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ESR study of the spin ladder with uniform Dzyaloshinskii-Moriya interaction
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Evolution of the ESR absorption in a strong-leg spin ladder magnet (C7H10N)2CuBr4 (abbreviated as DIMPY)
is studied from 300 K to 400 mK. Temperature dependence of the ESR relaxation follows a staircase of crossovers
between different relaxation regimes. We argue that the main mechanism of ESR line broadening in DIMPY is
uniform Dzyaloshinskii-Moriya interaction (|D| = 0.31 K) with an effective longitudinal component along an
exchange bond of Cu ions within the legs resulting from the low crystal symmetry of DIMPY and nontrivial
orbital ordering. The same Dzyaloshinskii-Moriya interaction along with other weaker anisotropic spin-spin
interactions results in the lifting of the triplet excitation degeneracy, revealed through the weak splitting of the
ESR absorption at low temperatures.
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I. INTRODUCTION

Low-dimensional magnets have been actively studied dur-
ing the last decades both theoretically and experimentally. Spin
ladder is one of the simplest models of the field that is just
one step more complicated than the Heisenberg spin chain,
the keystone of low-dimensional magnetism. Such a system
consists of two chains forming the “legs” of the spin ladder,
which are coupled by simple interchain coupling forming
“rungs” of the ladder. The Hamiltonian of the single spin ladder
with the equivalent positions along the ladder is

H = Jleg

∑
i

(S1,iS1,i+1 + S2,iS2,i+1)

+ Jrung

∑
i

S1,iS2,i + μBHĝ
∑
j,i

Sj,i + Hanis, (1)

it includes Heisenberg exchange couplings Jleg and Jrung,
Zeeman interaction (with usually anisotropic g tensor), and
weak anisotropic spin-spin interactions Hanis.

Independent of the ratio between the Jleg and Jrung, the
excitation spectrum of the spin ladder is gapped, ground state
is nonmagnetic, and excited states are S = 1 quasiparticles [1].
However, most of the experimentally available examples of
the spin ladder systems are so-called strong-rung ladders with
the dominating in-rung interaction Jrung. Strong-leg ladders
remain a rarity in this family. An additional complication of
the real systems is a presence of the anisotropic spin-spin
interactions breaking the ideal symmetry of the Heisenberg
model. Such interactions limit the excitation lifetime (to the
point of total damping in some extreme cases [2]) and could
lift degeneracy of the S = 1 states. Thus, estimation of such an
interaction strength, and, ideally, the search for systems with a
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negligible anisotropic part of the Hamiltonian is an important
quest when comparing real magnets with model predictions.

Adequate accounting for the effect of anisotropic interac-
tions in a spin-gap magnet is also a challenge. This problem
was addressed in a one-dimensional (1D) field theory model
via bosonic [3] and fermionic [4] approaches and in an
independently developed macroscopic model [5]. However,
a reliable microscopic model remain a rarity (see, e.g.,
Ref. [6]): most of the real spin-gap magnets have a complicated
network of the exchange couplings allowing far too numerous
possibilities of the anisotropic interaction parameters. The
adequate microscopic approaches are of particular interest in
connection with a particular case of the effect of a uniform
Dzyaloshinskii-Moriya interaction on the properties of a
quantum magnet [7].

A recently found organometallic compound
(C7H10N)2CuBr4, abbreviated DIMPY for short, is
an example of the strong-leg ladder with very weak
anisotropic interactions [8–11]. Presence of the energy
gap in the excitation spectrum was revealed by magnetic
susceptibility [8], specific heat [9], and magnetization [11,12]
bulk measurements as well as by inelastic neutron
scattering [9,10]. The energy gap was found [9] to be
0.33 meV, it can be closed by the magnetic field μ0Hc1 ≈ 3 T,
while the saturation field is much higher [12], μ0Hsat ≈ 30 T.
The values of the exchange constants were determined from
the DMRG fit of the measured inelastic neutron scattering
spectra [11] and were found to be Jleg = 1.42 meV and
Jrung = 0.82 meV. The magnetic field induced ordering is
observed at very low temperatures (T (max)

N ≈ 300 mK at
μ0H ∼ 15 T) [11].

Electron spin resonance (ESR) spectroscopy is a powerful
tool to probe for the weak anisotropic interactions in the mag-
netic systems. Inelastic neutron scattering experiments [10]
have shown that DIMPY is an almost perfect realization of
the Heisenberg spin ladder. The ESR technique allows much
higher energy resolution (routinely resolved ESR linewidth of
100 Oe corresponds approximately to the energy resolution
of 1 μeV) and thus allows us to probe possible effects of
anisotropic interactions with high accuracy.
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In the present paper we report results of the ESR study
of low-energy spin dynamics in DIMPY in the temperature
range from 400 mK to 300 K. We observe angular and
temperature dependencies of the ESR linewidth at high
temperatures which can be described as an effect of the uniform
Dzyaloshinskii-Moriya (DM) interaction allowed by the lattice
symmetry. At low temperatures we observe splitting of the
ESR absorption line due to lifting of the triplet state degeneracy
caused by interplay of DM interaction and weaker anisotropic
interactions. Additionally we observe well resolved ESR
absorption lines from the inequivalent ladders which allowed
an upper estimate of interladder exchange interaction.

During the preparation of the paper we became aware of
the high-field ESR study of DIMPY [13]. This study reports
observation of the additional high-frequency ESR mode which
became allowed due to the presence of DM coupling, thus
supporting claims on the importance of the DM coupling to
the physics of this compound.

II. SAMPLES AND EXPERIMENTAL DETAILS

Single crystals of nondeuterated DIMPY were grown from
the solution by slow diffusion in a temperature gradient.
Sample quality was checked by x-ray diffraction and mag-
netization measurements. Concentration of the paramagnetic
defects estimated from the 500 mK magnetization curve is
below 0.05%.

DIMPY belongs to the monoclinic space group P 2(1)/n

with lattice parameters a = 7.504 Å, b = 31.613 Å, c =
8.206 Å, and the angle β = 98.972◦ [8]. As-grown crystals
have a well developed plane orthogonal to the b axis and are
elongated along the a direction.

ESR experiments were performed using a set of the home-
made transmission-type ESR spectrometers at the frequencies
18–105 GHz. The lowest available temperature of 400 mK
was obtained by a He-3 vapors pumping cryostat. At the
measurements below 77 K the magnetic field was created
by compact superconducting magnets. Typical nonuniformity
of the magnetic field at the resonance conditions in our
experiments is estimated as <5–20 Oe depending on the
magnet used. High-temperature experiments were done with
a resistive water-cooled magnet with the field nonuniformity
about 5 Oe.

