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and spin Hall effects: A first-principles approach
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We present a general first-principles approach to treat various linear response phenomena relevant for
spintronics. It is based on a Kubo-Bastin formalism and implemented within the multiple-scattering Korringa-
Kohn-Rostoker (KKR) Green’s function method with the underlying electronic structure determined by density
functional theory. The symmetric (e.g., longitudinal electronic transport) as well as the antisymmetric (e.g.,
transverse transport) parts of the response tensor are determined, including both the so-called Fermi-sea and the
Fermi-surface contributions. To describe spin-orbit-induced phenomena, such as the anomalous and spin Hall
effects, a fully relativistic description is employed. Exploiting the adopted Green’s function method substitutional
disorder in the full concentration range of alloys is treated within the coherent potential approximation, taking full
account of occurring vertex corrections in the averaging procedure for the linear response quantities. Extrinsic
(scattering related, e.g., side-jump and skew scattering) and intrinsic (band structure–related) contributions to the
transport tensors are treated on equal footing. Other phenomena, such as Gilbert damping and spin-orbit torques,
are particular cases of the general framework and their determination is briefly addressed. The versatility of
the method is demonstrated by presenting results for the anomalous and spin Hall conductivities for elemental
transition metals and their alloys.
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I. INTRODUCTION

There exist a number of transverse transport phenomena
that have attracted a lot of attention in recent years due to
their potential application in spintronics and their interesting
underlying mechanisms. Among them are the anomalous
(AHE) [1] and spin Hall (SHE) [2–4] effects and their spin-
caloritronic counterparts [5], the anomalous and spin-Nernst
effects [6–8], as well as the newly discovered spin-orbit torque
in which a current exerts a torque on the magnetization
in a ferromagnet [9–11]. Common to these effects is their
relativistic origin, i.e., they are induced by spin-orbit coupling.

Quite generally, mechanisms giving rise to these effects
are classified as band structure–related topological intrinsic or
scattering-related extrinsic contributions (among the latter are
skew and side-jump contributions). Many model calculations
exist for these effects, each of which focuses on one or a
few underlying mechanisms and typically rely on certain
parameters [1,12–14]. Only recently have ab initio methods
been developed that in most cases start from a density
functional theory description of the electronic structure and
that are able to provide a material-specific characterization
of these phenomena. Several computer codes are now able to
determine the intrinsic Berry-phase-associated contributions
relying on the existence of well-defined energy bands in
ordered systems [15–20]. Disorder in this particular approach
can be introduced in a phenomenological way which allows
one to include finite lifetime effects and can be used to describe
systems with small content of impurities (dilute limit). On
the other hand, the Boltzmann approach has been used to
deal exclusively with extrinsic skew scattering contributions
in the dilute limit. An approach that is capable of treating all
the aforementioned linear response phenomena in a general

*dkopc@cup.uni-muenchen.de

way, i.e., treating intrinsic and extrinsic contributions on the
same footing as well as being able to include disorder away
from the dilute limit, is the Kubo linear response formalism in
combination with a suitable alloy theory (see below).

The latter is our methodological starting ground in its
Kubo-Greenwood (KG) formulation that is well established
in describing longitudinal electronic transport, more precisely,
giving the symmetric part of the transport tensor that connects
a current with the electric field. Only states at the Fermi
energy (Fermi surface) contribute to this part of the transport
tensor. Many first-principles calculations have been performed
employing the KG method implemented within the Korringa-
Kohn-Rostoker (KKR) or the linear muffin-tin orbital (LMTO)
electronic structure methods, demonstrating the viability to
treat disordered systems and giving material-specific results
[21–23]. Let us note in passing that already on the KG level
the inclusion of vertex corrections (vc) becomes important and
is readily incorporated in these approaches.

Going beyond the KG method and capturing the an-
tisymmetric (transverse) parts of the transport tensors is
methodologically and computationally much more demanding
and only recently first-principles approaches have been devised
that are based on the Kubo-Středa and Kubo-Bastin formalism
[24–28]. There are several reasons for this: (i) As transverse
transport phenomena like the AHE and SHE are manifestly
spin-orbit induced, the effect of spin-orbit coupling has to
be incorporated appropriately when calculating the electronic
structure. (ii) One contribution to the tensor results exclusively
from the states at the Fermi level and depends, in particular
for pure systems, very sensitively on the topology of the
Fermi surface. This implies the use of a huge number of
k points needed for the Brillouin-zone integrations. Also, in
the dilute limit of disordered alloys the vertex corrections have
been shown to be of utter importance [25,29], again leading,
together with the fine structure of the electronic states to be
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sampled, to great computational effort in the evaluation of
k-space integrals. (iii) Finally, going beyond KG one either has
to include a Fermi-sea term in the Kubo-Bastin formulation
or to recast the transport equations into the Kubo-Středa
equation. The latter then is often simplified by neglecting an
orbital current term or relying on cancellation of terms in
inversion symmetric systems, therefore restricting its range of
application.

In this paper we present a Kubo-Bastin framework that in its
formulation and implementation within relativistic multiple-
scattering theory allows one to treat a variety of spin-orbit-
induced linear response phenomena including the anomalous
and spin Hall effect. It is applicable to pure systems as well
as disordered alloys in the full concentration range and treats
intrinsic (coherent) and extrinsic (incoherent) contributions
within one and the same methodological approach. The
application of the scheme to other phenomena (e.g., Gilbert
damping, spin-orbit torques) is straightforward and is briefly
discussed.

The paper is organized as follows: In Sec. II we formulate
a generalized Kubo-Bastin theory within a fully relativistic
framework. Based on the given expression we perform a
symmetry analysis of the response tensor followed by a
particular formulation for the anomalous and spin Hall effects.
We then outline the linear response Kubo-Bastin approach
within the relativistic KKR method, with more details given in
the Appendix. In Sec. III we give technical details concerning
the implementation. Finally, in Sec. IV we present results for
the AHE and SHE in pure systems as well as disordered alloys.
The paper is summarized in Sec. V.

