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Theory and experiment on cavity magnon-polariton in the one-dimensional configuration
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We have theoretically and experimentally investigated the dispersion of the cavity-magnon-polariton (CMP) in
a one-dimensional (1D) configuration, created by inserting a low damping magnetic insulator into a high-quality
1D microwave cavity. By simplifying the full-wave simulation based on the transfer matrix approach in the long
wavelength limit, an analytic approximation of the CMP dispersion has been obtained. The resultant coupling
strength of the CMP shows different dependence on the sample thickness as well as the permittivity of the sample,
determined by the parity of the cavity modes. These scaling effects of the cavity and material parameters are
confirmed by experimental data. Our work provides a detailed understanding of the 1D CMP, which could help
to engineer a coupled magnon-photon system.
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I. INTRODUCTION

Coupling between electrodynamics and magnetization dy-
namics is a subject of long-standing interest [1–24]. At the
resonant condition where the microwave frequency approaches
the eigenfrequency of a magnon, two pieces of key physics
stand out from the resonant magnon-photon coupling: (i) mode
hybridization takes place, which leads to the formation of a
magnon polariton [3]; (ii) damping correlation happens, which
causes radiation damping [1,4,5,16,22].

Very recently, interest in the physics of magnon-photon
coupling has grown significantly due to the advancement of
microwave cavity and spintronic techniques. Experimental
progress has shown that the strong coupling between magnon
and photon can be easily achieved by inserting a low damping
magnetic material into a high-quality microwave cavity [7–18].
Such a cavity spintronic method [19] creates new avenues
for studying and utilizing both spintronics and quantum
information, as highlighted by the recent development of a
cavity spin pumping method for coherently manipulating spin
currents using magnon-photon coupling [16] and the invention
of quantum transducers that coherently link diverse quantum
systems [20,21], respectively.

Theoretically, as summarized in Table I, different ap-
proaches have been developed for studying the resonant
magnon-photon coupling. The simplest approach is rooted in
the physics of coupled harmonic oscillators, which provides an
intuitive picture of the key physics of mode anticrossing and
damping evolution. This approach can be formulated by using
either a classical or a quantum mechanical model, as detailed in
the Supplementary Materials of Ref. [9] and [16], respectively.
Within such an approximation of harmonic oscillators, there
is no distinction between the physics of quantum and classical
coupling.

Such a distinction appears in the refined general approaches,
which specifically identify different origins of the magnon-
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photon coupling in the quantum and classical regimes. In
the fully quantum-mechanical treatment [23], it was found
that the quantum-coherent magnet-photon coupling arose from
the entangled quantum states of spin orientation and photon
number. On the other hand, in a concise but general classical
treatment independent of the sample and waveguide geome-
try [16], it was found that classical-coherent magnet-photon
coupling appears due to the mutual electrodynamic coupling
of the macroscopic microwave field and the macroscopic
magnetization, which follows the classical phase correlations
determined by Faraday’s law and Amperé’s law (i.e., by
Maxwell’s equations). So far, it remains a theoretical challenge
of clearly defining the border between the quantum and the
classical coupling regimes, which is needed for understanding
the transition from quantum- to classical-coherent magnet-
photon coupling. However, in light of the general classical
model [16], which quantitatively captures both key features of
mode hybridization and radiation damping measured in recent
experiments [7–17], it appears that many of these experiments
probe the property of cavity magnon polaritons (CMPs), which
are formed by the classical-coherent magnet-photon coupling.

As known from early theoretical study of the propagation
of electromagnetic waves in a microwave waveguide partially
filled by a magnetic slab [2], the details of the CMP tediously
depend on the parameters of practical interest, such as the
shape and size of both the waveguide and the sample.
In general, it requires numerical solution of the coupled
Maxwell’s equations and Landau-Lifshitz-Gilbert equation.
Only in special cases, simple solutions can be obtained. One
of such special examples is the 1D cavity inserted with a
magnetic slab, which was recently theoretically analyzed by
using the 1D scattering theory [24]. To verify the specific
theoretical results obtained from such a detailed approach,
an experimental method of studying the classical-coherent
magnet-photon coupling in the 1D configuration needs to be
developed.

In this paper, we develop such a 1D method experimen-
tally. Furthermore, we simplify the 1D scattering theory by
using the straightforward transfer matrix method, so that our
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TABLE I. Summary of different theoretical approaches developed recently for studying the physics of magnon-photon coupling.

Approaches Classical theory Quantum theory

Intuitive coupled harmonic oscillators (Ref. [16]) coupled harmonic oscillators (Ref. [9])
Concise electrodynamic phase correlation (Ref. [16]) quantum entangled states (Ref. [23])
Detailed 1D scattering theory (Ref. [24])

transfer matrix method (this work)

experimental and theoretical method can be easily used in a
combined way for studying the detailed physics of the CMP in
the 1D configuration. One of our focus here is to explain how
the coupling between photons and magnons depends on the
thickness of the sample as well as the parity of cavity mode
for a 1D cavity.

This paper is split into two main sections: theoretical
model and experimental results. In the theoretical model
section, we first provide a brief description of the 1D cavity
used in this work and use the transfer matrix approach to
derive the cavity resonance. Then the dispersion of the CMP
due to the hybridization of the cavity resonance and the
ferromagnetic resonance (FMR) in a bulk yttrium iron garnet
(YIG, Y3Fe5O12) is derived by solving the coupled Maxwell’s
equations and Landau- Lifshitz-Gilbert equation using the
transfer matrix method. To highlight the coupling strength in a
CMP, the full-wave simulation is simplified in the limit of long
wavelength, which clearly shows its strong dependence on the
cavity length, sample thickness, sample permittivity as well as
the parity of the cavity modes. Finally, we present experimental
results to confirm our numerical results and analytical model.

II. THEORY OF CAVITY MAGNON POLARITON
IN THE 1D CONFIGURATION

For a quantitative understanding of the CMP dispersion,
we developed a model to solve the case for a 1D microwave
cavity. In general it is difficult to provide the exact analytical
solution of modes excited in a ferrite loaded cavity under a
magnetic bias, where the propagating wave encounters spin
dynamics in the loaded ferrite sample [2,25,26]. However,
in the special case of the one-dimensional cavity that is
used in this work the problem of wave propagation can
be analytically solved [15]. To simplify the complicated
mathematical process, the scattering matrix treatment and
transfer matrix, being derived from general principles such as
conversion of energy, are used to deduce the exact solution
of the CMP. This full-wave solution provides all detailed
information of the coupled magnon-photon system without
any adjustable parameters. In addition, a simplified analytical
solution is also deduced in the long wavelength limit and
validated by the full-wave calculation, allowing the prediction
of the coupling strength between cavity modes and magnon
modes in a straightforward way.