III. LATTICE SYMMETRY AND POSSIBLE
ANISOTROPIC INTERACTIONS

A monoclinic unit cell of DIMPY includes four magnetic
Cu2+ ions that belong to two spin ladders: two pairs of copper
ions form rungs of the spin ladders, which are then reproduced
by translations along the a axis. This results in the formation of
two ladders differently oriented with respect to the crystal [10]
(see Fig. 1).

Space symmetry of the DIMPY lattice includes an inversion
center in the middle of each rung and a second order screw axis
parallel to the crystallographic b direction that links different
ladders.

These symmetries place strong restrictions on the possible
microscopic anisotropic interactions in DIMPY despite the low
crystallographic symmetry. First, all anisotropic interactions
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FIG. 1. (Color online) Crystallographic structure of DIMPY with
two magnetically nonequivalent spin ladders. Only Cu and Br ions
are shown along with the main exchange bonds Jleg and Jrung.
Solid arrows (red) indicate directions of g tensor main axes for
inequivalent ladders. Dashed arrows (blue) indicate directions of
the Dzyaloshinskii-Moriya vectors for inequivalent ladders, as found
from the data fit (see text). Broad double-headed arrows links the DM
vector and g-tensor axis corresponding to the same ladder.

along the legs of the ladders should be uniform because
of translational symmetry. Second, Dzyaloshinskii-Moriya
antisymmetric interaction HDM = D · [S1 × S2] on the rungs
is forbidden by the inversion symmetry. The same inversion
symmetry requires that directions of the Dzyaloshinskii-
Moriya vectors D have to be exactly opposite on the legs
of the same ladder. Third, the inversion center on the rung of
the ladder ensures that g tensor is always the same for the
given spin ladder so there are no complications of anisotropic
Zeeman splitting. Because of these symmetry restrictions there
is no staggered component of the vector D for the single ladder.

The second order axis establishes relations between the
g-tensor components and the Dzyaloshinskii-Moriya vector
direction in different ladders. In particular, the effective
g-factor values are the same for both ladders for the field
applied parallel or orthogonal to this axis. Variation of the
vector D direction in different ladders will be later accounted
for explicitly in the linewidth analysis.

Note that antiparallel alignment of the DM vectors on the
legs of the ladder does not allow us to use spin operator
transformations of Ref. [7] which proves equivalence of the
uniform DM coupling and shift in k space by wave vector
k = D/J for the single chain with uniform DM coupling.

184403-2



ESR STUDY OF THE SPIN LADDER WITH UNIFORM . . . PHYSICAL REVIEW B 92, 184403 (2015)

Besides, the antisymmetric DM coupling symmetric
anisotropic exchange (SAE) coupling is possible. SAE cou-
pling can be written as HSAE = ∑

μ,τ JμτS
μ

1 Sτ
2 , where Jμτ

are components of a symmetric exchange tensor Â, which
is usually constrained by condition TrJμ,τ = 0. Symmetric
interaction is allowed both on rungs and legs of the ladder. As
we will demonstrate below, our observations point out that the
Dzyaloshinskii-Moriya interaction is dominating anisotropic
interaction in the case of DIMPY.

We neglect possible anisotropic interladder couplings in
our analysis since the spin ladders in DIMPY are practically
decoupled. Still, there is a possibility that anisotropic couplings
between the equivalent ladders stacked in the c direction could
be important as well: Cu-Cu distance in this direction is even
less than the distance on the rungs (8.2 Å against 8.9 Å)
and suppression of the Heisenberg exchange interaction in
this direction is due to unfavorable mutual orientation of the
electron orbitals of bromine ions mediating this superexchange
route which could be less important for the anisotropic spin-
spin interactions arising through involvement of differently
oriented excited electron orbitals mixed with the ground state
by spin-orbital interaction [14]. In the present work we neglect
this possibility.

Thus, the main anisotropic interactions in DIMPY are really
simple to analyze. They include anisotropic g tensor, which is
the same for all magnetic ions of the given spin ladder, and the
Dzyaloshinskii-Moriya interaction, which is uniform along the
leg of the ladder, and the Dzyaloshinskii-Moriya vectors are
exactly opposite on the legs of the given ladder.

IV. EXPERIMENTAL RESULTS

A. Angular dependence of the ESR absorption at 77 K

We have taken rotational patterns of ESR absorption for
the magnetic field applied in different crystallographic planes.
Because of monoclinic lattice symmetry care should be taken
with consistent determination of the field direction with respect
to the lattice axes. We use a crystallographic Cartesian basis
with X||a, Y ||b, and Z||c∗ for the direction description. Some
of the measurements were done for the field applied or the
rotation axis set at 45◦ from one Cartesian axis to another,
these bisectrices of the Cartesian planes are denoted as Y + X,
Y − X, Y + Z, and so on. Rotation patterns were taken for
the field confined to (XY ) and (XZ) planes and to the plane
containing the Z axis and an (Y − X) direction. All rotation
patterns were taken for more than 180◦ angular sweeps.

Examples of absorption spectra and angular dependencies
of the g factor are shown in Fig. 2. We observe one or two
Lorentzian absorption lines. These absorption lines are clearly
due to the different spin ladders: the ladders are equivalent
with respect to the magnetic field for H||Y and H ⊥ Y , and
we observe single component absorption at these orientations.
Anisotropy of the g factor is typical for the Cu2+ ion, the
g factor varies from about 2.03 to 2.30 in agreements with
powder ESR measurements of Ref. [15].

Angular dependence of the ESR linewidth was determined
by fitting observed absorption spectra with a single Lorentzian
line or with a sum of two Lorentzian lines (Fig. 2). Typical
half-width at half-height at 77 K was around 50 Oe. Field
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FIG. 2. (Color online) Inset: Example of ESR absorption spectra
at representative orientations. Symbols: experimental data, curves:
best fit with Lorentzian line shape, and vertical lines correspond to
corresponding g-factor values. Narrow line with g = 2.00 (at 6.13
kOe) is a DPPH marker. Upper row: Angular dependence of the g

factor at 77 K. Symbols: experimental data, curves: uniaxial g-tensor
best fit (see text). Experimental error is about 0.1% and is within
symbol size. Lower row: Angular dependence of the ESR linewidth
at f = 17.2 GHz, T = 77 K (half-width at half-height). Vertical bar
in left panel shows typical error bar size (double error). Curves:
model description (see text), solid lines show full linewidth, dashed
and dotted lines show contributions due to DM and SAE interactions,
respectively. Marks “1” and “2” indicate contributions corresponding
to the same ladder.

inhomogeneity in the used magnet and uncertainties of the
fit procedure limit accuracy of the linewidth determination to
about 5 Oe, however angular dependence is clearly present.
We were able to cross check our results at certain selected
orientations on a commercial Bruker X-band (9.3 GHz)
spectrometer and we have found that X-band data are in
agreement with our results.