II. THEORY

As we want to discuss, in particular, transverse spin-orbit-
induced transport phenomena, we base our approach on the
relativistic four-component Dirac formalism when dealing
with the underlying electronic structure. This is motivated by
the following reasons: (i) no approximation is involved when
treating spin-orbit-induced properties, and (ii) it allows one
to avoid problems to treat disorder [30] (vertex corrections)
which would otherwise occur in a Pauli approach. The
corresponding Dirac-Hamiltonian is given as

ĤD = −i�c α · ∇ + (β − I4)mc2 + VKS(r) . (1)

The single-particle potential VKS appearing in Eq. (1) is
determined in the framework of Kohn-Sham-Dirac (KSD)
spin-density functional theory (KSD-SDFT) [31,32] and in-
cludes an exchange term β� · Bxc. The standard Dirac and spin
matrices [31,33,34] αμ, β, and �μ are given as (μ ∈ {x,y,z})

αμ =
(

02 σμ

σμ 02

)
, β =

(
I2 02

02 −I2

)
, �μ =

(
σμ 02

02 σμ

)
,

(2)

with the σμ being the Pauli matrices. The KSD Green’s func-
tion (GF) is defined as the resolvent of the Dirac-Hamiltonian
Eq. (1), Ĝ(z) = (z − ĤD)−1, with z being a complex energy
variable.

A. Generalized Kubo-Bastin formalism

The starting point of our derivation is the Kubo-Bastin
[35] like expression for the response tensor χ describing the
reaction of the system in the observable represented by an
operator B̂ due to the perturbation represented by the operator
Â:

χμν = − �

2π	

∫ ∞

−∞
f (E)Tr

〈
B̂μ

dĜ+

dE
Âν(Ĝ+ − Ĝ−)

− B̂μ(Ĝ+ − Ĝ−)Âν

dĜ−

dE

〉
dE . (3)

Here μ,ν ∈ {x,y,z} denote Cartesian coordinates, 	 is the
volume of the system, f (E) = [e(E−μ)/kBT + 1]−1 denotes the
Fermi-Dirac distribution function with the chemical potential
μ, the Fermi energy EF = μ(T = 0 K), Ĝ+ and Ĝ− are the
retarded and advanced Green’s function operators (for brevity
their energy arguments will be suppressed), and 〈. . . 〉 denotes
a configurational average. Following a procedure by Crépieux
and Bruno [30], when deriving the Kubo-Středa equation we
obtain (by keeping one half of the term and doing a partial
integration on the second half) an expression that lends its
hand to further insightful analysis as well as a first-principles
implementation:

χμν = χI
μν + χII

μν (4)

χI
μν = − �

4π	

∫ ∞

−∞

df (E)

dE
Tr〈B̂μ(Ĝ+ − Ĝ−)ÂνĜ

−

− B̂μĜ+Âν(Ĝ+ − Ĝ−)〉dE (5)

χII
μν = + �

4π	

∫ ∞

−∞
f (E)Tr

〈
B̂μĜ+Âν

dĜ+

dE
− B̂μ

dĜ+

dE
ÂνĜ

+

−
(

B̂μĜ−Âν

dĜ−

dE
− B̂μ

dĜ−

dE
ÂνĜ

−
)〉

dE. (6)

In the limit T → 0 K, f (E) becomes a step function and the
first term Eq. (5) contributes to χ only in quantities to be
evaluated at the Fermi energy EF, whereas for the second term
Eq. (6) the integration is over all occupied states. For this
reason in what follows the term χI

μν Eq. (5) will be denoted as
Fermi-surface and the term χII

μν Eq. (6) as the Fermi-sea term.
Note that the last equation is a different but an equivalent form
of the original equation by Bastin et al. [35].

B. Symmetry analysis

For the particular case of Â = B̂ = Ô the Fermi-sea term
is purely antisymmetric, χII

μν = −χII
νμ. This can be seen by

inspecting the first term in Eq. (6) containing only retarded
(Ĝ+) as well as the second term in parenthesis containing
exclusively advanced (Ĝ−) Green’s functions. Both terms are
antisymmetric, which can be shown by exploiting the property
of the trace.

The analysis of the Fermi-surface term can be carried out
by considering the symmetry-related subexpression of χI , i.e.,

Cμν = Tr〈B̂μ(Ĝ+ − Ĝ−)ÂνĜ
− − B̂μĜ+Âν(Ĝ+ − Ĝ−)〉 .
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Extracting the symmetric part for Â = B̂ = Ô leads to

1
2 [Cμν + Cνμ] = −Tr〈Ôμ(Ĝ+ − Ĝ−)Ôν(Ĝ+ − Ĝ−)〉

= 4Tr〈Ôμ�Ĝ+Ôν�Ĝ+〉 , (7)

a Kubo-Greenwood–like expression, where �Ĝ+(E) =
1
2i

[Ĝ+(E) − Ĝ−(E)]. This is frequently used in transport
calculations, with Ô = ĵ being the charge current operator
yielding the symmetric (and in particular, the longitudinal)
contribution to the conductivity tensor σμν .

Extracting the antisymmetric part for Â = B̂ = Ô gives

1
2 [Cμν − Cνμ] = 1

2 Tr〈[Ôμ(Ĝ+ − Ĝ−)Ôν

− Ôν(Ĝ+ − Ĝ−)Ôμ](Ĝ+ + Ĝ−)〉
= 2i Tr〈[Ôμ�Ĝ+Ôν − Ôν�Ĝ+Ôμ] �Ĝ+〉,

where �Ĝ+(E) = 1
2 [Ĝ+(E) + Ĝ−(E)]. For the example of

a charge-charge current response, this states that the (an-
tisymmetric) anomalous Hall effect results from the Fermi
sea as well as the antisymmetric surface contribution. It has
been shown that in the latter case the Fermi-sea term can be
transformed into a surface term [30,36] and the intrinsic AHE
in a (pure) metallic ferromagnet is a topological Fermi-surface
property [37].