A. Microwave cavity based on waveguide assembly

As shown in Fig. 1(a) the microwave cavity used in this
work is a Fabry-Perot-like resonator based on the Ku band
(12–18 GHz) assembled waveguide apparatus [15,27,28],
where circular waveguides are connected through circular-

rectangular transitions to coaxial-rectangular adapters and
two transitions are rotated by an angle θ . The microwave
propagation in such an apparatus can be characterized by the
S parameter and measured by a vector network analyzer.

The fundamental mode of the rectangular waveguide is
TE10 and the polarization of the microwave electric field is
along x and x ′ [the short axis of the rectangle in Fig. 1(a)]
for port A and B, respectively. For the circular waveguide
the fundamental mode is TE11, supporting two degenerate
orthogonal waves, named x- and y-polarized waves for port A
(x ′- and y ′-polarized waves for port B). Therefore, a circular-
rectangular transition is designed to smoothly transform the
TE10 mode of its rectangular port (port 1) to the copolarized
TE11 mode of its circular port (port A) without any reflection.
However, propagating from port A towards port 1 only x-
polarized waves be can transmitted through while y-polarized
waves are reflected with a reflection coefficient of R (very close
to 1) and a phase shift of φy , which can be determined experi-
mentally. Similar effects appear for x ′- and y ′-polarized waves
propagating form port B toward port 2. Because of this mirror-
like effect for y- and y ′-polarized waves, a Fabry-Perot-like

θ

x

y

x'

y'

(a)

(b)

(c)

x'

y'y

z x

x'

FIG. 1. (Color online) (a) Schematic of the waveguide assembly
cavity. Two circular-rectangular transitions are twisted by an angle θ

with respect to each other and are connected to a vector network ana-
lyzer through SMA to rectangular waveguide adapters. (b) Wave prop-
agation between port A and B in (a) described by a cascade connection
of two-port networks. (c) Schematic diagram of the wave propagation
for incident wave from port 1 and transmitting wave toward
port 2. For the coupling experiments, the static magnetic bias Hext

is applied in the x-y plane, perpendicular to the direction of wave
propagation (along z direction).
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resonator is built and a standing wave is generated in the long
dimension (along the z direction) of the circular waveguide
at a particular frequency, which can be deduced by Maxwell’s
equations as detailed in the discussion below.

B. Analytical model of the resonant cavity

To provide the analytical solution for the wave propagation
in the microwave cavity and hence the quantitative analysis
of the coupling between magnon and cavity modes, we start
with the transfer matrix (the ABCD matrix in microwave
terminology) for a dielectric loaded cavity. As shown in
Fig. 1(b), ls is the thickness of the sample loaded waveguide
and l is the length of air-filled waveguide. Hence, the whole
length of the circular waveguide is W = 2l + ls . Following
the e−iωt convention, the transfer matrix for a two-port
network, for example, the sample-loaded waveguide [yellow
area between port L and R in Fig. 1(b)], can be defined as [29]

(
eL

hL

)
=

(
cos(ksls) −iZs sin(ksls)

−iZ−1
s sin(ksls) cos(ksls)

)(
eR

hR

)
= Ms

(
eR

hR

)
, (1)

where the subscript L (R) indicates the left (right) interface
of the sample. Equation (1) links the electric field (e) and
magnetic field (h) of microwave propagation in a dielectric
medium using the ABCD matrix Ms , where the matrix ele-
ments relate only on the material parameters of wave number
[ks = (ω/c)

√
εsμs − (ωc/ω)2], the characteristic impedance

(Zs = ωμ0μs/ks) and the length of transmission line (ls). Here
ω, ωc, εs(μs), and ε0(μ0) are the frequency of the operating
microwave, the cut-off frequency of the circular waveguide,
the relative complex permittivity (permeability), and vacuum
permittivity (permeability), respectively. c = 1/

√
ε0μ0 is the

vacuum speed of light. For the air-filled region in waveguide,

the wave number and characteristic impedance are k0 and Z0

using εs = μs = 1.
We note that the finite lateral size of the waveguide results

in the cut-off wavelength λc = 2πc/ωc; for the TE11 mode in
a circular waveguide λc is 3.41 times the radius (8.05 mm for
standard Ku-band circular waveguides) [29], corresponding
to ωc/2π = 10.85 GHz. As a consequence, the velocity of
microwave propagation along the waveguide is less than its
velocity through free space (speed of light), which results
in a reduction of the ratio of the effective sample thickness
with respect to the effective length of the cavity and hence
significantly affects the dispersion of the CMP.

The convenience of the transfer matrix relies on the fact
that the ABCD matrix of the cascade connection of the two
networks is equal to the product of the ABCD matrices
representing the individual two ports. As such in Fig. 1(b),
the transfer matrix between ports A and B is MAB = M1MsM2

and M1 and M2 are the air-filled circular waveguides located at
the left and right side of the sample, respectively. However, the
ABCD transfer matrix relates the total electric and magnetic
field at the ports; to characterize the fields incident on the ports
to those reflected from the ports the scattering matrix (also
referred to as S parameter) should be involved, defined as(

e−
A

e−
B

)
=

(
SAA SAB

SBA SBB

)(
e+
A

e+
B

)
, (2)

where the superscript “+” (“–”) indicates the waves entering
(exiting) the port. The elements of the scattering matrix can
be easily obtained from the ABCD transfer matrix according
to Eq. (A7) in Appendix A [29]. The great advantage of using
the scattering matrix is that the S parameter can be measured
directly with a vector network analyzer.