B. Low-temperature ESR

Low temperature (below 77 K) ESR absorption was
measured at certain fixed field directions: for the field applied
parallel to the symmetry axis H||Y and for the field H||(X + Y )
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FIG. 3. (Color online) ESR absorption spectra at low temper-
atures, H||(X + Y ). Vertical dashed lines mark resonance fields
corresponding to the shown g-factor values. Horizontal dashed line
at the 0.45 K curve is a guide to the eye at zero-absorption level.
Narrow absorption line at g = 2.00 is a DPPH marker.

direction (i.e., canted by 45◦ from the Y axis towards the X

axis). In the first case both ladders are equivalently oriented
with respect to the magnetic field, while the later case
corresponds to the maximal difference of the ladders’ effective
g factors as evidenced by 77 K measurements.

As expected, we observe single-component ESR absorption
for H||Y and two resolved ESR signals from different ladders
for the canted sample. Temperature evolution of the ESR
absorption spectra is qualitatively similar in both cases (Fig. 3).
Below 10 K the ESR absorption intensity freezes down due to
the presence of the energy gap. The ESR signal continues
to lose intensity down to 450 mK and almost vanishes at
this temperature. The lowest temperature (450 mK) ESR
absorption includes broad powderlike absorption spectrum
probably related to the distorted surface of the sample.

We did not observed any additional absorption signals
which could be related to the formation of the field induced
ordered phase above the critical field to appear at the lowest
temperature of 450 mK in the fields up to 10 T at the
frequencies of 26–35 GHz. This is in agreement with the
known phase diagram of DIMPY [11] demonstrating that
highest temperature of the transition into the ordered state
is about 300 mK.

Additional splitting of the ESR absorption lines was
observed around 1 K (Fig. 4), resonance fields of the split
subcomponents differ by approximately 150 Oe. This splitting
was observed at various frequencies, it was most pronounced
on the high-field component of the canted sample ESR
absorption spectra. One of the split subcomponents is much
weaker than the other and freezes out faster on cooling.
Remarkably, mutual orientation of the weaker and stronger
subcomponents is different for the low-field and high-field
components. We did not observe resolved splitting for the H||Y
orientation, instead a weak peak of the linewidth was observed

x5

x5

x5

x5

x10

26.3GHz

105.4GHz

50.2GHz

42.8GHz

34.6GHz

32.6GHz

28.2GHz

T=1K

dp
ph

105.4GHz

88.5GHz

67.6GHz

50.2GHz

42.8GHz

34.6GHz

[H-H (f)] (kOe)res [H-H (f)] (kOe)res

-0.2 0 0.2 0.4 -0.2 0 0.2 0.4 0.6

right
component

left
component

M
ic

ro
w

av
e 

ab
so

rp
tio

n

32.6GHz

28.2GHz

26.3GHz

FIG. 4. (Color online) ESR absorption spectra at the temperature
T ≈ 1 K at different frequencies, H||(X + Y ). All spectra are
shifted along the field axis to fit positions of the main absorption
subcomponents. Left panel: Left absorption component (g ≈ 2.28),
weak absorption subcomponent is magnified by a factor of 5 or 10
for better presentation. Right panel: Right absorption component
(g ≈ 2.05). Vertical dashed lines mark positions of the absorption
subcomponent at lowest frequency. Triangles on the right panel mark
positions of the DPPH marker absorption (g = 2.00).

around the same temperature of 1 K probably indicating
unresolved splitting.

At low temperatures intensities of all components follow
exponential law I ∝ exp(−�/T ) (Fig. 5). Energy gap for
the weaker subcomponents is larger than that for the main
subcomponents. By taking temperature dependencies of the
ESR absorption at different frequencies we were able to
determine the values of the energy gaps at several frequencies
revealing dependence of the activation energy from the
resonance field (Fig. 5).

C. ESR linewidth evolution from 300 K to 400 mK

Temperature evolution of the ESR linewidth was measured
from room temperature down to 400 mK (Fig. 6). The tem-
perature dependence is qualitatively similar in all orientations
and demonstrates strongly nonmonotonous behavior. At high
temperatures (above 90 K) linewidth strongly increases with
heating rising from about 50 Oe at 77 K to about 300 Oe
at 300 K. On cooling below 77 K linewidth again increases
reaching maximum at temperature Tmax = 9.0 ± 0.2 K. Tem-
perature of the maximum is the same for all orientations, while
linewidth value at the maximum varies from 90 to 140 Oe,
both of the extreme values being observed in the orientation
of maximal splitting H||(X + Y ) for different components
of ESR absorption. Below Tmax linewidth again decreases
reaching a minimal value of about 10 Oe (observed at H||Y ) at
2 K, which is most likely limited by the field inhomogeneity
in our setup. On cooling below 2 K a peak in the linewidth
is observed around 1 K. The peak is most pronounced for the
high-field component in the orientation of maximal splitting of
the ESR absorption components, peak position coincides with
the temperature of subcomponents appearance. A similar but
less pronounced peak is observed for H||Y . High-g component
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in the H||(X + Y ) orientation does not demonstrate such a
peak, which is probably related to the very low intensity
of the appearing weaker subcomponent which cause fitting
procedure to lock on the main spectral subcomponent. Finally,
on cooling below 1 K the linewidth of both components in the
H||(X + Y ) orientation increases again.

V. DISCUSSION

A. Recovery of the g tensor

Observed angular dependencies of the g factor can be fitted
assuming uniaxial g tensor. As was described in Sec. III, g

tensor is the same for the given ladder and orientations of the
g tensors in inequivalent ladders are bound by the second order
axis. Hence, directions of the main axis can be expressed via
polar angles as ng1,2 = (± sin � cos φ; cos �; ± sin � sin φ),
here we count polar angle � from the second order axis Y ||b,
different signs correspond to the different ladders.

Least squares fit of our data (see Fig. 2) yields g-tensor
components g‖ = 2.296 ± 0.010 and g⊥ = 2.040 ± 0.006 and
angles � = (34.8 ± 1.5)◦ and φ = (178 ± 4)◦. Fit quality
can be improved by assuming a general form of the g

tensor. However, this results only in minor planar anisotropy
(with principal g-factor values of 2.038 ± 0.010 and 2.058 ±
0.010), which is on the edge of experimental error.

