulk diamonds with a
comparable paramagnetic impurity concentration can exhibit
nuclear-spin relaxation times of several hours, surface im-
purities are considered to form one of the main sources for
relaxation in nanodiamonds. This is also supported by the
correlation between nanodiamond size and nuclear relaxation

times [16,43]. This suggest that the nanodiamond relaxation
time may be improved by surface cleaning and treatment of
the nanodiamonds [44,45].

Additionally, the polarization transfer rests on NV spins
having a sufficiently long rotating-frame spin-lattice relaxation
time T1ρ in nanodiamonds during the adiabatic passages that
are required for the implementation of ISE. Using a strong MW
field driving, T1ρ can be estimated as 100 μs [39,46], which
is much longer than our sweep time in one polarization cycle.
Assuming a polarization cycle duration of 
t = 10 μs, when
rotating the magnetic field, 17 rotations of the magnetic field
are required to involve all the NV spins. For a nuclear-spin
lifetime of more than 2 min, this would allow the execution
of around 105 polarization cycles for each NV spin involved
before the nuclear spins start to relax. For nanodiamonds in a
solution, each nanodiamond is involved in the polarization
cycles roughly once every 17 random Brownian rotations.
Assuming τB � 205 μs, with a pure nuclear diffusion period
of roughly 3 ms after every Brownian relaxation time τB , 2
min lifetime of the nuclear spin would allow in excess of 105

polarization cycles for every NV center.
We can now obtain a rough estimate of the total amount

of the net polarization that could be achieved under realistic
experimental conditions. Consider a 1 − mm3 nanodiamond
powder, dissolved in a solution. The nanodiamonds are
assumed to have a diameter of 85 nm, with an NV center
concentration of C = 2 × 1018 cm−3 (see [47] and references
therein for achievable NV concentrations). In the limit of a
uniform spatial distribution, this gives about 642 NV spins
per nanodiamond, with the total amount of NV spins given
by 8.35 × 1015 NV spins. Considering the natural abundance
of the 13C spins (1.1%), the total nuclear spins in this powder
of nanodiamond is approximately 8.18 × 1018 [48]. Taking
account of the high degree of nuclear polarization achieved, in
excess of 0.2 as demonstrated in Sec. IV, we find that a total
amount of polarization equivalent to 1.6 × 1018 nuclear spins
should be achievable in such a sample within 2 sec.

The 20% nuclear-spin polarization that may be achieved
with our method compares favorably with the thermal po-
larization of 0.1% of nonoptically excited electron spins at
the moderate magnetic field of B = 0.36 T which sets an
upper limit on the achievable nuclear-spin polarization in
such protocols. Thus, even compared with the theoretical limit
reachable via polarization transfer from regular electron spins
to nuclear spins, the polarization reached by optical DNP
and our protocols is more than 100 times larger. Cryogenic
environments and higher magnetic fields dissolution-DNP
methods could be used for obtaining comparable polarization,
but these require much longer time for polarization (1 h) as
well as expensive cryostats and hardware. Furthermore, not
all diamond nanoparticles that have been functionalized with
biomacromolecules may be hyperpolarized by these methods,
as the fast reheating after polarization might disrupt the
structure of these biomolecules.

In this work we have assumed diamonds with natural 13C
abundance (1.1%) which would already lead to a consider-
able signal enhancement in MRI applications. It is possible
however to apply our scheme to diamonds with higher 13C
concentrations as the polarization transfer from electron to
nuclear spin is not significantly affected by the presence of

184420-14



OPTICAL HYPERPOLARIZATION OF 13C NUCLEAR . . . PHYSICAL REVIEW B 92, 184420 (2015)

13C very close to the NV. A higher 13C concentration will be
beneficial however as the increase in the internuclear dipolar
interaction leads to more effective polarization diffusion and
hence a faster nuclear-spin polarization. The same effect will
however lead to a reduction of the polarization lifetime as the
faster diffusion allows polarization loss on the nanodiamond
surface to diffuse more rapidly to the bulk. The latter shows
that surface treatment of 13C isotope enriched nanodiamonds
can be expected to be particularly beneficial.

VIII. CONCLUSION

In conclusion, in the high magnetic field limit, we propose
a scheme achieving macroscopic levels of 13C nuclear-spin
polarization in randomly oriented ensembles of nanodia-
monds, realized as powder or solutions. To address the lack
of a common natural quantization axis for the NV centers,
an off-resonant microwave drive realizes a resonant double
quantum transition and this, together with the integrated solid
effect, enables microwave coupling and control of NV spins
whose orientation deviates from the external magnetic field
by less than 20◦. Matching the effective Rabi frequency of
the off-resonant double quantum transition of the NV centers
to the nuclear-spin Larmor frequency enables near resonant
coupling between NV electron spins and the nuclear spins,
and the transfer of polarization from the initialized NV spins
to the neighboring 13C nuclear spins. Additionally, the effect of
nuclear dipole-dipole interactions allows the weakly coupled
nuclear spins to be polarized by spin diffusion. Adiabatic
rotation (of the magnetic field or sample) can then extend
the polarizing scheme to more NV spins, achieving a net
polarization of all nuclear spins via our scheme. By using
our polarization scheme, room-temperature, optical based
polarization of the nuclear spins is made possible.