As the experimentally accessible parameter is the transmis-
sion coefficient S21 between ports 1 and 2 of the assembled
waveguide cavity, a wave entering or exiting the ports A or
B must be considered by including the boundary condition. A
detailed mathematical process can be found in Appendix A,
leading to the transmission coefficient S21 from port 1 to port 2

S21 = cos(θ )SAB[−1 + R2e2iφy SABSBA + eiφy RSBB − eiφy RSAA(−1 + eiφy RSBB)]

−1 + e2iφy cos2(θ )R2SABSBA + eiφy RSBB − eiφy RSAA(−1 + eiφy RSBB)
. (3)

This equation is the key result of the full-wave solution for
calculating the property of CMP in the 1D wave propagation
configuration. Here R and φy are the reflection coefficient
and phase shift for the nonsupported polarized microwave
for the rectangular waveguide, respectively. For an air-filled
waveguide (empty waveguide, εs = μs = 1), it is found that
SAA = SBB = 0 and SAB = SBA = eik0(2l+ls ) and hence

S21 = cos(θ )eik0(2l+ls ) 1 − R2e2i(2k0l+k0ls+φy )

1 − R2 cos2(θ )e2i(2k0l+k0ls+φy ) . (4)

The waveguide assembly acts as a transmission through
waveguide with S21 = eik0(2l+ls ) at cos(θ ) = 1, while it would
block transmission with S21 = 0 at cos(θ ) = 0. Except for
these extreme cases, the spectra of S21 appears as a set of cavity
modes occurring at a cavity resonant frequency of ωCR with a

minimum transmission of |S21(ωCR)| = cos(θ )(1 − R2)/[1 −
R2 cos2(θ )] ≈ 0, where kCR(2l + ls) + φy = qπ with kCR =
(ωCR/c)

√
1 − (ωc/ωCR)2, q being an integer.

In our experiments, the angle of θ is rotated to be 45◦
unless otherwise specified. As expected a set of resonances
is observed for the air-filled waveguide as well as the
teflon-loaded waveguide shown in Fig. 2(a). These cavity
resonances can be classified into two groups: e modes
(corresponding to even number q) being antinodes of the
microwave electric field and h modes (corresponding to odd
number q) being nodes of the microwave electric field at the
sample position. In the absence of any external applied static
magnetic bias, i.e., Hext = 0, the loaded dielectric sample
only causes the red shift of the e modes but has negligible
effect for the h modes; this effect can be clearly seen in
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Fig. 2(a) when a 1.6 mm thick teflon disk is loaded in the
cavity. Using the full-wave simulation base on Eq. (3), the
precise values of R and φy were determined for the air-filled
waveguide: for example, R = 0.995 and φy = −36.1◦ for
the e mode occurred at 13.199 GHz and R = 0.995 and
φy = −6.5◦ for the h mode occurred at 12.159 GHz.

In order to distinguish the different dielectric dependence
of e and h modes on the loaded material, we have simplified
Eq. (3) near the cavity modes by Taylor expansion. In the limit
of long wavelength, to |ksls | � 1, and assuming R = 1 for
simplicity, one can obtain the first-order approximation given
by

S21 = 2
√

2

3
e−iφy

⎡⎣1 − 1

1 − i
[
6l(k0 − kCR) + 3ls

( k2
s

μsk0
− k0

)]
⎤⎦, (e-mode)

(5)

S21 = −2
√

2

3
e−iφy

[
1 − 1

1 − i[6l(k0 − kCR) + 3ls(μs − 1)k0]

]
. (h-mode)

The prefactor of S21 is determined to be 2
√

2/3 since far from the cavity modes |S21| tends to be 2| cos(θ )|/[1 + cos2(θ )]
according to Eq. (4). To clearly see the resonant feature of the cavity modes, we rewrote the above expressions as

S21 = 2
√

2

3
e−iφy

[
1 + �ωCR

i(ω − ωCR + δωCR) − �ωCR

]
, (e mode)

(6)

S21 = −2
√

2

3
e−iφy

[
1 + �ωCR

i(ω − ωCR + δωCR) − �ωCR

]
, (h mode)

with

δωCR = ls

2l
ω

[
(εs − 1) +

(
1 − 1

μs

)(
ωc

ωCR

)2]
(e mode),

(7)

δωCR = ls

2l
ω(μs − 1)

[
1 −

(
ωc

ωCR

)2]
(h mode).
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FIG. 2. (Color online) (a) Measured amplitude of S21 spectra for
the air-filled cavity (solid line) and Teflon-loaded cavity (dotted
line) at θ = 45◦ and Hext = 0 with W = 85 mm and ls = 1.6 mm.
(b) Calculated |S21| spectra according to Eq. (6) for air-filled cavity
(black line) and Teflon-loaded cavity (red line) as compared to the
measured data (symbols).

Here the linewidth of the cavity mode is �ωCR =
(c/6l)

√
1 − (ωc/ωCR)2. Physically, the linewidth of the res-

onator is related to the energy loss of the cavity loaded in
the circuit, which can be estimated by the lifetime of the
photon trapped in the cavity. Due to the finite cross section of
waveguide, the velocity of the microwave photon at resonances
is c

√
1 − (ωc/ωCR)2 along the waveguide, and hence the travel

time is about τt = 2l/c
√

1 − (ωc/ωCR)2. Depending on the
polarization, half of the photons could be lost at the interface
of either port A or B in our proposed 1D cavity; thus, the
average lifetime of photon is about τl = τt

∑+∞
n=1 n2−n = 2τt ,

which is the same order as 1/�ωCR = 3τt estimated from the
transfer matrix approach.

Equations (6) and (7) clearly indicate that the h mode is not
sensitive to the dielectric material (usually μs = 1) loaded at
the center of the cavity where the node of the microwave
electric field is present. Using the values of εs = 2.0 (at
13 GHz provided by the company), ωCR/2π = 13.199 GHz
(12.159 GHz) for the e mode (h mode), and ls = 1.6 mm,
the measured S parameter for the dielectric loaded cavity
can be well reproduced as shown in Fig. 2(b) based on
the calculation according to Eq. (6). The red shift of the
e mode shows excellent agreement between measurement
and calculation with δωCR/2π = 0.25 GHz. The calculated
linewidth of �ωCR/2π = (c/6l)

√
1 − (ωc/ωCR)2 = 0.11 GHz

is slightly smaller than the measured linewidth of �ωCR/2π =
0.14 GHz, which may be due to the contribution from intrinsic
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damping caused by factors such as conductor loss of the
cavity, not included in our model. The intrinsic quality factor
Q0 [30,31] of cavity mode, which denotes the loss in the
resonator, itself can be estimated as ∼103 approximately
according to the ratio between cavity resonance frequency
and the bandwidth at +3 dB with respect to the minimal
transmission [32].