The main axis of the g tensor within accuracy of our
experiment lies in the (XY ) plane of the crystal. This seems
to be accidental as there is no symmetry reason to choose this
plane in the monoclinic crystal. Orientations of the g-tensor
main axes ng1,2 with respect to the crystal structure are shown
in Fig. 1. We cannot decipher which of the orientations
correspond to different ladders.

Found values of the main g-tensor components coincide
with the values found in earlier powder high-field ESR
experiment [15]. The value of the g factor for the H||a case
ga = 2.17 was found in Ref. [11] by magnetization fit, this
value disagrees by 2% with the value g(ESR)

a = 2.130 ± 0.005
found in our experiment.

B. Interladder coupling estimation

Anisotropy of the g tensor opens a direct way to the
estimation of interladder coupling. If the coupling be-
tween the ladders with different g-tensor orientation would
be strong enough, then a common spin precession mode
would be observed, a well known exchange narrowing phe-
nomenon [16,17].

Instead, we observe well resolved ESR absorption signals
from the inequivalent ladders. Thus, an upper limit on the
interladder coupling can be estimated from the minimal
splitting �H observed, which is around 40 Oe at the 17 GHz
experiment (corresponds to components g-factor difference
�g = 0.015 in Fig. 2).

As it is known from the exchange narrowing theory, equally
intense components with splitting �ω will form a common
precession mode if the coupling strength is above Jc 	 ��ω.
Hence, we obtain an estimate Jinter < hν �H

Hres
	 5 mK or about

0.5 μeV.
This value is in reasonable agreement with the earlier

estimate of the interladder exchange coupling from the ordered
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TABLE I. ESR linewidth: Empirical fit equations and parameters in different temperature ranges and at different orientations. For the
orientations with two ESR components resolved (LF) and (HF) marks fit results for the low-field and high-field components correspondingly,
(HF + LF) marks cases where linewidths of both components are close and their temperature dependencies are fitted jointly.

Temperature range Typical fit
and fit equations Parameters accuracy H||Y H||(X + Y ) H||(Y + Z)

T > 80 K �H0, Oe ±5 Oe 46 45 (HF); 56 (LF)
�H = �H0 + A exp(−Ea/T ) A, ×104 Oe ±50% 5.9 1.7 (HF); 1.8 (LF)

Ea , K ±150 K 1510 1240 (HF); 1310 (LF)

15 < T < 80 K �H∞, Oe ±5 Oe 35 35 (HF); 44(LF) 40 (HF+LF)
�H = �H∞(1 + �/T ) �, K ±3 K 24 16 (HF); 22(LF) 14 (HF+LF)

1.5 < T < 7 K �H ′
0, Oe ±2 Oe 10 15 (HF);15 (LF) 15(HF+LF)

�H = �H ′
0 + A′ exp(−E′

a/T ) A′, ×102 Oe ±30% 6.4 1.7 (HF);3.9 (LF) 5.3 (HF+LF)
E′

a , K ±1.5 14 (9.6a) 6.4 (HF);8.4 (LF) 10.5(HF+LF)

aValue of E′
a = 9.6 K corresponds to the best fit with fixed parameter �H ′

0 = 0 (see text).

phase boundary calculated in mean-field approximation [11]
as nJ ′

MF = 6.3 μeV (here n is the number of coupled ladders,
coupling considered to be equal in all directions). Note that our
observation provides a direct estimate of the coupling between
the unequivalently oriented ladders only.

C. Linewidth temperature dependence

Nonmonotonous temperature dependence of the linewidth
indicates that spin precession relaxation is governed by differ-
ent processes in the different parts of the studied temperature
range. We fit this temperature dependence by a set of empirical
equations as shown in Fig. 6 and discussed below. Values of
the fit coefficients for the empiric equations used are gathered
in Table I.

High temperature increase of the ESR linewidth (above
77 K) is naturally related to the spin-lattice relaxation:
increase of the phonons population numbers leads to the
increase of the relaxation rate. Linewidth dependencies can
be fitted by the sum of the constant contribution describing
the high-temperature spin-spin relaxation and an empirical
activation law �H = �H0 + A exp(−Ea/T ). Activation en-
ergy is Ea = (1400 ± 150) K. Similar behavior with activation
energy of the same order of magnitude was reported for other
cuprates [18,19] and it was discussed [19] as a relaxation via
excited state with a competing Jan-Teller distortion. However,
detailed analysis of the lattice relaxation is beyond the scope
of the present paper.

Lattice contribution vanishes with cooling. Shallow mini-
mum of the linewidth at 70–100 K indicates that the phonon
relaxation channel is practically frozen down here. Hence we
assume that linewidth measured at 77 K is mostly due to
spin-spin relaxation.

It is well known [20,21] that anisotropic spin-spin inter-
actions are responsible for the spin-spin relaxation. Thus,
ESR linewidth provides access to determine these interaction
strengths. For the concentrated magnets the Dzyaloshinskii-
Moriya interaction (which is allowed by the lattice symmetry
of DIMPY) and symmetric anisotropic exchange interaction
are the main contributions. Temperature dependence of the
ESR linewidth is one of the physical effects to find which of
theses anisotropic interactions dominates the linewidth.

Detailed description of the ESR linewidth in a quan-
tum spin ladder is only emerging now: the case of spin
ladder with symmetric anisotropic spin-spin coupling was
considered recently by Furuya and Sato [22], a theory
accounting for the uniform Dzyaloshinskii-Moriya interaction
is still to be constructed. Theory of an ESR linewidth for
a quantum S = 1/2 chain was developed by Oshikawa and
Affleck more than decade ago [23]. We will apply their
results to understand qualitatively temperature dependence
of the ESR linewidth at high temperatures T � Jleg,rung.
Oshikawa and Affleck have demonstrated that contribution
of the symmetric anisotropic exchange interaction to the ESR
linewidth (exchange anisotropy in their terms) decreases with
cooling. They also considered contribution of the staggered
Dzyaloshinskii-Moriya interaction and have found that in
this case ESR linewidth is increasing as 1/T 2 at low
temperatures. Oshikawa and Affleck demonstrated that at
a high temperature limit staggered Dzyaloshinskii-Moriya
interaction results in the linewidth increasing with cooling as
1/T . As the high-temperature linewidth is determined by the
pair spin correlations, this result should be actually the same for
the staggered and uniform Dzyaloshinskii-Moriya interaction.
This conclusion is in agreement with the results of Ref. [18] for
the uniform Dzyaloshinskii-Moriya interaction in quasi-one-
dimensional antiferromagnet Cs2CuCl4. Thus, increase of the
linewidth with cooling below 80 K is a direct indication of
the dominating role of the Dzyaloshinskii-Moriya interaction
for the spin relaxation processes in DIMPY. To model first
order of the 1/T expansion we fit our data by the law �H =
�H∞(1 + �/T ). Characteristic temperature � is anisotropic
and varies from 15 to 25 K in the orientations presented in
Fig. 6. This temperature scale is close to the exchange integral
value in agreement with the results of Refs. [18,23].