To highlight the advantages of the presented scheme, let
us note in passing that the case Â = B̂ = T̂, with T̂ being the
magnetic torque operator, allows a formulation of the Gilbert
damping [38–40]. Furthermore, the spin-orbit torque, i.e., the
torque exerted on the magnetization in a ferromagnet resulting
from a charge current [9,41], is obtained by using B̂ = T and
Â = j [42,43].

Finally, we want to point out that further symmetry analysis
of the response tensors on grounds of the (magnetic) space
group of a bulk system can give additional relations, depending
on the particular choice of operators Â and B̂ [44,45].

C. Conductivity within Kubo-Bastin linear response formalism

In the chosen relativistic formalism the electric current
operator is given by ĵ = −|e|cα, with e > 0 being the
elementary charge. For describing the spin Hall effect, we
here employ the relativistic spin (-polarization) current-density
operator

Ĵξ =
(

β�ξ − γ5�ξ

mc

)
|e|cα , (8)

inspired by Bargmann and Wigner [46] and already used
previously [25,47,48], with the kinetic momentum � = (p̂ +
|e|
c

A)14, the canonical momentum p̂, the vector potential A,
and [34]

γ5 =
(

02 −12

−12 02

)
. (9)

For the remainder of the paper we consider the limit T →
0 K of Eqs. (5) and (6) and two particular cases, both of which
are characterized by choosing Â = ĵ as charge current operator.
The (longitudinal) charge and anomalous Hall conductivities
are obtained by setting B̂ = ĵ. The spin Hall conductivity is
obtained by setting B̂ = Ĵξ , where ξ ∈ {x,y,z} characterizes

the polarization direction of the spin current operator. With
this Eqs. (5) and (6) read

σ ξ
μν = σ ξ,I

μν + σ ξ,II
μν , (10)

σ ξ,I
μν = �

4π	
Tr

〈
Ĵ ξ

μ(Ĝ+ − Ĝ−)ĵνĜ
− − Ĵ ξ

μĜ+ĵν(Ĝ+ − Ĝ−)
〉
,

(11)

σ ξ,II
μν = �

4π	

∫ EF

−∞
Tr

〈
Ĵ ξ

μĜ+ĵν

dĜ+

dE
− Ĵ ξ

μ

dĜ+

dE
ĵνĜ

+

−
(

Ĵ ξ
μĜ−jν

dĜ−

dE
− Ĵ ξ

μ

dĜ−

dE
ĵνĜ

−
)〉

dE , (12)

where in Eq. (11) the Green’s functions are evaluated at the
Fermi energy EF and the energy arguments at the GFs have
been omitted throughout. The conductivity tensor σμν in terms
of the charge-charge response is obtained by replacing Ĵ ξ

μ with
ĵμ in the last expression. For the remainder of the paper we
consider the special case ξ = z and, if present, the following
particular choice for the exchange field Bxc(r) = B(r)êz in the
Hamiltonian Eq. (1).

Note that in the discussion of longitudinal transport [49] and
the AHE one can show that terms involving only retarded or
advanced GF, i.e., terms of the type 〈jG+jG+〉 or 〈jG−jG−〉,
can be neglected in the weak disorder limit [50], and this is
indeed done in actual calculations [51]. In the present work all
contributions are taken into account, in particular, because we
discuss the full concentration range of alloys.

D. Kubo-Bastin linear response formalism within relativistic
multiple-scattering KKR

The formalism presented here is inspired by previous im-
plementations of the (relativistic) Kubo-Greenwood approach
[52–56] which go back to a formulation by Butler [21].
These are restricted to the treatment of the symmetric part
of the conductivity tensor evaluated at the Fermi energy.
Here we report on a very general framework that (i) gives
the symmetric as well as antisymmetric contributions by
evaluating Fermi sea and surface contributions; (ii) is fully
relativistic and therefore captures all important contributions to
transverse transport (skew scattering, side jump); (iii) is easily
extendable to any other operator pair for dealing with other
phenomena like Gilbert damping [38,40,42] and spin-orbit
torques; (iv) allows treatment of efficiently disordered systems,
avoiding costly supercell approaches; and (v) lends its hand to
straightforwardly include finite temperatures effects [57].

The evaluation and first-principles treatment of Eqs. (11)
and (12) for solids requires a suitable representation of the
GF, which in our chosen formalism will subsequently lead
to a product expression containing matrix elements of the
current operators with the basis functions and k-space integrals
over scattering path operators. Disorder and ensuing vertex
corrections in the averaging procedure will be treated by means
of the coherent potential approximation (CPA) [21,58].

The real-space representation of the Green’s function
operator Ĝ(z) can be very efficiently obtained by using the
spin-polarized relativistic version of multiple-scattering theory
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[59–63]:

G(r,r′,z) =
∑
′

Zn
(r,z) τnm

′(z) Zm×
′ (r′,z)

− δnm

∑


[
Zn

(r,z) J n×
 (r′,z)�(r ′

n − rn)

+ J n
(r,z) Zn×

 (r′,z)�(rn − r ′
n)

]
. (13)

Here r,r′ refer to atomic sites at Rn and Rm, respectively, where
Zn

(r,z) = Z(rn,z) = Z(r − Rn,z) as well as J n
(r,z) are

basis functions centered at positions Rn. Note that here
the basis functions are normalized according to the Oak
Ridge–Bristol convention [64]. The four-component wave
functions Zn

(r,z) [J n
(r,z)] are regular (irregular) solutions

to the single-site Dirac equation at complex energy z labeled
by the combined quantum numbers  [ = (κ,μ)], with κ and
μ being the spin-orbit and magnetic quantum numbers [34].
The superscript × indicates the left-hand side solution of the
Dirac equation [60]. The quantity τnm

′(z) is the scattering
path operator that transfers an electronic wave coming in
at site m into a wave going out from site n accounting for
all possible intermediate scattering events. The retarded and
advanced GF are obtained as the side limits G±(r,r′,E) =
limη→0+ G(r,r′,E ± iη).