C. Full-wave solution of the CMP dispersion

Far from the FMR frequency ωFMR of the ferrite sample,
the spin-precession frequency is either much larger or much
smaller than the frequency (ω) of the driving microwave field.
Therefore, the interaction between the electromagnetic field
and spin dynamics is negligible. As a consequence, the YIG
sample acts as a dielectric medium, only causing the red shift
of the e mode while causing no first-order effect for the h

mode as discussed in Sec. II B. In the vicinity of the FMR
frequency, the dynamic response of the spin precession m
driven by the microwave magnetic field h is governed by
the Landau-Lifshitz-Gilbert equation [33]. Meanwhile, the
wave propagation in the ferrite should also satisfy Maxwell’s
equation.

When ωFMR approaches ωCR , the electrodynamics and
magnetization dynamics are strongly coupled. Conventionally,
one can solve the coupled Landau-Lifshitz-Gilbert equation
and Maxwell’s equation as detailed in the discussion in
Appendix B by introducing the effective permeability μeff

given by

μeff = (1 + χL)2 − χ2
T

1 + χL

, (8)

where χL and χT are the diagonal and non-diagonal elements
of the Polder tensor as defined in Eq. (B5) in Appendix B.
The static magnetic bias Hext is applied along the y ′ direction,
perpendicular to the direction of wave propagation (along z

direction) in a coordinate shown in Fig. 1.
When |ω/ωFMR − 1| � 1, the resonant feature of μeff can

be expressed as

μeff − 1 ≈ −1

2

(ωH + ωM )ωM/ω

(ω − ωFMR) + iα(ωH + ωM/2)
, (9)

with ωH = γHext, ωM = γM0 and ωFMR =
γ
√

Hext(Hext + M0). Here γ = μ0e/me is the effective
gyromagnetic ratio of an electron (charge e and mass me), α

is the Gilbert damping parameter, and M0 is the saturation
magnetization.

Replacing μs in Eq. (A5) with the effective permeability
μeff , and substituting the resultant wave number ks and
the characteristic impedance Zs for the YIG sample into
the transfer matrix, the S parameters (SAA, SAB , SBA, and
SBB) between port A and B are deduced as detailed in the
discussion in Sec. A. Then the transmission coefficient near
the FMR can be calculated by the full-wave solution according
to Eq. (3). With parameters of ωc = 0, φy = 0, R = 1,
μ0M0 = 175 mT, γ = 176μ0 GHz/T, α = 1.25 × 10−3, and
W = 46 mm, Fig. 3(b) plots the calculated S21 spectra as a
function of microwave frequency and magnetic field near the
h mode (q = 3) occurred at ω/2π = 9.77 GHz. Without going

FIG. 3. (Color online) (a) S21 spectra at ωFMR/2π = ωCR/2π =
9.77 GHz, where the CMP gap was used to determine the coupling
strength g. (b) Dispersion of the CMP as a function of microwave
frequency and magnetic field at ls = 5μm. The dashed line indicates
the condition of ωFMR = ωCR . (c) Coupling strength with q = 3 and
4 are calculated based on the scattering theory (open symbols, from
Ref. [24]) and transfer matrix theory (solid lines, this work) with
parameters of ωc = 0, μ0M0 = 175 mT, γ = 176 μ0 GHz/T, and
W = 46 mm.

into the detailed behavior of the CMP, we focus on the coupling
strength (g) of the CMP, which is determined by the CMP gap
occurring at ωFMR = ωCR as shown in Fig. 3(a), to highlight
the general feature of the coupling between the magnon and
the photon in a 1D cavity.

Under such an approximation of zero cut-off frequency
(ωc = 0), we compare the results from different approaches:
the scattering theory [24] and transfer matrix theory. The
calculated cavity modes corresponding to q = 3 and q = 4 for
the empty cavity occur at 9.77 GHz (h mode) and 13.03 GHz
(e mode), respectively, which are very close to the results
obtained from the scattering theory. The coupling strength
(solid lines) for both h mode and e mode are plotted as
a function of l

1/2
s shown in Fig. 3(c). Despite significant

differences in the microwave feed for the cavity used in
the scattering theory (open symbols) and transfer matrix
theory (solid lines) to model the CMP, the final result of the
coupling strength is consistent, indicating the universality of
the CMP, which is independent of the specific design of the 1D
cavity.

In a practical implementation, the impact of the cut-off
frequency should be taken into account because of the finite
lateral size of the 1D cavity. To demonstrate this effect, the
coupling strength were calculated at ωc = 0 and ωc/2π =
10.85 GHz (determined by the size of the circular waveguide
in our cavity) by varying ls more than three orders of magnitude
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FIG. 4. (Color online) The coupling strength for neighboring h

mode (circles) and e mode (squares) in a 1D cavity (with W = 85 mm)
for ωc=0 (open symbols) and ωc/2π = 10.85 GHz (solid symbols).
For ωc = 0, h mode (e mode) occurs at 12.34 GHz (14.11 GHz)
at φy = 0 and R = 0.995, while for ωc/2π = 10.85 GHz, h mode
(e mode) occurs at 12.28 GHz (13.20 GHz) at φy = −36.5◦ and
R = 0.995. The dashed lines are guided by ∝l1/2

s and ∝l3/2
s relations

for the h and e modes, respectively, in the limit of the long wavelength
approximation.

from 1 μm to 1.5 mm. For the h mode, the coupling strength
has about a factor of 2 reduction in the entire calculated ls
range when using ωc/2π = 10.85 GHz as shown in Fig. 4. In
contrast, the coupling strength for e mode is not sensitive to ωc

in the limit of long wavelength ls < 0.2 mm (indicated by the
gray area in Fig. 4), in which (

√
εsωCR/c)ls < 0.2 with εs ≈ 15

for the YIG sample [34,35].
Figure 4 also shows that the coupling strength for the h

mode and e mode follows different power dependence of ls
guided by the dotted lines in the limit of long wavelength.
Beyond this range the red shift of the e mode causes its
approach to the neighboring h mode and the hybridization of
e mode and h mode due to the dielectric coupling in the cavity
may complicate the determination of the intrinsic coupling
strength of the magnon-photon system. In addition, the cavity
damping parameters �ωCR of both h mode and e mode are
strongly dependent on ωc (not shown). The quantification
of cavity damping is very important to characterize the
phenomena associated with distinct coupling range for the
coupled magnon-photon system.