The crude estimate of this interaction strength can be
obtained from the linewidth at 80 K, which is approximately
50 Oe. As this temperature far exceeds the exchange integral
scale high-temperature approximation can be used. We will
discuss exact calculations below while describing angular
dependence, but as an estimate one can write ��ω ∼ D2

J
or

D ∼ √
gμB�HJ ∼ 0.3 K.

As the temperature decreases below approximately 10 K
linewidth starts to decrease. This decrease is naturally related
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to the gapped spectrum of the spin ladder. At low temperatures
magnetic properties of a spin ladder can be described by the
triplet quasiparticles language and linewidth is then interpreted
as an inverse lifetime of these quasiparticles, which is partially
determined by their interaction. As temperature approaches
scale of the energy gap, quasiparticle population numbers
decreases, gas of the quasiparticles became diluted, and
quasiparticle interaction contributions froze out. This results
in the narrowing of the ESR absorption line with cooling.
Microscopically this quasiparticle interaction could be related
to anisotropic spin-spin couplings or to the possible magnon
decays [24]. Detailed theoretical description of this regime
awaits a separate effort, we performed a phenomenological
thermoactivation fit of our data. The linewidth temperature
dependence indeed follows thermoactivation law �H =
�H ′

0 + A′ exp(−E′
a/T ) with activation energy E′

a = 6.4–14
K in different orientations. The largest activation energy is
obtained for the field applied along the second order axis
H||Y . Most likely this result is an artifact due to the effects
of field inhomogeneity in our experimental setup: the low
temperature linewidth is minimal for H||Y and could be limited
by experimental resolution. This leads to overestimation of
a �H0 parameter which in turn results in overestimation of
the activation energy. Tentative fit of the H||Y data with a
�H0 value fixed to zero yield an activation energy of 9.6 K.
Similar �H0 = 0 fits in other orientations lead to the smaller
corrections of the determined activation energy.

The found activation energies lie in the interval between,
approximately, 2�(H ) and 3�(H ), where �(H ) ≈ 3.0 K is
the gap at the experimental field of 17.5 GHz ESR experiment
(see Fig. 5, right panel). This indicates that two- and/or three-
particle interaction processes limit the quasiparticle lifetime in
the low-temperature regime.

The peak of the linewidth around 1 K is related to the
splitting of the ESR lines into subcomponents, its origin is re-
lated to the classical exchange narrowing phenomenon [16,17].
The exchange frequency became temperature dependent being
related to the quasiparticles concentration. At low temper-
atures (low quasiparticles concentration) a split ESR line
is observed, at higher temperatures (higher quasiparticles
concentration) an effective exchange interaction between
the quasiparticles gain efficiency and a common precession
mode is formed. Crossover between these regimes results
in the broadening of the ESR line. Similar effect is ob-
served in other spin-gap magnets [25–27] and in other
systems. [28]

Finally, definitive increase of the linewidth below 700 mK is
observed for both ESR components at H||(X + Y ) orientation.
It is strongly anisotropic, the lowest temperature linewidth at
H||(X + Y ) orientation is three to four times larger than for
the H||b. Origin of this increase is unclear.

D. Angular dependence of the ESR linewidth

According to the theory of the exchange narrowed reso-
nance spectra [29,30], the half-width at half-maximum for a
single Lorentzian shaped line is given by

�H = C

[
M3

2

M4

]1/2

, (2)

where C is a dimensionless constant of order unity, depending
on how the wings of the Lorentzian profile drop at fields of
the order of exchange field (J/gμB � �H ) [30]; M2 and M4

are the second and fourth moments of resonance line, first
introduced by Van Vleck [31],

M2 = 〈[Hanis,S
+][S−,Hanis]〉

h2〈S+S−〉 , (3)

M4 = 〈[Hex,[Hanis,S
+]][[S−,Hanis],Hex]〉

h4〈S+S−〉 . (4)

where S± denote left/right circular components of the total
spin summed up over the whole sample, Hex is the isotropic
exchange Hamiltonian, and Hanis is the anisotropic one that
does not commute with Hex, hence causing broadening of the
resonance line.

Analysis of the ESR linewidth based on calculation of
the spectral moments is a well developed method which
allows us to identify the nature of spin-spin interactions
and estimate their magnitudes in magnetically concentrated
systems [32]. Its benefit is that in a high temperature limit
(T → ∞) an exact expression for linewidth can be found
for an arbitrary spin system, whatever space dimension and
exchange couplings [21,33].

In the present paper we apply the “method of moments” to
a strong-leg spin ladder system, described by Hamiltonian (1)
with uniform Dzyaloshinskii-Moriya interaction

HDM =
∑

i

∑
l=1,2

Dl[Sl,i × Sl,i+1], (5)

here i enumerates rungs of the ladder and l enumerates legs of
the ladder, DM vectors on the legs are considered arbitrary for
the moment (D1 �= D2). Following Refs. [14,18] calculations
of the second and fourth moments were performed in a
laboratory coordinate system (xyz) with the z axis chosen
along the externally applied magnetic field. Substituting
Eq. (5) into Eqs. (3) and (4) and using the corresponding
commutation relations for S = 1/2 spin operators, for the
linewidth Eq. (2) in the high temperature limit we have

�H DM
∞ (Oe) = C

∑
l=1,2

[
D2

x + D2
y + 2D2

z

]
l

4
√

2μBJ̃Dg(θ,φ)
, (6)

where J̃D =
√

J 2
leg + 2J 2

rung is an average exchange inte-
gral [33], and angular dependence is determined by the
transformation of the DM vector from the crystallographic
system into the laboratory coordinate system:

Dx = DX cos β cos α + DY cos β sin α − DZ sin β,

Dy = DY cos α − DX sin α, (7)

Dz = DX sin β cos α + DY sin β sin α + DZ cos β.

here DX,Y,Z are the components of the DM vector in the
crystallographic Cartesian system, Dx,y,z are the components
of the DM vector in a laboratory coordinates, angles α and β

define orientation of the laboratory coordinate system (xyz),
where the Zeeman term in Eq. (1) takes the diagonal form
gμBHSz with

g =
√

A2 + B2 + C2, (8)
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where

A = gXX sin �̃ cos φ̃ + gXY cos �̃ + gXZ sin �̃ sin φ̃,

B = gYX sin �̃ cos φ̃ + gYY cos �̃ + gYZ sin �̃ sin φ̃,

C = gZX sin �̃ cos φ̃ + gZY cos �̃ + gZZ sin �̃ sin φ̃,

and

cos α = A√
A2 + B2

, cos β = C√
A2 + B2 + C2

,

here polar �̃ and azimuthal φ̃ angles define the direction of
external magnetic field, so that �̃ and φ̃ are counted from
Y and X axes, respectively, as during the g-tensor recovery
procedure.