Inserting the real-space representation Eq. (13) into Eqs.
(11) and (12) and cyclic permutation under the trace leads to
sums of products of matrix elements evaluated on a given
site and scattering path operators τmn. Pursuing the route
of Butler [21] having a subsequent CPA averaging in mind,
the conductivity tensor will partition into an on-site term σ 0

involving regular (Z) as well as irregular solutions (J) and
an off-site term σ 1 containing only regular solutions (both for
Fermi sea and surface terms):

σ ξ
μν = σ ξ0

μν + σ ξ1
μν

= σ ξ0,I
μν + σ ξ1,I

μν + σ ξ0,I I
μν + σ ξ1,I I

μν . (14)

Working towards determining the energy derivative of the GF
in terms of finite differences (see below) as well as representing
the GF above and below the real axis leads to expressions of
the form

1

	
Tr

〈
Ĵ ξ

μĜ(za)ĵνĜ(zb)
〉 = 1

	
Tr

∫
	

d3rĴ ξ
μ �Gν(r,r,za,zb)

= 1

	n

Tr
∫

	n

d3r Ĵ ξ
μ �Gn

ν (r,r,za,zb) ,

(	n denotes the volume of the unit cell at site n), containing
pairs of complex energies za and zb and contributions to �Gν

with

�Gn
ν (r,r,za,zb) =

∑
αβ

xαxβ�G1,αβ,n
ν (r,r,za,zb)

+
4∑

k=1

xα�G
0,α,n
νk (r,r,za,zb) , (15)

given in Appendix A. The Greek indices (α,β) denote alloy
partners and xα their concentrations. The terms in �G

0,α,n
νk

containing irregular solutions J, k ∈ {1,2,3,4} are associated
with the on-site contributions σ ξ0 only. The term �G

1,αβ,n

ν1

containing exclusively regular solutions Z contributes to σ ξ1

requiring special treatment when performing the statistical
average (done here within the CPA) in the case of an alloy.
The appearing vertex corrections in this term are important and
can, particularly in the dilute limit, give sizable contributions
to the transverse conductivities (see Refs. [24,27] and below).
As shown by Butler [21], they correspond to the scattering
term in Boltzmann transport theory [25,65,66].

The evaluation of Eq. (15) leads to matrix elements of
regular functions of the form Mabν

′ = 〈Z×
(za)|Ôν |Z′(zb)〉	n

and matrix elements involving irregular functions whose
evaluation is outlined in Appendix B. Let us note that the
formalism is very general insofar as other linear response
quantities (Gilbert damping, spin-orbit torques, etc.) are easily
obtained by the appropriate choice of operators (Â, B̂) and
adaptation of their matrix elements to be inserted in the final
multiple-scattering transport expressions.

The described formalism is applicable to pure systems
as well as alloys in the full concentration range. For a
pure system with a perfect band structure, the transverse
(antisymmetric) component of the response is called intrinsic
and is often associated with the existence of the Berry curvature
coded in the band structure. An alloy, however, has no
well-defined energy bands. Within the formalism presented
here, one can separate the full response into coherent and
incoherent contributions, with the latter exclusively caused by
the vertex corrections. As a manner of speaking, the coherent
contributions are here named intrinsic, the incoherent ones are
called extrinsic, and the presented formalism captures both of
them.

III. IMPLEMENTATION AND COMPUTATIONAL DETAILS

The expressions (11) and (12) as well as the following
equations have been implemented into the MUNICH SPR-KKR

package [63,67]. A fully relativistic Dirac four-component
scheme for the basis functions Z and J has been used
throughout with an angular momentum cutoff of �max = 3.
The self-consistent field (SCF) potentials have been ob-
tained within KSD-SDFT employing the Vosko-Wilk-Nussair
(VWN) parametrization [68] for the exchange-correlation
functional in the local density approximation (LDA). The
involved energy integration has been performed on a semicircle
in the complex plane using typically 50 energy points and
453 (562 × 30) for cubic (hcp) system k-points in the BZ.
As a shape approximation for the potential, the atomic sphere
approximation (ASA) has been used. Experimental lattice con-
stants have been used. Using these SCF potentials, subsequent
Kubo-Bastin transport calculations have been performed. For
the determination of the Fermi-surface term Eq. (11) in the
concentrated regime of alloys approximately 105 k points in
the BZ turned out to be sufficient due to smearing of the GF in
k space for the disordered system. In the dilute limit with the
concentration of an alloy partner becoming very small, around
106–107 k points had to be used to ensure convergence. In
contrast to the disordered systems which for the calculations
are carried out on the real-energy axis for pure elements, a
small imaginary part has been added, z = EF + iη, and an
extrapolation for η → 0+ has been carried out while ensuring
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TABLE I. The AHC σxy in (	 cm)−1 of the ferromagnetic
transition metals bcc-Fe, hcp-Co, and fcc-Ni and the alloys Fe50Pd50

and Ni50Pd50 from first-principles theoretical (present work compared
to other) as well as experimental (expt.) studies. The magnetization
has been assumed to be oriented along the [001] direction.