D. Analytic solution of the coupling strength

To verify the different scaling effects for h and e modes
and hence provide an analytical solution of the coupling
strength between magnons and photons in a 1D cavity, we have
simplified the dispersion of the CMP in this section. To do so,
Eq. (9) is substituted into Eq. (3) and the Taylor expansion of
ls is used to determine the dominant power dependence of the
coupling strength.

1. Coupling strength g for h modes

In the limit of long wavelength, the first-order approxima-
tion is sufficient to model the dispersion of the CMP associated
with h modes. In this case, the transmission coefficient near

the FMR is reduced to

S21 = −2
√

2

3
e−iφy

×
[

1 + �ωCR

i(ω − ωCR) − �ωCR + g2

i(ω−ωFMR )−�ωFMR

]
(10)

with

�ωCR = (c/6l)
√

1 − (ωc/ωCR)2,

�ωFMR = α(ωH + ωM/2), (11)

g2 = (ls/4l)[1 − (ωc/ωCR)2](ωH + ωM )ωM,

where �ωCR is the damping coefficient for the cavity reso-
nance, �ωFMR is the damping coefficient for FMR and g is
the coupling strength between them. In Eq. (11), the coupling
strength g for h mode is linearly proportional to l

1/2
s , l−1/2 and

independent of the permittivity εs of the sample. It was also
found that the cut-off frequency ωc causes significant reduction
of the coupling strength g of the h mode as well as the damping
of the cavity.

To validate the analytical expression Eq. (11) for the
h mode, we compare it with the results using full-wave
simulation based on Eq. (3). Parameters for our YIG sample
are gyromagnetic ratio of γ = 169 μ0 GHz/T, the saturation
magnetization of μ0M0 = 0.155 T and damping factor α =
1.25 × 10−3 obtained from independent measurements, and
εs = 15 is from Refs. [34,35]. As shown in Fig. 5(a), the
coupling of the cavity and FMR modes results in a CMP gap
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FIG. 5. (Color online) (a) Simulated S21 spectra of h mode for the
YIG loaded cavity at μ0Hext = 380 mT (red solid lines) as compared
to the cavity mode for the empty cavity (black dotted lines). The
coupling strength g as a function of (b) l1/2

s at W = 85 mm and εs =
15, (c) l−1/2 at ls = 0.03 mm and εs = 15 and (d) εs at W = 85 mm and
ls = 0.03 mm. Solid lines are the analytical results based on Eq. (11)
and solid circles are extracted from the full-wave simulation based
on Eq. (3).
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FIG. 6. (Color online) (a) Simulated S21 spectra of e mode for
empty cavity (black solid lines) and YIG loaded cavity at Hext = 0
(blue dashed lines). The hybridization of the cavity and FMR modes
appears at μ0Hext = 412 mT (red solid lines). The coupling strength
g as a function of (b) l1/2

s at W = 85 mm and εs = 15, (c) l−1/2 at
ls = 0.1 mm and εs = 15, and (c) εs at W = 85 mm and ls = 0.1 mm,
with full numerical calculation (solid circles) and analytical results
(solid lines) using Eq. (13) (red solid lines).

(=2g) at ωCR = ωFMR , where the magnonlike CMP and the
photonlike CMP have an equal amplitude in S21 spectra.

For a systematic comparison, the full-wave simulation
is performed as a function of ls , l and εs at the condi-
tions of ωCR/2π = ωFMR/2π = 12.16 GHz (corresponding to
μ0Hext = 380 mT) and the resultant coupling strength g is
plotted as solid symbols in Figs. 5(b)–5(d), respectively, where
W = 2l + ls = 85 mm and εs = 15 in Fig. 5(b), ls = 0.03 mm
and εs = 15 in Fig. 5(c), and ls = 0.03 mm and W = 85 mm
in Fig. 5(d). In order to satisfy the condition of ωCR/2π =
12.16 GHz the odd integer q and φy should be adjusted
when varying l during the full-wave simulation. However,
both should not affect the calculated coupling strength. The
coupling strength g calculated from the analytical expression
of Eq. (11) is also plotted as a solid line in Figs. 5(b)–5(d). The
agreement between our full-wave simulation and analytical
approximation is remarkable. Therefore, Eq. (11) provides
a rigorous relationship between the sample parameters, the
geometric parameters of the resonant cavity and the coupling
strength, which should benefit not only the study of the CMP
but also the design of related microwave devices.

2. Coupling strength g′ for e modes

For the first order effect, the loaded YIG sample will
only result in the red shift of e modes, which is determined
by the electromagnetic property of the sample, expressed as
δωCR = ls

2l
ω[(εs − 1) + (1 − 1

μs
)( ωc

ωCR
)2] in Eq. (7). This effect

is illustrated in Fig. 6(a), where the full-wave simulation
indicates that the cavity resonance for the e mode originally
at 13.20 GHz shifts to 13.00 GHz when inserting the YIG
sample in the absence of the external magnetic field. More

interestingly, the full-wave simulation clearly reveals the
resultant CMP gap due to the hybridization of the cavity
modes and FMR modes at μ0Hext = 412 mT (corresponding to
ωFMR = ωCR − δωCR). To analytically explain this effect, the
effect due to higher-order ls terms should be taken into account.
Different from the analytical approximation for h modes, one
should expand Eq. (3) according to both ω − ωCR and ls ,
because in this case ω − ωCR ≈ δωCR , i.e., ∝ls . Expanding up
to third order in both ω − ωCR and ls and replacing higher-order
ω − ωCR terms with ω − ωCR = δωCR based on the first-order
approximation, the transmission coefficient of the CMP for e

modes is found to be

S21 = 2
√

2

3
e−iφy

×
[
1 + �ω′

CR

i(ω − ω′
CR) − �ω′

CR + g′2
i(ω−ωFMR)−�ωFMR

]
(12)

with

ω′
CR = ωCR − ls

2l
ω[εs − 1 + (ωc/ωCR)2],

�ω′
CR = �ωCR = (c/6l)

√
1 − (ωc/ωCR)2, (13)

g′2 = ε2
s (ωH + ωM )ωM

ω2

c2

l3
s

48l
.