These results introduce several exciting opportunities for
the application of hyperpolarized nanodiamonds, especially in
the biomedical sciences. Diamond nanoparticles are biocom-
patible, exhibit no in vivo toxicity [49], and can be attached
to a wide range of specific proteins, peptides, or antibodies
[17] while maintaining long T 1 times. Thus, hyperpolarized
nanodiamonds present an exciting platform as MRI probes
for molecular imaging. Finally, we would like to stress that
the techniques that we have presented here for overcoming
the random orientation and large zero-field splitting of NV
centers in nanodiamonds apply more widely to color centers
in any type of material that possesses an electron spin S = 1
in the ground state and admit optical pumping of this electron
spin such as silicon divacancies in silicon-carbide and defect
centers in quartz or silicon nanoparticles.
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APPENDIX: EFFECTIVE HAMILTONIAN OF AN NV
CENTER AT THE HIGH MAGNETIC FIELD LIMIT

In our work we assume that in the laboratory frame of ref-
erence a strong magnetic field is applied along the z direction,
γeBz � D. In the following we derive the representation of
the NV center Hamiltonian Eq. (3) in the laboratory frame of
coordinates. To this end we need to transform the zero-field
splitting tensor, which is diagonal in the natural coordinate
system defined by the NV center axes, to the laboratory frame
of reference. We assume that the angle between the magnetic
field, i.e., the z direction, and the NV axis, the zθ direction, is
given by θ and that the angle between the laboratory frame, y

direction, and the NV center, yθ directions, is given by φ in the
x-y plane, as shown in Fig. 12. The spin operators in the NV
system of coordinates, Sxθ

, Syθ
, and Szθ

, are then related to the
spin operators Sx , Sy , and Sz in the laboratory coordinates by

Sxθ
= sin θSz + cos θ (cos φSx − sin φSy),

Syθ
= cos φSy + sin φSx,

Szθ
= cos θSz − sin θ (cos φSx − sin φSy).

The Hamiltonian of the electron spin,

He
N = (− 1

3D + E
)
Sxθ

Sxθ
+ (− 1

3D − E
)
Syθ

Syθ

+ (
2
3D

)
Szθ

Szθ
+ γeBSz,

can then be rewritten in the basis defined by the eigenstates of
the Sz operator of the electron spin, {|+1〉,|0〉,|−1〉}, as

H ′′
NV =

⎛
⎝D(θ ) + γeBz −G1 G2

−G∗
1 0 G1

G∗
2 G∗

1 D(θ ) − γeBz

⎞
⎠

with

D(θ ) = D[1 + 3 cos(2θ )] + 3E[1 − cos(2θ )]

4
,

G1 = (D − E) sin θ cos θeiφ

√
2

,

G2 = [D + 3E + (E − D) cos 2θ ]e2iφ

4
.

FIG. 12. (Color online) Two related rotations of the coordinate
system are used to map from the natural orientation zθ axis of the NV
spin to z axis which is defined by the high magnetic field.
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There exist two uncontrollable components, the angles θ

and φ as well as the local strain E, which modifies the spin
level structure.

As we know, a high magnetic field suppresses the effect of
the off-diagonal terms in H ′′

NV . Assume that the Hamiltonian is
of the form H ′′

NV = H ′′
NV 0 + εV , where H ′′

NV 0 is the diagonal
part of the Hamiltonian and εV is the off-diagonal part. In our
case the magnetic field is sufficiently large for us to assume
that the off-diagonal part is a weak perturbation. By using
the Schrieffer-Wolff transformation in condensed matter, the
second-order corrections due to the off-diagonal terms εV can
be obtained as

〈α|H ′′
M |β〉 = ε2

2

( 〈α|V |i〉〈i|V |β〉
Eα − Ei

− 〈α|V |i〉〈i|V |β〉
Ei − Eβ

)
,

in which H ′′
M is defined as the corrected Hamiltonian. By

simple calculation, we find

〈+1|H ′′
M |+1〉 = |G1|2

γeB + D(θ )
+ |G2|2

2γeB
,

〈−1|H ′′
M |−1〉 = |G1|2

−γeB + D(θ )
− |G2|2

2γeB
.

After shifting the zero of energy, the effective Hamiltonian in
the laboratory frame is given by

H ′′
eff = γeBSz + D(θ )S2

z + δ(θ )Sz,

in which

δ(θ ) = γeB|G1|2
(γeB)2 − [D(θ )]2

+ |G2|2
2γeB

.

Therefore a strong magnetic field suppresses the first-order
effect of the off-diagonal terms in H ′′

NV but results in a
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FIG. 13. (Color online) Validation of neglecting off-resonant
coupling with D = (2π )2870 MHz, θ = 10◦, E = (2π )20 MHz. The
dashed blue line and solid red line present the time evolutions of
the probability of the state |0〉 corresponding to B = 0.36 T and
B = 0.54 T, respectively.

second-order modification of the diagonal elements δ(θ ). This
is the Hamitonian as in Eq. (3).

In order to estimate the validity of this approximation in the
high magnetic field limit we have prepared the system in the
state |ms = 0〉 and observed the subsequent time evolution of
its population under Hamiltonian H ′′

N in Fig. 13 (see caption
for simulation parameters). It is evident that the population
of the initial state ms = 0 remains essentially constant which
implies in turn that the effect of the off-diagonal elements in
Hamiltonian H ′′

NV are indeed negligible for the moderate to
high magnetic field case that is relevant to our work.

[1] F. Bloch, W. W. Hansen, and M. Packard, The nuclear induction
experiment, Phys. Rev. 70, 474 (1946).

[2] E. M. Purcell, H. C. Torrey, and R. V. Pound, Resonance
absorption by nuclear magnetic moments in a solid, Phys. Rev.
69, 37 (1946).
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