σ 0
xy σ 1,I

xy σ 1,I I
xy σxy σ theo

xy σ
exp
xy

Fe 20 687 192 899 750,d 878,e 796f 1032a

Co 39 316 169 524 484,g 694,e 471f 813h

Ni –84 –2654 57 –2681 –2500,e–2432f –1100b

Fe50Pd50 (nvc) –18 314 101 397
Fe50Pd50 (vc) –18 457 102 541 303c

Ni50Pd50 (nvc) –113 –1830 130 –1813
Ni50Pd50 (vc) –113 –1417 130 –1400 –1293c

aReference [69].
bReference [70].
cReference [71].
dIntrinsic, BCA, Ref. [16].
eIntrinsic, + scattering-independent side-jump, Ref. [72].
fKubo-Bastin, TB-LMTO, Ref. [28].
gIntrinsic, BCA, Ref. [73].
hEstimated expt. value, Ref. [18].

for every value of η convergence with respect to the k mesh.
Values of up to 109 k points have been used in this case.

For the treatment of the Fermi-sea contribution, Eq. (12)
the energy path has been distorted to a semicircle in the
upper (lower) half of the complex plane for the first (sec-
ond) term containing the retarded (advanced) GF G+ (G−)
encompassing the valence states. The derivative of the GFs in
the complex plane along a direction parallel to the real axis
has been obtained by a two-point finite difference formula,
dĜ±(z)/dz ≈ 1

h
[Ĝ±(z + h/2) − Ĝ±(z − h/2)], with h ∈ R.

A value of h = 10−4 Ry turned out to be sufficient because
of the smearing of the GF in the complex plane. The latter
smoothing of the GF also leads to a fast k-mesh convergence,
and it was sufficient to use around 103 k points at each energy
point, except for the points near and next nearest to the real
axis at EF for which typically 106 k points have been used.

Here we restrict the spin current-density operator to z

polarization, i.e., only Ĵz is considered. Other polarization
directions and the resulting tensor forms in a fully relativistic
approach are discussed elsewhere [45]. Furthermore, as we
here consider the SHE in paramagnetic systems without
external fields, the vanishing vector potential in Eq. (8)
results in a spin-polarization current-density operator with
components

Ĵ z
μ =

(
β�z − γ5p̂z

mc

)
|e|cαμ, μ ∈ {x,y}. (16)

More details on the evaluation of matrix elements are given in
Appendix B.

IV. RESULTS AND DISCUSSION

In Tables I and II we show the anomalous Hall conductivity
(AHC) for various systems as calculated by the Kubo-Bastin
approach [Eqs. (11) and (12)] for both pure systems as well
as alloys.

TABLE II. The SHC σ z
xy in (	 cm)−1 of the nonmagnetic metals

Cu, Pt, and Au and the alloys Cu50Au50 and Au50Pt50 from first-
principles theoretical (present work compared to other) studies.

σ z0
xy σ z1,I

xy σ z1,I I
xy σ z

xy σ z,theo
xy

Cu –17 172 28 184
Pt 98 4093 133 4324 4400a

Au –16 743 90 817 700,b 800c

Cu50Au50 (nvc) –20 605 71 656
Cu50Au50 (vc) –20 872 71 923
Au50Pt50 (nvc) 34 2911 607 3553
Au50Pt50 (vc) 34 2992 607 3634

aIntrinsic, BCA, Ref. [17].
bIntrinsic, BCA, Ref. [76].
cIntrinsic, BCA, Ref. [77].

Let us first turn to the ferromagnetic systems and the
determined values for the anomalous Hall conductivities.
Table I shows the total conductivities σxy and the various
contributions to it for the elemental ferromagnets Fe, Co,
and Ni as well as for the two alloys Fe50Pd50 and Ni50Pd50.
Discussing the overall numbers, one can state that for the
systems considered the Fermi-surface contribution σ 1,I

xy is the
dominant one, but also the Fermi-sea term σ 1,I I

xy can give a
significant contribution. This is seen, in particular, for the
systems Fe, Co, and Fe50Pd50. Similar observations have
been made before [28] in a tight-binding LMTO (TB-LMTO)
framework (see the remarks below).

The site-diagonal term σ 0
xy is not significant, contributing

only 2%–3% with a maximum of 10%. Note that we here show
the sum of both Fermi sea and surface contributions to σ 0

xy.
Both are numerically delicate, as they contain matrix elements
involving the irregular solutions J n

(r,z) and can become rather
large. However, their sum σ 0

xy is small.
The AHC has been calculated recently within a Kubo-

Bastin framework implemented in the TB-LMTO electronic
structure method [28]. When comparing the results presented
here to the latter ones, however, one has to be careful. First,
in the TB-LMTO method the coherent potential functions
and structure constants depend on the chosen representation.
Even though the full conductivity is invariant with respect
to the particular choice, some ambiguity in assigning terms
contributing to the surface and sea terms arises, as only
the sum of the antisymmetric part of the coherent surface
term and sea term is invariant. Therefore only the numbers
for the total conductivities should be compared. Second, in
the LMTO transport approach there appear only intersite
hoppings. A term equivalent to the site-diagonal contribution
σ 0 appearing in the present work does not exist. Third,
the TB-LMTO method employs (configuration independent)
effective velocity operators, i.e., the operator matrix elements
are nonrandom while here the matrix elements as well as the
scattering path operator are configuration dependent.

Turning now to the particular systems, for bcc Fe we find
a total AHC that underestimates the experimental value by
roughly 10%. On the other hand, this number is comparable to
those obtained in calculations of the AHC employing the Berry
curvature approach (BCA), including the intrinsic as well as a
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scattering-independent side-jump term (σxy = 878 (	 cm)−1,
Ref. [72]). Both of these contributions are included in the
present formalism (coherent part). Note that calculations using
the BCA leaving out the scattering-independent side-jump
term give smaller values [15,16] [in the range of σxy =
750 (	 cm)−1]. For hcp Co the comparison to experiment as
well as other theoretical results is less clear-cut, as there is a
larger variation. Furthermore, the Fermi-sea term represents a
significant contribution to the total AHC, as has been observed
in another recent work [28]. For Ni notably all theoretical
calculations employing the LDA grossly overestimate the
experimental value. This has already been attributed to the
deficiencies in properly describing the electronic structure,
namely, the correlations are not fully captured by this approx-
imation. Using the LDA + U or GGA + U approach, AHCs
are obtained that are close to experimental values [20,57,72].