Similar to that for the h mode, the coupling strength g′
in Eq. (13) is verified by comparing its dependence on ls ,
l and εs with the results from the full-wave simulation as
shown in Figs. 6(b)–6(d), respectively, where W = 85 mm and
εs=15 in Fig. 6(b), ls = 0.1 mm and εs = 15 for Fig. 6(c),
and ls = 0.1 mm and W = 85 mm for Fig. 6(d). Without any
adjustable parameters, the agreement between the full-wave
simulation and the analytical approximation is good. Although
g′ ∝ l−1/2 for the e mode is the same as g ∝ l−1/2 for the
h mode, g′ is linearly proportional to l

3/2
s and εs , differing

from g.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The CMP experiments have been performed by inserting an
YIG sample into the proposed 1D microwave cavity. Due to
the difficulty in obtaining YIG samples with an exact diameter
of 1.61 cm to satisfy the requirement of our 1D model, a
set of rectangular YIG samples with a dimension of about
5.5 × 3.5 mm2 was used instead. In the first experiment, the
YIG sample (with a thickness of d = 0.5 mm) was inserted into
the cavity with a total length of W = 2l + ls = 85 mm and S21

spectra were measured by successively changing the magnetic
bias Hext from 300–600 mT with a step size of 0.1 mT. Figure 7
maps the amplitude of S21 as a function of the frequency and
the magnetic bias. It has been found that a number of magnon
modes in the YIG sample couple to the cavity. The multiple
resonance structure could be attributed to the magnetostatic
modes [36,37] in our YIG sample, which have also been
observed in previous coupled magnon-photon systems [10,12].
A careful inspection indicates that there are two magnon modes
(guided by the dashed lines) strongly coupled with the cavity
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FIG. 7. (Color online) S21 spectra measured as a function of
external magnetic field and microwave frequency for a YIG (d =
0.5 mm) loaded 1D cavity. Dashed lines show the two strongest
coupled magnon modes: the right one is coupled with h modes and
the left one with e modes.

modes: one coupled with h mode and another coupled with e

mode. The separation between them is only 6.0 mT.
To simplify the complicated 3D wave propagation problem

caused by (i) the lateral size (∼0.2 cm2) of the YIG sample,
which is much smaller than the cross section (∼2 cm2) of the
circular waveguide, and (ii) spatially nonuniform precession
of the magnon system, a filling factor ξ = ls/d that converts
the thickness d of the YIG sample to be an effective ls in
our 1D model was introduced. As verified in the following
experiments, it doesn’t affect the dependence of the coupling
strength on either l or ls and furthermore it can quantitatively
explain the experimental observation.

The coupling of the magnon-photon system near the h mode
at ωCR/2π = 12.157 GHz as shown in Fig. 8(a). When the
magnon modes are far from the cavity modes, they follow the
dotted line, which is the dispersion calculated from Kittel’s
formula. However, when the predicated magnon frequency
matches with the cavity resonance frequency indicated by the
dashed line, the coupling between microwave and magnetiza-
tion dynamic hybridizes the magnon and cavity modes and a
pronounced splitting of cavity modes is observed.

Typical S21 spectra in Fig. 8(b) illustrates the evolution
of the hybrid magnon and cavity mode. When the resonance
frequency difference between the magnon mode and the
cavity mode is large, the magnon is only weakly excited
by the electromagnetic field, while the amplitude of the
cavity mode is orders of magnitude larger. The amplitude of
magnon modes is significantly enhanced when it approaches
the cavity mode. This effect is due to the fact that the coupling
of magnon and cavity modes generates hybridized cavity
photon-magnon quasiparticles, i.e., cavity magnon polari-
tons [16]. At μ0Hext = 381 mT corresponding to ωFMR = ωCR ,
the photonlike and magnonlike CMP have equal amplitude
and occur at ωCR ± g, indicating that the microwave energy is
effectively transferred from the photon system to the magnon
system through the mutual electrodynamic coupling between
them. Similar to the optical system [38] and metamaterial
system [39], the coupling between magnon and photon could

FIG. 8. (Color online) (a) S21 spectra for h mode at 12.157 GHz
measured as a function of external magnetic field and microwave
frequency. The dotted line refers to the predicted FMR dispersion
according to Kittel’s formula, while the dashed line is the cavity
mode. (b) Typical S21 spectra for the CMP. (c) The calculated
evolution of hybridized FMR and cavity mode corresponded to
g/2π = 78 MHz with ξ = 0.18. (d) Dispersion of the hybridized
CMP for measurements (symbols) and calculation (solid line) based
on Eq. (10).

experience electromagnetic induced transparency and other
coupling phenomena [9].

For comparison, we numerically calculate the |S21| coeffi-
cient using Eq. (10) and plot it in Fig. 8(c), which reproduces
the measured coupling feature. The resonance frequencies of
the hybrid modes are plotted as a function of the magnetic
bias Hext in Fig. 8(d), where the calculated dispersion (solid
line) agrees very well with the measured data (symbols). To
match g/2π = 78 MHz deduced from the measured separation
between the the hybrid modes at μ0Hext = 381 mT, a filling
factor of ξ = 0.18 is introduced to simplify the complicated
3D problem while other parameters are determined from
independent experiments.

To verify the scaling effect of ls and l on the coupling
strength g for the h mode, the second experiment has been
performed near 12.157 GHz by varying ls and l. Figure 9(b)
presents the amplitude mapping of S21 as a function of the
frequency and the magnetic bias in the vicinity of h modes at
12.157 GHz, where a d = 1 mm thick YIG is loaded while
keeping the cavity length W = 85 mm unchanged. Similar
dispersion of the CMP is observed, however, with a much
larger separation compared with the dispersion measured
for the YIG sample with d = 0.5 mm. The enhancement of
the coupling strength can be clearly revealed by inspecting
the S21 spectra at ωFMR = ωCR as shown in Fig. 8(b), where
g/2π = 121 MHz is deduced. When compared with the value
of g/2π = 78 MHz measured for a 0.5 mm thick sample, the
obtained scaling factor is 1.5, which is close to the expected
scaling factor of

√
2.

We also checked the l dependence by elongating the
length of the circular waveguide to W = 242 mm but keeping
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FIG. 9. (Color online) (a) For h mode S21 amplitude mapping
as a function of the microwave frequency ω and the magnetic bias
Hext for three different cases: (a) d = 0.5 mm and W = 85 mm, (b)
d = 1 mm and W = 85 mm, and (c) d = 0.5 mm and W = 242 mm.
(d) Typical spectra of S21 shows the splitting of the photon-like and
magnon-like CMP when they have equal amplitude. The deduced
coupling strength are 78 MHz, 121 MHz, and 48 MHz.