Note that by setting Jrung = 0 and D1 = D2 in Eq. (6) we
immediately arrive to the known result for the 1D Heisenberg
chain with uniform DM interaction (see formula (16) in
Ref. [18]).

DIMPY has two inequivalent ladders with different g

tensors and DM vectors. In accordance with crystal symmetry
of the DIMPY (see Sec. III), the legs within the same ladder
are linked by inversion, so that

ĝ(k)
1 = ĝ(k)

2 , D(k)
1 = −D(k)

2 (k = 1 or 2), (9)

here the upper index (k = 1,2) denotes the inequivalent ladders
and the lower index enumerates legs of the ladder. The legs
of inequivalent ladders are linked by screw rotation along the
second order axis, hence

D(2)
l = C2(Y )D(1)

l ,

ĝ(2)
l = C2(Y )ĝ(1)

l C2(Y )−1 (l = 1,2).
(10)

Having known directions of the main axes of g tensors
(see Sec. V A), it is easy to find their components referred to
crystallographic coordinates for nonequivalent spin ladders

ĝ(1,2) =
⎛
⎝ 2.128 ∓0.12 −0.008

∓0.12 2.214 ±0.005
−0.008 ±0.005 2.038

⎞
⎠, (11)

where upper (down) sign corresponds to the ladder with upper
(down) sign of ng .

Simulation of experimental data on the linewidth angular
dependence by Eq. (6) showed that the Dzyaloshinskii-Moriya
interaction describes the angular variation of the linewidth in
DIMPY well enough (within experimental error). However,
a model including Dzyaloshinskii-Moriya interaction only
predicts a value of linewidth which is systematically less than
the experimental values by about 12 Oe. This fact indicates
that there is an additional (small compared to DM interaction)
source of the line broadening in DIMPY. The modeled values
of the linewidth can be reconciled with the experimental ones
by adding isotropic contribution �H0 = 12 Oe, which can
be probably ascribed to the residual spin-lattice relaxation,
or by considering other anisotropic spin-spin couplings.
Contribution to the linewidth from dipole-dipole interaction is
quite small for DIMPY and at the shortest distance between Cu
ions (r = a ≈ 7.5 Å) following conventional estimation [34]
it does not exceed ∼0.5 Oe. Additional broadening in DIMPY

can be related to SAE interaction along legs and rungs of the
spin ladders which usually appear as further sources of ESR
line broadening beyond the dominant DM interaction [18,35].
The contribution to the linewidth due to SAE interaction is
derived in Appendix A.

We do not consider effects of spin diffusion [36,37] known
to be of importance in some of the low-dimensional magnets
since within accuracy of our experiment we do not observe any
deviations from a Lorentzian line shape of the ESR absorption,
such deviation being one of the key prediction of the spin
diffusion theory.

Taking into account symmetry relations [Eqs. (9), (10), (11),
and (A3)] and, for definiteness setting D(1)

1 = D, Â(1)
1 = Â,

the fitting of linewidth angular dependence yields DX = 0.21,
DY = −0.20, DZ = 0.11 K and almost diagonal exchange
tensor with components JXX = 0.11, JYY = −0.04, JZZ =
−0.07, JXY = −0.021 K, and JXZ = JYZ = 0. During sim-
ulation the Lorentzian profile with exponential wings was
assumed, which implies C = π

√
2. Note that fit for DM

vector components essentially locks at extreme values of
the linewidth and thus is reliable with approximately 10%
accuracy. Fit for the SAE tensor components, on the contrary,
depends upon weaker deviations of the model curve from
the experimental data, contribution of the SAE coupling, and
especially its anisotropy is close to experimental error (see
Fig. 2). Thus, with the accuracy of the present experiment
SAE fit results can be considered as an estimate only.

Directions of the found D vectors are shown in Fig. 1.
Components of the DM vector and SAE tensor given above
correspond to the ladder with the g-tensor main axis orientation
ng1 = (sin � cos φ; cos �; sin � sin φ) ≈ (−0.57; 0.82; 0)
(when comparing with Fig. 1 note that ng and −ng are
physically equivalent), angle between D and ng vectors
[reduced to (−π

2 ; π
2 ) range for convenience] is approximately

23◦. Magnitude of the obtained Dzyaloshinskii-Moriya vector
|D| = 0.31 K agrees well with the crude estimation above
(Sec. V C).

As it is seen from Fig. 2, taking into consideration only an
exchange mechanisms of spin anisotropy within the legs of
ladders gives a good compliance with experiment. However,
it is necessary to stress out, that without DM interaction
SAE coupling only (see Appendix A) totally failed to give a
correct description of the angular dependence of linewidth in
DIMPY.

Our simulation shows that absolute value as well as angular
anisotropy of the linewidth are predominantly determined by
the DM interaction, while contribution to the linewidth due
to SAE interaction is relatively small. Similar behavior of
ESR linewidth with coexistent contributions from DM and
SAE interactions within S = 1/2 antiferromagnetic chains
was observed in high symmetry crystal structure KCuF3 [35].