For alloys we show results for a particular concentration
for Fe50Pd50 and Ni50Pd50 in Table I. Results for calculations
including the vertex corrections (vc) as well as excluding them
(nvc) are given. As can be seen the vc contribute substantially
in the Fermi-surface term. On the other hand the Fermi-sea
term does not contain any incoherent contribution, i.e. the
vc do not occur in this case. This is in accord with the
findings in Ref. [28], where it was analytically shown that
for the AHE treated within the TB-LMTO CPA the vc are
vanishing in the Fermi sea. Note, however, that this proof
relied on a particular formulation of the CPA equations within
the TB-LMTO formalism.

In Fig. 1 we show the AHC for FexPd1−x as a function of
concentration. Overall the concentration dependence as well
as the sign change is in good agreement to experiment. For all
concentrations the dominant contribution to the AHC is given
by the site-off diagonal Fermi-surface term (σ 1,I

xy ). By analyz-
ing the contribution dependence in more detail one observes

0 0.2 0.4 0.6 0.8x
-3

-2

-1

0

1

2

σ xy
 (1

0-3
Ω

 c
m

)-1

fcc-FexPd1-x

FIG. 1. (Color online) The AHC of fcc-FexPd1−x as a function
of concentration x determined within the Kubo-Bastin formalism.
The total AHC (σ vc

xy ) and different contributions to it are shown: the
on-site term (σ 0

xy), the off-site Fermi-surface term, including vertex
corrections (σ 1,I,vc

xy ) and the off-site Ferm-sea contribution (σ 1,I I
xy ).

Additionally, the off-site term omitting the vc (σ 1,I,nvc
xy ) is shown for

comparison. Experimental data [71] for σxy (full circles) determined
at T = 4.2 K is also displayed.

that the incoherent contributions (vc) play a minor role in the
middle of the concentration range but become very important
at small concentrations. This dominance of extrinsic effects
at small concentrations lends credibility to the Boltzmann
formalism that is applicable to alloys in the dilute limit and
captures the skew-scattering contribution [74]. Note that the
formalism presented here gives all contributions to the AHC
and allows one to extract intrinsic (coherent) as well as extrin-
sic (incoherent) contributions (e.g., skew scattering and side
jump), as has been done before in the Kubo-Středa approach
[24–26]. The site-diagonal term σ 0

xy gives only a minor con-
tribution to the AHC over the whole concentration range and
shows almost negligible variation. The Fermi-sea term σ 1,I I

xy
follows the same trend, even though it is somewhat larger and
shows stronger variation for vanishing concentration (x → 0).
One exception to the former statements is the range in which
the total AHC changes sign (x ≈ 0.2). There the site-diagonal
as well as the Fermi-sea term gain larger relative weight
that is, however, due to the fact that the Fermi-surface term
approaches zero.

Let us turn now to the discussion of paramagnetic systems
and the spin Hall conductivity (SHC). As both the AHE
and SHE share the same relativistic origin and underlying
mechanisms, observations made for the SHC can be discussed
along the lines above for the AHC. In Table II we show the
intrinsic SHC for Cu, Pt, and Au as well as the full SHC for the
alloys Cu50Au50 and Au50Pt50. Overall, again the site-diagonal
contribution σ z0

xy is very small. The Fermi-sea contribution
σ z1,I I

xy is small but non-negligible, and for Au50Pt50 is largest
and constitutes about 15% of the total SHC. For the pure
systems Pt and Au, there is fair agreement to other theoretical
BCA-based calculations. Let us note here that for Pt and
Au the experimental spin Hall angle αsH, i.e., the ratio
between the SHC and the longitudinal charge conductivity
for pure systems, is discussed rather controversially, with
large scatter in the reported data (Pt: αsH = 0.37 . . . 12, Au:
αsH = 0.8 . . . 11.3). Therefore we omitted a detailed list of
experimental values in Table II and refer the interested reader
to a recent compilation of experimental data [75]. Note further
that in the case of the SHC for disordered systems the vertex
corrections also vanish numerically in the Fermi-sea term, as
has been observed for the AHC (see Table II). This can be seen
as a result of the particular construction of the vc Eq. (A2), as
these are only expressed in terms of scattering path operators
τ and are independent of the chosen operators for the matrix
elements.

In Fig. 2 we show the concentration-dependent SHC of the
alloy CuxAu1−x . For this system the total SHC is essentially
given by the Fermi-surface term σ z1,I

xy , with the site-diagonal
and Fermi-sea term giving almost negligible contribution and
having the largest relative contribution in the middle of the
concentration range. The large diverging scattering contri-
butions for x → 0 and x → 1 are of incoherent (extrinsic)
origin, an observation already made for other dilute alloys [25].
A comment concerning both AHC and SHC in dilute alloys
seems in due place here: together with the divergence of the
SHC at the boundaries, also the longitudinal conductivities will
diverge such that the ratio σ (z)

xy /σxx, namely, the anomalous or
spin Hall angle, that is usually determined in experiment, will
have a finite value. Furthermore, as the intrinsic contribution
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FIG. 2. (Color online) The SHC of CuxAu1−x as a function of
concentration x determined within the Kubo-Bastin formalism. The
total SHC and different contributions (notation: see text and Fig. 1
caption) to it are displayed.

to the AHC/SHC for a perfect crystal (no disorder) is finite, its
contribution to the Hall angle at T = 0 K will vanish. At finite
temperature, however, induced scattering by lattice vibrations
or impurities will lead to a finite σxx and indeed, experimental
data for the AHE in metallic systems is often obtained by
varying temperature or by doping.