FIG. 10. (Color online) (a) For e − mode S21 amplitude mapping
as a function of the microwave frequency ω and the magnetic bias
Hext for three different cases: (a) d = 0.5 mm and W = 85 mm, (b)
d = 1 mm and W = 85 mm, and (c) d = 0.5 mm and W = 242 mm.
(d) Typical spectra of S21 shows the splitting of the photonlike and
magnonlike CMP when they have equal amplitude. The deduced
coupling strengths g′ are 49 MHz, 130 MHz, and 24 MHz.

FIG. 11. (Color online) Coupling strength as a function of
√

ls/ l

and ls
√

ls/ l for h mode and e mode, respectively. Symbols are ex-
perimental data with ls = ξd and solid lines are calculation based on
the analytic solution using μ0Hext = 380 mT, ωCR/2π = 12.2 GHz
for the h mode and μ0Hext = 420 mT, ωCR/2π = 13.2 GHz for the
e mode, respectively.

d = 0.5 mm unchanged. As expected, a weaker coupling was
found as shown in Fig. 9(c). The measured g/2π = 44 MHz
is close to the expected value of g/2π = 48 MHz scaled by
l−1/2. Therefore, the scaling effect of the sample thickness
and the length of the cavity is demonstrated for h modes by
this experiment. We note that in this experiment the resonance
frequency of the magnon mode slightly shifts with the sample
thickness and the cavity also moves with l. However, a careful
inspection indicates that the resultant changes in the coupling
strength should be less than 5%.

In the third experiment, the scaling effect of ls and l on
the coupling strength g′ for the e mode was verified. For the
measurement performed for d = 0.5 mm and W = 85 mm,
the coupling strength is about 49 MHz for the e mode at
13.20 GHz, which is weaker than that of 78 MHz for the
h mode at 12.157 GHz. Increasing d to 1 mm the coupling
strength g′ is raised to 130 MHz as shown in Fig. 10(b). The
estimated scaling factor of l1.4

s for e mode is in agreement
with l

3/2
s predicted by our theory Eq. (13). Similarly to the

h modes, the coupling strength g′ scales approximately with
l−1/2 using the values of 49 MHz and 24 MHz for W = 85 mm
and W = 242 mm, respectively.

To summarize our experimental observation and theoretical
expectation, Fig. 11 highlights different dependences of the
coupling strength, where g is linearly proportional to

√
ls/ l

while g′ is linearly proportional to ls
√

ls/ l. To fit the analytic
results (solid lines) calculated based on Eq. (11) and Eq. (13)
for the h and e modes, respectively, the filling factors for
experimental data (symbols) are found to be ξ = 0.18 for the
h mode occurring at ∼12.2 GHz and ξ = 0.32 for the e mode
occurring at ∼13.2 GHz. The difference in ξ is believed to be
due to the detailed wave propagation of the h mode and e mode.

IV. CONCLUSIONS

In conclusion, we have developed a transfer matrix ap-
proach to investigate the dispersion of the cavity-magnon-
polariton (CMP), created by inserting a low damping magnetic
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insulator into a high-quality 1D microwave cavity. In the limit
of long wavelength an analytical approximation of the CMP
dispersion has been obtained, where the coupling strength
characterizing the interplay between the magnetization and
microwave dynamics is determined by the sample thickness,
the permittivity, the cavity length as well the the parity of
the cavity modes. These scaling effects of the cavity and
material parameters is then confirmed by experimental data.
The analytic solution indicates the universality of the 1D
CMP, in which the coupling strength is not sensitive to the
detailed design of the cavity. This work not only provides
a detailed physical understanding of the coupled dynamic
system that could be used to quantify the characteristic
phenomena associated with different coupling regimes, but
also could be potentially used for designing dynamic filters
and switch devices for microwave applications.
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APPENDIX A: DETAILS OF THE WAVE
PROPAGATION IN THE CAVITY

In this Appendix, we present some details of the analytical
solution for the wave propagation in the microwave resonance
cavity, which can be used for the quantitative analysis of the
coupling between FMR and cavity resonance. We start with the
transfer matrix (the ABCD matrix in microwave terminology)
following the e−iωt convention. For a cascaded system of many
components such as in Fig. 1(b), the transfer matrix between
ports A and B is determined by multiplying the ABCD matrix
for each component as [29]

M =
(

A B

C D

)
= M1MsM2. (A1)

The transfer matrix (M1) of the air-filled waveguide section
between port A and port L is

M1 =
(

cos(k0l) −iZ0 sin(k0l)

−iZ−1
0 sin(k0l) cos(k0l)

)
, (A2)

the transfer matrix (Ms) for the sample-loaded waveguide
[yellow area between port L and R in Fig. 1(b)] is

Ms =
(

cos(ksls) −iZs sin(ksls)

−iZ−1
s sin(ksls) cos(ksls)

)
, (A3)

and the transfer matrix (M2) of the air-filled waveguide section
between port R and port B is

M2 =
(

cos(k0l) −iZ0 sin(k0l)

−iZ−1
0 sin(k0l) cos(k0l)

)
. (A4)

In the above equations the wave number and the character-
istic impedance are defined as

ks = ω

c

√
εsμs −

(
ωc

ω

)2

, and Zs = ωμ0μs

ks
. (A5)

Here ω, ωc, εs(μs), and ε0(μ0) are the frequency of the operating
microwave, the cut-off frequency of the circular waveguide,
the relative complex permittivity (permeability), and vacuum
permittivity (permeability), respectively. c = 1/

√
ε0μ0 is the

vacuum speed of light. For empty waveguide (air-filled
waveguide), the wave number and characteristic impedance
are k0 and Z0 using εs = μs = 1.

