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Quantum order by disorder in the Kitaev model on a triangular lattice
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3Dipartimento di Fisica “E.R. Caianiello,” Università degli Studi di Salerno, I-84084 Fisciano, Salerno, Italy‡
4Consiglio Nazionale delle Ricerche—SPIN, UoS di Salerno, I-84084 Fisciano, Salerno, Italy
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We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent
Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state
manifold of the model is spanned by decoupled Ising-type chains, and its accidental degeneracy is due to
the frustrated nature of the anisotropic spin couplings. We show how this subextensive degeneracy is lifted
by a quantum order-by-disorder mechanism and study the quantum selection of the ground state by treating
short-wavelength fluctuations within the linked cluster expansion and by using the complementary spin-wave
theory. We find that quantum fluctuations couple next-nearest-neighbor chains through an emergent four-spin
interaction, while nearest-neighbor chains remain decoupled. The remaining discrete degeneracy of the ground
state is shown to be protected by a hidden symmetry of the model.
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Frustrated magnets, systems in which every pairwise
exchange interaction cannot be simultaneously satisfied, are
characterized by accidental degeneracies between various
order patterns [1]. Often, these accidental degeneracies are
lifted via an order-by-disorder mechanism, driven by ther-
mal and/or quantum fluctuations, selecting a unique ground
state [2–4]. In highly frustrated quantum magnets, those with
extensive degeneracy, e.g., the isotropic spin-one-half Kagomé
and pyrochlore antiferromagnets (AFs), the order-by-disorder
mechanism is inactive and they remain disordered down to the
lowest temperatures, realizing so-called quantum spin liquids
(QSLs) in their ground states [1].

In Mott insulators, with unquenched orbital moments
and strong spin-orbit coupling, bond-dependent Ising-type
interactions may dominate over the conventional Heisenberg
term [5–7]. In turn, such Ising-type couplings, even being
ferromagnetic (FM), can frustrate a long-range magnetic
order and stabilize a QSL state [8]. The most celebrated
model realizing the above scenario is the exactly solvable
Kitaev honeycomb model [9]. In this model, nearest-neighbor
(NN) spins are coupled by Ising-type terms and the three
nonequivalent bonds of the honeycomb lattice host different
components of the spin-one-half operators. Its ground state is
a QSL with fractionalized fermionic excitations [9].

Following a theoretical proposal [7] for a possible realiza-
tion of the Kitaev honeycomb model in iridates A2IrO3 (A =
Na, Li), various extensions of the model have been studied
in connection to experiments [10–16] on actual materials.
These model extensions include terms like the isotropic
Heisenberg exchange [the so-called Kitaev-Heisenberg (KH)
model] [17–21], further-neighbor couplings [21–23], and
additional symmetry-allowed anisotropies [24–28]. The re-
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sulting theoretical phase diagrams are characterized by various
ordered phases (including those seen experimentally) and by
a finite stability window for QSL around the Kitaev limit.

Recently, a triangular analog of the KH model [29] for
classical [30] and quantum [31,32] spins has been studied
numerically. The obtained rich phase diagram includes a
Z2-vortex crystal phase near the AF Heisenberg limit, and
a nematic phase of decoupled Ising chains with subextensive
degeneracy at the Kitaev limit [30,31]. In addition, a chiral
spin-liquid phase has been proposed close to the antiferro-
magnetic Kitaev limit [32].

Here, we study analytically the Kitaev model on the
triangular lattice and solve the puzzle of its ground state
by analyzing the effects of quantum fluctuations within both
the linked-cluster expansion [33], combined with degenerate
perturbation theory, and the linear spin-wave theory. We show
that such a deceptively simple model, once realized on a
triangular lattice, becomes the host of very interesting and
unexpected order-by-disorder effects such as the quantum
selection of the easy axes, the emergence of a specific four-spin
interaction, and the reduction of the subextensive degeneracy
of the nematic ground-state manifold down to a discrete one
protected by a hidden symmetry of the model.

I. THE MODEL

We consider a triangular lattice lying in the (1,1,1) plane
of the spin-quantization frame [see Fig. 1(a)] and label by
(γ ) (= x, y, z) its three nonequivalent NN bonds spanned by
the lattice vectors ax = (1/2, − √

3/2), ay = (1/2,
√

3/2), and
az = (1,0), respectively. On a (γ ) bond, the one perpendicular
to the γ spin-quantization axis, only the S

γ
i components of

the spin-one-half operators Si are coupled by an Ising-type
interaction [see Fig. 1(a)], and the corresponding Hamiltonian
takes the following form:

H = −
∑
i,γ

Kγ Sγ
i S

γ
i+aγ

. (1)
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FIG. 1. (Color online) (a) Ising-type spin couplings on the three
nonequivalent bonds of the triangular lattice of model (1). The lattice
lies in the (1,1,1) plane of the spin-quantization axes. On a (γ )
bond, the one perpendicular to the γ (= x, y, z) spin-quantization
axis, only the γ components of neighboring spins are coupled.
(b) Four-sublattice structure of the triangular lattice used for the
unitary transformations discussed in the text. (c) Sketch of the fourth-
order perturbation process leading to the coupling, via quantum
fluctuations, of the four spins sitting around a diamond [see Eq. (3)].
In the virtual states, the locations of the misaligned spins (spin flips
are performed in pairs at one of the four bonds of the diamond at each
step: top left ⇒ bottom right ⇒ bottom left ⇒ top right) are shown
by filled circles and the wavy lines mark the broken (z) bonds.

In model (1), the signs of the Kγ couplings can be
individually flipped by means of a canonical transformation.
For instance, to flip the sign of Kz independently from the
signs of the other two couplings, Kx and Ky , one needs to
perform spin rotations around the y axis by an angle 180◦ on
sites belonging to the sublattices B and C [see Fig. 1(b)], i.e.,
(Sx

i ,S
y
i ,Sz

i ) → (−Sx
i ,S

y
i , − Sz

i ) for i ∈ B ⊕ C . The signs of
Kx (Ky) can be flipped independently in the very same way
by performing 180◦ spin rotations around the z (x) axis on
the sublattices B and D (A and B). In what follows, without
any loss of generality, we consider all Kγ to be positive (FM
couplings).

II. GROUND-STATE MANIFOLD

In the isotropic FM case Kγ = K > 0, the classical ground-
state energy is simply proportional to M2 where M = 〈Si〉.
This accidental symmetry implies that the ordered moment M
can be freely rotated, i.e., no preferred axis exists. Moreover,
the coupling between NN chains, along any of the three lattice
directions [e.g., spanning along (z) bonds], does not involve
the corresponding projections of the spins (e.g., Sz

i ). Therefore,
these latter projections of the spins can be freely flipped along
any of those chains individually [30,31]. This leads to an
additional 2L-fold degeneracy, where L is the linear size of
the system. In the anisotropic case, when the couplings Kγ

are different from one another, the easy axis is dictated by
the strongest coupling (e.g., the z axis for |Kz| > |Kx |,|Ky |).
However, the ground-state manifold still has a subextensive
degeneracy as it is characterized by completely decoupled
either FM (for Kz > 0) or AF (for Kz < 0) chains along (z)

bonds. Such a subextensive degeneracy is inherent to models
with Ising- or compass-type bond-dependent anisotropies [8].

In principle, these accidental classical degeneracies, not
being related to apparent symmetries, can be lifted by quantum
fluctuations. We would need to calculate the energy corrections
due to zero-point quantum fluctuations (e.g., within the spin-
wave theory) for each degenerate classical ground state and
single out a ground state for which the corrected energy
is minimized. For an infinitely degenerate manifold this is
obviously not feasible and we need to resort to some other
procedure. The linked-cluster expansion [33], combined with
degenerate perturbation theory, allows us to compute quantum
corrections to a ground-state energy from short-wavelength
quantum fluctuations and to identify the mechanism for
quantum selection of the ground state [34–39].

III. QUANTUM SELECTION OF THE GROUND STATE

A. Easy axes

In the isotropic case Kγ = 1, we consider a FM state
with the ordered moment M pointing in a generic di-
rection identified by the unit vector m = (mx,my,mz) =
(sin θ cos φ, sin θ sin φ, cos θ ). Then, we rotate the spin-
quantization frame xyz of the Hamiltonian (1) to a new
frame x ′y ′z′ in which m ‖ z′. The transformed Hamiltonian
on the NN ij bond includes various terms in the new spin-
quantization frame: the Sz′

i Sz′
j terms represent the unperturbed

(mean-field) Hamiltonian and the remaining ones, those
creating misaligned spins at the cost of a mean-field energy, are
treated as perturbations. At the second order in the perturbation
expansion, the terms creating only one spin flip, e.g., Sx ′

i Sz′
j ,

give energy corrections that sum up to zero. Only the terms
inducing two spin flips on a given (γ ) bond give a cumulative
finite energy correction depending on the direction of m. The
creation/annihilation amplitude for two misaligned spins on
a (γ ) bond is Tγ = (1 − m2

γ )/4 with a corresponding energy
cost �γ = (2 − m2

γ ). This gives the following quantum energy
correction per site:

δE(2)(m) = −
∑

γ

T 2
γ

�γ

� − 3

64

(
1 + 1

6

∑
γ

m4
γ

)
. (2)

In Fig. 2, we report the second-order quantum energy
correction (2) for an arbitrary direction m of the ordered

FIG. 2. Color map of the second-order quantum energy cor-
rection (2) for an arbitrary direction m of the ordered moment.
The minimum energy is achieved for m pointing along one of the
spin-quantization axes.
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moment via a color map. Each point on the sphere stands for
a specific direction of m within the original spin-quantization
frame xyz and the color scale gives the corresponding value
of Eq. (2). It is evident that the minimum of the energy is
realized when m points along one of the spin-quantization
axes, implying that they are selected by quantum corrections
as the easy axes. This can be also seen from the result of a
naive expansion, the last term in Eq. (2), explicitly showing
how a fourth-order cubic anisotropy emerges from quantum
fluctuations.