V. SUMMARY

We presented a general linear response Kubo-Bastin
approach and a subsequent implementation within a first-
principles multiple-scattering Green’s function method. The
so-called Fermi-surface and Fermi-sea contributions are both
treated on equal footing, employing a fully relativistic formu-
lation spin-orbit-induced phenomena, particularly transverse
transport quantities as the anomalous and spin Hall effect are
properly described. The derived transport expression gives all
elements of the (conductivity) tensor, namely, the symmetric
and, in particular, antisymmetric components. Furthermore,
the approach is not only able to deal with pure systems,
but, using the CPA, substitutionally disordered alloys of
any concentration can be treated, thereby avoiding inferior
approximations as the virtual crystal approximation (VCA)
and/or large supercells. The described method is able to
capture both intrinsic as well as extrinsic (e.g., side-jump
and skew-scattering) contributions to the transport tensors
consistently within one and the same formulation. Vertex
corrections (within the CPA) are fully taken into account. We
presented applications for the AHE and SHE and discussed the
various contributions to the (spin) transport tensors for pure
systems as well as a number of transition-metal alloys.

As the derived expression within the KKR(-CPA) factorizes
into matrix elements of the chosen operators and products of
scattering path operators, the method can be straightforwardly
adapted to deal with a number of linear response quantities by
simply replacing the matrix elements. This concerns, e.g., the
Gilbert damping [38] or spin-orbit torques. Spin-caloritronic
quantities (e.g., spin and anomalous Nernst effects) will be
accessible with minor effort within the presented Kubo-Bastin
approach.

Finally, we want to point out that finite-temperature effects
can be easily taken into account, as has already been done in
Kubo-Greenwood–like formulations for longitudinal transport
and Gilbert damping [38,78] using an alloy analogy model for
lattice vibrations and spin fluctuations.
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APPENDIX A: KKR-CPA TRANSPORT FORMALISM
FOR THE KUBO-BASTIN FORMULATION

Starting from Eqs. (11) and (12) and due to the employed
contour integration and the required energy derivative of
the GF, matrix elements have to be calculated for pairs of
complex energies. Note that in former approaches using the
Kubo-Greenwood formulation for disordered alloys, calcu-
lations were performed on the real axis (symmetric surface
term only). This very much simplified the expressions and
implementation, as on the real axis the wave functions (Z

and J) become real and one can neglect the second term in
Eq. (13) containing the irregular solutions [see also Eq. (7)].
Furthermore, phase relations have been used to relate wave
functions with energy z = (limη→0+ EF + iη) to those with
z = limη→0+ (EF − iη), leading to transformation relations
between matrix elements for the 〈jG+jG+〉, 〈jG+jG−〉,
〈jG−jG+〉, and 〈jG−jG−〉 terms in Eq. (11). Away from the
real axis (i.e., when evaluating the Fermi-sea contribution and
distorting the integration path for the energy into the complex
plane) these are not applicable anymore for arbitrary operator
pairs. For the τ matrix the following relation is, however, valid,

τnm
′(z∗) = (−)l+l′[τmn

′(z)
]∗

, (A1)

and can therefore be exploited. In what follows we work along
the solution of the transport equation and notation introduced
by Butler [21] and, however, extend it to the Kubo-Bastin
formalism. For reasons of simplified notation, we here present
only the case of having one atom per unit cell; the indices n

and m therefore are numbering the unit cells in the crystal.
With this the contributions to �Gn

ν Eq. (15) read as

�G1,αβ,n
ν (r,r,za,zb) =

∑
1234

Zαn
1

(r,za) j
Aβn

ν23
(rws,za,zb)Zαn×

4
(r,zb)

×
∑

5678

D̃α
84

(zb)Dα
15

(za)D̃β

62
(za)Dβ

37
(zb)χ̃5678 (za,zb),
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�G
0,α,n
ν1 (r,r,za,zb) =

∑
1234

Zαn
1

(r,za) j
Aβn

ν23
(rws,za,zb)Zαn×

4
(r,zb)

×
∑
56

Dα
15

(za)D̃α
64

(za) τ̄ nn
52

(za) τ̄ nn
36

(zb),

�G
0,α,n
ν2 (r,r,za,zb) = −

∑
134

τ̄ nnα
34

(zb)
[
J αn

1
(r,za) Zαn×

4
(r,zb) jAαn

ν13
(r,za,zb) + Zαn

1
(r,za) Zαn×

4
(r,zb) j̄ Bαn

ν13
(r,za,zb)

]
,

�G
0,α,n
ν3 (r,r,za,zb) = −

∑
123

τ̄ nnα
12

(za)
[
Zαn

1
(r,za) J αn×

3
(r,zb) jAn

ν23
(r,za,zb) + Zαn

1
(r,za) Zαn×

3
(r,zb) j̄ Cαn

ν23
(r,za,zb)

]
,

�G
0,α,n
ν4 (r,r,za,zb) =

∑
13

[
J αn

1
(r,za) J αn×

3
(r,zb) jAαn

ν13
(r,za,zb) + Zαn

1
(r,za) Zαn×

3
(r,zb) j̄Dαn

ν13
(r,za,zb)