The found DM vector has not only transverse but also a
nonzero longitudinal (with respect to the Cu-Cu exchange
bond) component within the legs. Such a result does not
contradict with the general rules for DM vector, established
by Moriya [38] based on the general symmetry grounds
for a pair of exchange interacting ions. Moreover, a simple
analysis of the recovered g tensors (see Sec. V A) leads to
the same conclusion about the direction of the DM vector.
Since the axial component of the g tensor has a maximal
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value, then the ground state orbitals of Cu2+ ions (typically
“x̃2 − ỹ2”-like symmetry and z̃||ng) should predominantly lie
within the plane perpendicular to the main axis of a g tensor,
because the maximal matrix element (〈x̃2 − ỹ2|lg|x̃ỹ〉 = −2ı)
relevant to spin-orbital coupling appears only in the case when
an external magnetic field is applied parallel to the main
axis of the g tensor. For the same reason an effective DM
vector predominantly should lie along the main axis of the g

tensor. It should be noted that a conventional rule determining
DM vector as D ∝ [n1 × n2] [39,40], where n1 and n2 are
unit vectors connecting an exchange interacting ions with a
bridging ion, is not applicable in the present case. Possible
failure of this rule was mentioned before in Ref. [41], referring
to the features of exchange process through two bridging ions,
which is also the case of DIMPY (see Fig. 1).

Thus, analysis of the ESR linewidth allowed us to conclude
that the DIMPY is a rare case of compound in which the DM
vector has a component along the line connecting the pair of
exchange interacting ions. This is a consequence of low crystal
symmetry of DIMPY and nontrivial orbital ordering.

E. Low-temperature subcomponents appearance

First, we recall main observations on the subcomponent
appearance. ESR components split around 1 K into two sub-
components, one of which is much weaker. The splitting is best
observed at H||(X + Y ) orientation. Position of the weaker
subcomponent with respect to the stronger subcomponent
is different for both ESR absorption components. Maximal
splitting is about 150 Oe and it decreases as the resonance field
approaches critical field, the weaker subcomponent became
unresolvable at the fields above 2/3 of the critical field. Ac-
tivation energies for the stronger and weaker subcomponents
are different.

All these observations can be explained as an effect of the
zero-field splitting of triplet sublevels. This effect was already
observed for various spin-gap magnets, e.g., TlCuCl3 [25] or
PHCC [26]. Anisotropic interactions lift degeneracy of the
S = 1 triplet state and frequencies of the dipolar transitions
|Sz = +1〉 ↔ |Sz = 0〉 and |Sz = −1〉 ↔ |Sz = 0〉 become
different. Here we assume, which is perfectly valid for the
case of DIMPY, that the anisotropy is very small and spin
projection on the field direction Sz can be considered as a
good quantum number. Therefore, in the presence of such an
anisotropy the resonance fields for |Sz = +1〉 ↔ |Sz = 0〉 and
|Sz = −1〉 ↔ |Sz = 0〉 transitions in the constant frequency
ESR experiment would differ and ESR absorption split into
two subcomponents.

Observed difference of the activation energies for the
absorption subcomponents and dependence of the activation
energy on the microwave frequency used in the experiment is
a direct consequence of this explanation. The ESR intensity at
low temperature is determined by the population of the lowest
sublevel. Hence, for the |Sz = +1〉 ↔ |Sz = 0〉 transition, the
activation energy is � ≈ �0 − gμBHres = �0 − hν, being
determined by the population of the |Sz = +1〉 sublevel
(energy of this sublevel decreases with field, see inset in Fig. 5).
In the same time the activation energy for the |Sz = −1〉 ↔
|Sz = 0〉 remains constant (and equal to �0), since the energy
of |Sz = 0〉 sublevel is field independent. The dependencies of

the activation energy on the microwave frequency of the ESR
experiment are described by this model parameter-free using
the zero-field gap value of 0.33 meV from the inelastic neutron
scattering experiment [9,10].

Behavior of the sublevels of the spin-gap magnet in the
vicinity of the critical field is a long-discussed problem. There
is a general macroscopic (or bosonic) approach of Refs. [3,5]
and a 1D fermionic approach of Tsvelik [4] developed for
the spin chains. A fermionic model of Tsvelik yields results
formally equivalent to the results of perturbation treatment
of anisotropic interactions [42]. Thus, within the fermionic
approach, the sublevels behave linearly in the vicinity of
the critical field and the splitting of the ESR subcomponent
should be then field independent. The bosonic model, on the
contrary, predicts a square-root-like approach to the critical
field for the low-energy sublevel, while field dependence
of the high-energy sublevel remains linear in the vicinity
of the critical field. Therefore, subcomponents splitting will
change close to the critical field. However, this nonlinearity
of the bosonic model extends only in the small vicinity of
the critical field (Hc − H ) ∼ �E/μB ∼ �H , here �E is the
zero-field triplet sublevels splitting and �H 	 150 Oe is the
observed subcomponents splitting. We observe (Fig. 4) that
the observed splitting is halved (compare 50.18 and 26.30 GHz
curves in Fig. 4) in the field of about 2/3 of the critical field
(Hc 	 30 kOe, zero-field gap of 0.33 meV corresponds to
the frequency of 80 GHz), i.e., well below this nonlinearity
range. This probably indicates that field evolution of the
split subcomponents follows some other laws on approaching
the critical field. Similar behavior of the ESR line split by
the uniform Dzyaloshinskii-Moriya interaction was recently
reported for a quasi-1D antiferromagnet Cs2CuCl4 [43].

Under an assumption that the uniform Dzyaloshinskii-
Moriya interaction along the legs of the ladder is responsible
for the observed splitting, the anisotropy axis has to be aligned
along the D vector. We calculated effects of the DM coupling
perturbatively for the limiting case of the strong-rung ladder
(see Appendix B). Interdimer DM interaction mixes one- and
two-particle excited Sz = ±1 states which results in the triplet
sublevels splitting by δE = D2

2J
, Sz = ±1 sublevels being

shifted down. This corresponds to the easy-axis anisotropy
for the triplet excitations, D direction being the easy-axis
direction. Taking the magnitude of the DM vector D ≈ 0.31 K
as estimated from the high-temperature ESR linewidth analysis
and substituting an energy gap of 0.33 meV as an exchange
parameter of the perturbative model we obtain an estimate
of the sublevels splitting δE 	 10 mK which corresponds
to maximal subcomponents splitting of about 80 Oe, factor
of 2 less than the experimentally observed value. However,
perturbative treatment starting from the uninteracting dimers
is at best a qualitative model for a strong-leg ladder and a
detailed description of a strong-leg spin ladder with uniform
Dzyaloshinskii-Moriya interaction needs a separate theoretical
effort.