The above result explains and quantifies the order-by-
disorder selection of the easy axes numerically found in
Refs. [30,31] by means of classical Monte Carlo and of
density-matrix renormalization-group (DMRG) methods, re-
spectively, and also agrees with previous studies performed on
models similar to Eq. (1), but realized on other lattices [17,40–
42]. This study is complementary to the spin-wave analysis
performed in Ref. [31] around the Heisenberg limit of the
FM KH model on a triangular lattice. In that case, a finite
Kitaev coupling leads to the selection of easy axes and breaks
the accidental O(3) symmetry down to Z6. In the present
case, the degeneracy of the ground state remains subextensive
at 3 × 2L.

B. Coupling between chains

Both in the isotropic case Kγ = K (choosing z as the
easy axis) and in the anisotropic case |Kz| � |Kx |,|Ky |, the
ground-state manifold is spanned by decoupled either FM
(for Kz > 0) or AF (for Kz < 0) chains along (z) bonds. We
now compute, within the linked-cluster expansion [33], the
quantum corrections induced by the Kx and Ky terms, and find
the related effective couplings between chains. The expansion
parameter scales as Kx(y)/zKz (z = 3 being the number of
NNs), and the results we derive are valid in the isotropic case
Kγ = K too. The Kx and Ky terms generate fluctuations out
of the classical ground state by creating/annihilating pairs of
misaligned spins on the corresponding bonds. Accordingly,
the linked graphs relevant to the perturbation expansion are
those composed by (x) and/or (y) bonds. Open linked graphs
composed of n bonds contribute to the (2n)th leading order,
while closed linked graphs composed of n bonds contribute
to the nth leading order. Given the obvious absence of (z)
bonds in the perturbation expansion, there is no looplike
cluster composed of an odd number of bonds and hence
no perturbative odd-order correction exists. In the second
order, there is no coupling between chains but a reduction

of the ground-state energy by − 1
32

K2
x +K2

y

|Kz| . In the fourth order,
straight three-site clusters, composed of two (x) or two (y)
bonds, give just a reduction of the ground-state energy by

− 1
2048

(K2
x +K2

y )
2

|K3
z | and again do not couple chains. The other two

types of three-site clusters, composed of (x) and (y) bonds,
with π/3 or 2π/3 angles in between, give no contribution at all
because the H(x) and H(y) bond Hamiltonians with a common
vertex anticommute and they always come in permuted pairs.
The fourth-order correction coming from a diamond-shape
four-site cluster [see Fig. 1(c)] gives instead a coupling
between pairs of spins belonging to next-nearest-neighbor

(NNN) chains in the following form:

δH(4) = − 1

24

K2
xK2

y∣∣K3
z

∣∣ ∑
i

(
Sz

i S
z
i+az

)
Sz

i+ax
Sz

i+ay
, (3)

where the sites i + ax and i + ay belong to NNN chains, and
they are the ends of the longer diagonal of the diamond cluster
[see Fig. 1(c)]. It is worth noting that Sz

i S
z
i+az

is just 1
4 for

Kz > 0 and − 1
4 for Kz < 0, leading to a coupling between

NNN chains of the same sign of the one acting along the
chains. This does not fully lift the degeneracy as, at this order,
the two sublattices formed by NN chains remain decoupled.
The degeneracy is fourfold (three times fourfold for Kx =
Ky = Kz). Actually, we found that this degeneracy is dictated
by a hidden symmetry of the model. This hidden symmetry is
uncovered by a four-sublattice unitary transformation from
Ref. [5]. This transformation leaves the Hamiltonian (1)
unchanged, but flips the sign of the z components of the spins
on only one of the two sublattices. We divide the triangular
lattice in four sublattices, as shown in Fig. 1(b), and perform the
following local spin rotations: by 180◦ on sublattices B, C, and
D around z, y, and x axes, respectively, while keeping the spins
on the A sublattice in the original frame. This transformation
leaves the Hamiltonian (1) unchanged. On the other hand, the
net effect on a state with spins ordered along the z direction
is to flip the sign of the z component of every second chain,
the chains belonging to the C ⊕ D sublattice, showing that NN
chains are completely decoupled as any relative order between
them leads to the same energy.