]
,

with τ̄ denoting the CPA averaged τ matrix and the Greek
indices α,β signify the atom type which occupies an atomic site
n,m. In the last expression the auxiliary r-dependent quantities
containing the charge current operator,

jAαn
ν12

(r,za,zb) =
∫ r

0
d3r ′Zαn×

1
(r ′,za) ĵνZ

αn
2

(r ′,zb),

jBαn
ν12

(r,za,zb) =
∫ r

0
d3r ′J αn×

1
(r ′,za) ĵνZ

αn
2

(r ′,zb),

jCαn
ν12

(r,za,zb) =
∫ r

0
d3r ′Zαn×

1
(r ′,za) ĵνJ

αn
2

(r ′,zb),

jDαn
ν12

(r,za,zb) =
∫ r

0
d3r ′J αn×

1
(r ′,za) ĵνJ

αn
2

(r ′,zb),

j̄Xαn
ν12

(r,za,zb) = jXαn
ν12

(rws,za,zb) − jXαn
ν12

(r,za,zb),

for X = A,B,C,D

have been used, where rws denotes the Wigner-Seitz (or ASA)
radius. The following standard definitions [21,64] for the
auxiliary matrices Dα,D̃α,xα,�mα , and τnnα are employed:

Dα = 1 + τ̄ 00xα, D̃α = 1 + xατ̄ 00,

xα = [1 − �mα τ̄ 00]−1 �mα,

�mα = m̄ − mα, τnnα = Dατ̄ 00 = τ̄ 00D̃α ,

where m̄ = t̄−1, with t̄ being the CPA average of the single-site
t matrices tα and mα = [tα]−1. In the solution of the transport
equations the quantity

χ̃12 34 = χ̃K1K2 = {[1 − χ w]−1χ}K1K2 , (A2)

where the combined indices K1 = (14),K2 = (23) play
a crucial role as they contain the vertex corrections. The
auxiliary quantity χ is given by

χK1K2 = χ12 34 (za,zb)

=
∑

m,m�=n

τ̄ nm
12

(za) τ̄ mn
34

(zb)

=
⎡
⎣ 1

	BZ

∫
	BZ

τ̄12 (k,za)τ̄34 (k,zb) d3k

⎤
⎦

− τ̄ nn
12

(za) τ̄ nn
34

(zb), (A3)

and is obtained via an integral over the BZ and results
from the assumed periodicity of the CPA medium after a
Fourier transformation. The determination of the four index
quantity χ and the inversion Eq. (A2) are computationally very
demanding, in particular, when many k points are needed and
with growing system size (number of atoms per unit cell). A
scheme to exploit symmetry when dealing with the BZ integral
Eq. (A3) has been worked out previously [79]. This allows us
to restrict χK1K2 to its nonzero elements and to integrate only
over the irreducible part of the BZ. The interaction term w is
given as

w12 34 (za,zb) = wK1K2 (za,zb)

=
∑

α

cαxα
12

(za)xα
34

(zb) ,

where cα in the last expression denotes the concentration of
the alloy partner α (denoted as xα in the main text).

Setting w to zero in Eq. (A2) amounts to neglecting the
vertex corrections. Further note, however, that the formalism
is equally well applicable to pure systems. In that case χ = χ̃

because w = 0.

APPENDIX B: MATRIX ELEMENTS

The regular and irregular solutions of Eq. (1) are expanded
into four spinors of the form [80,81]

Z(r) =
∑
′

(
g′(r)χ′(r̂)

if′(r)χ−′(r̂)

)
, (B1)

where g and f are the radial functions of the large and
small components, respectively, and χ are the usual spin-
angular functions [34], being linear combinations of products
of complex spherical harmonics Ym

l and the spin functions
χms

,ms ∈ {− 1
2 ,+ 1

2 }. The quantum number  in the latter
expression is used to label the states which can have mixed
spin-angular character. We use the notation − = (−κ,μ).

Both, the AHE and SHE in the linear response framework
originate from a perturbation given by the charge current.
Within the relativistic framework used here the current opera-
tor is represented by ĵ = −|e|cα. Therefore, matrix elements
of the Dirac αμ have to be evaluated. Note, when calculating
these matrix elements significant errors can be introduced
when using the shape approximation in the form of the ASA.
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Here we use a scheme proposed by Shilkova and Shirokovskii
[82] that has already been used before to correct for these
errors. This can be checked by comparing to yet another form
of the matrix elements for α that has been derived before
[83] and relies on rewriting the matrix elements using the
anticommutator [ĤD,α]+ into an equivalent form containing
the momentum operator p̂.

The calculations of matrix elements of the spin-polarization
current-density operator Eq. (16) is naturally split into two
components. The first component contains products of β,αμ

and �z matrices which can be simplified using

β�zαμ = iεzμν

(
0 −σν

σν 0

)
, μ ∈ {x,y}, ν �= z,μ,

(B2)
where in the last expression εijk is the Levi-Civita symbol with
the understanding of the mapping x → 1, y → 2, z → 3 for
the coordinate directions. By inspection of Eq. (2) it is seen
that the matrix elements Eq. (B2) can be easily computed using
the existing matrix elements of the current operator containing
the αμ matrices.

The second part involves matrix elements of the operator
γ5p̂zαμ, i.e.,

γ5p̂zαμ = −�

i
∇z�μ , (B3)

which are evaluated using the gradient formula of Ref. [33],
Eq. (2.57):

∇M φl(r) Ym
l (r̂) =

√
l + 1

2l + 3
C(l 1, l + 1; m M)

×Ym+M
l+1 (r̂)

[
dφl(r)

dr
− l

r
φl(r)

]

−
√

l

2l − 1
C(l 1, l − 1; m M)

×Ym+M
l−1 (r̂)

[
dφl(r)

dr
+ l + 1

r
φl(r)

]
,

with M ∈ {−1,0,1} denoting a spherical coordinate, φl a
radial function, Ym

l a complex spherical harmonic, and
C(j1j2j ; m1m2) being a Clebsch-Gordan coefficient. (For
phase conventions and definitions employed, see Ref. [33].)
To use the latter formula the vector operator components
Eq. (B3) have to be transformed from Cartesian coordinates
{x,y,z} into spherical coordinates {−1,0,1} using A±1 =
∓ 1√

2
(Ax ± iAy),A0 = Az, both for the momentum operator

and the relativistic Pauli-spin operator �μ.
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