The scattering equations between the ports A and B are
expressed as (

e−
A

e−
B

)
=

(
SAA SAB

SBA SBB

)(
e+
A

e+
B

)
, (A6)

where the superscripts “–” and “+” indicate that the direction
of wave propagation is from a circular waveguide to the
transition and vice versa. Thus the S parameter between port
A and B can be calculated as [29]

(
SAA SAB

SBA SBB

)
=

(A+B/Z0−CZ0−D

A+B/Z0+CZ0+D

2(AD−BC)
A+B/Z0+CZ0+D

2
A+B/Z0+CZ0+D

−A+B/Z0−CZ0+D

A+B/Z0+CZ0+D

)

= e2ik0l

⎛⎜⎜⎝
sin(ks ls )

(
Z2

s −Z2
0

)(
Z2

0+Z2
s

)
sin(ks ls )+2iZ0Zs cos(ks ls )

2iZ0Zs(
Z2

0+Z2
s

)
sin(ks ls )+2iZ0Zs cos(ks ls )

2iZ0Zs(
Z2

0+Z2
s

)
sin(ks ls )+2iZ0Zs cos(ks ls )

sin(ks ls )
(
Z2

s −Z2
0

)(
Z2

0+Z2
s

)
sin(ks ls )+2iZ0Zs cos(ks ls )

⎞⎟⎟⎠. (A7)

Notice that the copolarized TE11 mode exists in the circular waveguide and the monopolarized TE10 mode exists in the
rectangular waveguide. The resulting boundary conditions for port A and B (in x-y coordinates) are(

e+
Ax

e+
Ay

)
= �AA

(
e−
Ax

e−
Ay

)
+

(
einc
Ax

einc
Ay

)
, (A8a)

(
e+
Bx

e+
By

)
= �BB

(
e−
Bx

e−
By

)
+

(
einc
Bx

einc
By

)
, (A8b)
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where einc
Ax,Ay and einc

Bx,By are the incident waves from port A and B with x and y polarization, respectively. In the apparatus shown
in Fig. 1 y- and y ′-polarized TE11 waves entering the transitions from port A and B, are reflected with a reflectivity R and phase
jump of φy , while x- and x ′-polarized TE11 waves are transmitted through the transition without reflection. Thus the reflecting
matrix �AA and �BB can be expressed as

�AA = R

(
0 0

0 eiφy

)
, (A9a)

�BB =
(

cos(θ ) − sin(θ )

sin(θ ) cos(θ )

)
�AA

(
cos(θ ) sin(θ )

− sin(θ ) cos(θ )

)
. (A9b)

Combining the scattering equations Eqs. (A6) between port A and B and using the boundary conditions Eqs. (A8b) at port A
and B, it is found [28] (

1 − SAA�AA −SAB�BB

−SBA�AA 1 − SBB�BB

)(
e−
A

e−
B

)
=

(
SAA SAB

SBA SBB

)(
einc
A

einc
B

)
. (A10)

Taking into account the x-y copolarized TE11 wave, Eq. (A10) describes the relation between the transmitting/reflecting wave
and incident wave in the x-y coordinate, which can be written as⎛⎜⎜⎜⎜⎝

e−
Ax

e−
Ay

e−
Bx

e−
By

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
(

1 0
0 1

)
−

(
SAA 0

0 SAA

)
�AA −

(
SAB 0

0 SAB

)
�BB

−
(

SBA 0
0 SBA

)
�AA

(
1 0
0 1

)
−

(
SBB 0

0 SBB

)
�BB

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

SAA 0 SAB 0

0 SAA 0 SAB

SBA 0 SBB 0

0 SBA 0 SBB

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

einc
Ax

einc
Ay

einc
Bx

einc
By

⎞⎟⎟⎟⎠.

(A11)

As the experimentally accessible parameters are the transmission coefficients S12 and/or S21 between ports 1 and 2 of the
assembled waveguide cavity, defined as

S21 = e−
Bx ′

einc
A

= e−
Bx cos(θ ) − e−

By sin(θ )

einc
A

, (A12a)

S12 = e−
Ax

einc
B

. (A12b)

By solving Eq. (A11) the final transmission coefficients can be obtained:

S12 = S21 = cos(θ )SAB[−1 + R2e2iφy SABSBA + eiφy RSBB − eiφy RSAA(−1 + eiφy RSBB)]

−1 + e2iφy cos2(θ )R2SABSBA + eiφy RSBB − eiφy RSAA(−1 + eiφy RSBB)
. (A13)

APPENDIX B: WAVE PROPAGATION IN THE VICINITY
OF THE FERROMAGNETIC RESONANCE

In this Appendix, we present some details of the analytical
solution for the wave propagation near the FMR. In the vicinity
of the FMR frequency, the wave propagation is related to
the dipolar field associated with the interaction of spins from
Maxwell’s equations, written as

∇ × h = εsε0
∂e
∂t

+ σe, (B1a)

∇ × e = −μ0
∂(h + m)

∂t
, (B1b)

where σ is the conductivity of the ferromagnetic sample. For
the insulating ferrite YIG σ tends to be zero.

Eliminating e from Eq. (B1a) by taking the curl of it and
substituting by Eq. (B1b), we obtain

∇2h − εsε0μ0ω
2h = ∇(∇ · h) + εsε0μ0ω

2m. (B2)

The motion of M is governed by the phenomenological
Landau-Lifshitz-Gilbert equation [33],

dM
dt

= −γ (M × Hi) + α

Ms

(
M × dM

dt

)
. (B3)

Here γ = μ0e/me is the effective gyromagnetic ratio of an
electron (charge e and mass me), α is the Gilbert damping
parameter, Ms is the saturation magnetization. Inside the ferrite
sample, the magnetization M = M0 + m and magnetic field
Hi = Hext + h consist of static components M0 and Hext as
well as the dynamic components m and h including a time-
dependent term of e−iωt . Assuming Hext along y direction,
from the vector relation of Eq. (B3) we can obtain the well-
known Polder tensor χ̂ expressed as

χ̂ =

⎛⎜⎝ χL 0 iχT

0 0 0

−iχT 0 χL

⎞⎟⎠, (B4)
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where

χL = γ (γHext − iαω)M0

(γHext − iαω)2 − ω2
, (B5a)

χT = γM0ω

(γHext − iαω)2 − ω2
. (B5b)

Using the approximation of long wavelength, i.e., the wave
propagates only along the z direction, the coupling equation

of Maxwell’s equations (B2) and Landau-Lifshitz-Gilbert
equation (B3) become(

εsε0μ0ω
2(1 + χL) − k2

s iεsε0μ0ω
2χT

−iεsε0μ0ω
2χT εsε0μ0ω

2(1 + χL)

)(
hx

hz

)
= 0.

(B6)
The resultant wave number is

k2
s = μeffεsε0μ0ω

2, (B7)

where the effective permeability μeff is defined by μeff = [(1 +
χL)2 − χ2

T ]/(1 + χL).
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