C. Comparison to numerics

Very recently, Becker et al. [31] used the DMRG method
to compute the ground state and the first excited states of
the Kitaev Hamiltonian (1) in the AF isotropic case (Kγ =
K < 0) on finite clusters with open boundary conditions. The
considered clusters are strips of three and four chains of length
L � 14, cut out from a triangular lattice (see Figs. 12 and 13
in Ref. [31]). The spatial anisotropy of such clusters breaks
the original symmetry of the triangular lattice and forces the
spins to order AF along the longer direction [e.g., along the
(z) bonds] and, correspondingly, in the like spin component
(Sz). Measuring the spin correlation functions across the
system, they found AF correlations between the NNN chains
and no correlations between NN ones, in agreement with
our analysis. Moreover, for the largest analyzed system, the
numerically found gap to the first excited state, featuring FM
correlations between NNN chains, amounts to 0.0055|K| per
diamond, which is again in very good agreement with the value
1/192|K| � 0.0052|K| predicted by Eq. (3).

IV. SPIN-WAVE THEORY

We now apply the linear spin-wave theory to the Hamilto-
nian (1). In order to compare the results obtained by the linear
spin-wave theory with those obtained by the linked-cluster
expansion, we will focus on the case Kz � Kx,Ky > 0 and
consider two states that are degenerate in the classical limit.
These are the FM and stripy AF states [shown as right panels
in Fig. 3] with spin ordering along the z axis. Within spin-wave
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FIG. 3. Color map of the spin-wave excitation spectrum of
model (1) in (a) the FM state Eq. (4) and (b) the stripy AF state
Eq. (5), for Kγ = 1. Only one of the lower branches is shown in (b).
Hexagons mark the crystallographic Brillouin zone. The right panels
report the corresponding magnetic structures.

theory we find one branch in the FM state

ω2(q) = (Kz − Kxcx)(Kz − Kycy) (4)

and four branches in the stripy AF state

ω2
1,2(q) = K2

z ±
√

K2
z

(
K2

x c2
x + K2

y s2
y

) − K2
xK2

y c2
xs

2
y , (5)

where cx = cos q · ax , cy = cos q · ay , sx = sin q · ax , and
sy = sin q · ay . The other two branches, ω3,4(q), are obtained
from ω1,2(q) by the exchanges cx ↔ cy and sx ↔ sy .

Figure 3 shows the color map of the obtained spin-wave
excitation spectra for Kγ = 1 in both the FM state and the
stripy AF state. In this latter case, only one of the two
degenerate lower branches is reported. The corresponding
magnetic structures are sketched on the right. In both cases,

the excitation spectra are well defined over the entire Brillouin
zone, confirming that the FM and the stripy AF states do
indeed minimize the classical energy. Moreover, the lines of
nodes, related to the subextensive degeneracy of the classical
manifold discussed above, are clearly visible. Comparing the
zero-point spin-wave energies obtained from Eqs. (4) and (5),
we find that the FM state is always favored against the stripy
AF state, in agreement with the linked-cluster expansion result.
Moreover, by expanding the spin-wave excitation spectra in
Eqs. (4) and (5) in terms of small Kx,y/Kz, we find analytically
the difference between the zero-point energies of the FM

and the stripy AFM states to be δE(4)
sw = − 3

4 × 1
192

K2
x K2

y

K3
z

,
which is in agreement with the prediction of Eq. (3) except
for a multiplicative factor 3

4 , the presence of which can be
anyway readily explained. The linear spin-wave theory does
not take into account the interactions between misaligned
spins. Therefore, in the virtual state shown as the middle
diamond in Fig. 1(c), eight broken (z) bonds are counted in
the linear spin-wave theory instead of the actual six broken (z)
bonds shown in Fig. 1(c).

In conclusion, we have discussed quantum order by disorder
in the Kitaev model on the triangular lattice within the
linked-cluster expansion and the complementary spin-wave
theory, and clarified the true nature of the ground state of
this frustrated quantum spin model. In particular, we have
shown (i) the presence of a mechanism of quantum selection
of easy axes, (ii) the emergence of a four-spin interaction
that reduces the subextensive degeneracy of the ground-state
manifold (3 × 2L) down to a discrete one (3 × 22), and (iii)
the existence of a hidden symmetry of the model that protects
this latter degeneracy. The present analytical study explains
and quantifies the results of numerical simulations [31].
The developed scheme, that makes explicit links between
degenerate perturbation theory and spin-wave analysis, can be
applied to other quantum spin models in which spin frustration
is driven by anisotropic spin couplings.
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