We cannot unambiguously determine the type of the
anisotropy from our experimental observation since our setup
does not allow us to take an angular dependence at the He-3
temperature range. However, as it is known from the formally
similar problem of the S = 1 ion in a crystal field [20,21], the
effective anisotropy constant changes monotonously with field

184403-9



V. N. GLAZKOV et al. PHYSICAL REVIEW B 92, 184403 (2015)

rotating away from the anisotropy axis Ceff = C
2 (3 cos2 ξ − 1),

where ξ is an angle counted from the anisotropy axis z and
anisotropy C enters spin Hamiltonian as C(Sz)2. It is maximal
at the field parallel to the anisotropy axis, it changes sign and
decreases by the factor of 2 at the orthogonal orientation of
the magnetic field, and it turns to zero at a magic angle. Thus,
as the splitting observed for the high-field component is larger
than that for the low-field component (approximately 150 vs
110 Oe, see Fig. 4) and weaker subcomponents are located on
different sides from the main subcomponents, we find it more
likely that the high-field component corresponds to the ladder
with the magnetic field close to the true anisotropy axis. In this
case, as for the field applied close to the anisotropy axis, the
weaker subcomponent is located to the right from the stronger
subcomponent, the splitting of the triplet sublevels follows
the easy-axis type of anisotropy, the energy of Sz = ±1 states
being lower than energy of the Sz = 0 state in zero field.
Zero-field splitting of triplet sublevels can be estimated as
20 mK (which would result in the maximal splitting of ESR
subcomponents by 150 Oe).

However, this tentative identification of the anisotropy axis
deviates from the simple model of DM interaction only: as the
vectors D and ng are quite close for the given ladder the low-
field component (corresponding to the higher longitudinal g

factor) should then be closer to the anisotropy axis. A possible
reason for this deviation is the effect of symmetric anisotropic
exchange on the rungs of the ladder (see Appendix B). SAE
coupling on the rungs of the ladder is of particular importance
here: being smaller in magnitude than the DM coupling
constant and smaller than the SAE coupling along the legs
of the ladder, SAE coupling on the rungs of the ladder enters
to the triplet sublevels splitting linearly, while contributions of
DM coupling and SAE coupling along the leg of the ladder are
quadratic. This is contrary to the linewidth calculations where
all couplings enter quadratically. Zero-field splitting of triplet
sublevels by 20 mK corresponds within a simple one-dimer
model (see Appendix B) to the SAE coupling constant Arung =
−40 mK [value of −40 mK corresponds to the notations of
Hamiltonian (B6) it recalculates to the tensor with diagonal
values {13 mK; 13 mK; −26 mK} in a zero-trace calibration
of SAE used in linewidth analysis]. This estimate is close to
the magnitude of SAE coupling parameters estimated from
the high-temperature linewidth, however linewidth analysis
cannot discern between SAE couplings along the leg and along
the rung of the ladder. The anisotropic part of the dipolar
interaction on the rungs of the ladder has formally the same
form as SAE coupling but, due to the large interatomic distance

on the rung (8.9 Å), characteristic dipolar energy μ2
B

d3 	 0.9 mK
is too small to be of effect.

Thus, description of the subcomponents splitting in DIMPY
lies beyond the simple model with DM interaction only, the
observed splitting is a result of interplay between DM and
SAE couplings.

VI. CONCLUSIONS

The strong-leg spin ladder system DIMPY is an estab-
lished test example of the Heisenberg spin ladder. How-
ever, anisotropic spin-spin interactions, and in particular

Dzyaloshinskii-Moriya interaction of intriguing geometry
(uniform along the leg of the ladder and exactly opposite
on the other leg), give rise to a family of interesting
phenomena.

We have estimated parameters of Dzyaloshinskii-Moriya
interaction from high-temperature data. We observe splitting
of the ESR line at low temperatures which is related to
the zero-field splitting of the triplet sublevels caused by
the interplay of Dzyaloshinskii-Moriya interaction and sym-
metric anisotropic exchange coupling. Finally, we observe
series of crossovers between different regimes of relax-
ation of spin precession on cooling from room temperature
to 400 mK.

We present qualitative explanations of our observations.
Simple geometry of the exchange couplings and anisotropic
spin-spin interactions makes DIMPY one of the few candidates
for the model-free microscopic description of the effects of
anisotropic interactions on the properties of a spin-gap magnet,
which is still awaiting for a theoretical effort.
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APPENDIX A: LINEWIDTH CONTRIBUTION BY A SAE
INTERACTION ALONG THE LEGS

Symmetric anisotropic exchange (SAE) coupling is allowed
both on the rungs and on the legs of the ladder. Our aim here
is to demonstrate that SAE coupling can explain contribution
of about 20% of the total linewidth that cannot be described
by DM coupling alone. We will focus here on a SAE coupling
along the legs of the ladder. We have checked that a SAE
coupling along the rung yields similar angular dependence and
its contribution differs only by some numerical scaling factor.
However, we expect that contribution of the SAE couplings
on the rungs should be small in a strong-leg ladder since the
overlapping of the orbitals along the rung is smaller.

An expression for ESR linewidth due to a SAE coupling
along the legs of spin ladder is derived similarly as was done
for a DM one in Sec. V D, applying

HSAE =
∑

i

∑
l=1,2

Sl,iÂlSl,i+1 (A1)

to Eqs. (3), (4), and (2) in the framework of “method
of moments,” that in the high temperature limit of S = 1/2
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leads to

�H SAE
∞ = C

∑
l=1,2

[
(2λzz − λxx − λyy)2 + 10

(
λ2

xz + λ2
yz

) + (λxx − λyy)2 + 4λ2
xy

]
l

8
√

6μBJ̃Sg(θ,φ)
, (A2)

where J̃S =
√

J 2
leg + 2/3J 2

rung, and the exchange-tensor com-

ponents in the laboratory coordinates ληγ (α,β) (η,γ = x,y,z)
are defined by transformation given in Ref. [14] [see formulas
(A2)–(A4) therein] and, as usually, are expressed via the
intrinsic exchange parameters Jμτ of symmetric tensor Â in
crystallographic coordinates (μ,τ = X,Y,Z).

In accordance with crystal symmetry of the DIMPY (see
Sec. III), symmetric exchange tensors on the legs of the same
ladder are equal, while on the legs of inequivalent ladders they
are related by a screw rotation along the second order axis,
that is

Â(k)
1 = Â(k)

2 (k = 1 or 2),
(A3)

Â(2)
l = C2(Y )Â(1)

l C2(Y )−1 (l = 1, 2).

Generally, taking into account the relation of Jηγ = Jγη

for a symmetric tensor, an exchange tensor has six different
components, constrained by TrJηγ = 0 condition. However,
since the anisotropy of the g tensor and the tensor of SAE
coupling originates from the same spin-orbital interactions,
accidental smallness of gXZ and gYZ components allows us to
assume JXZ = JYZ = 0 during the fitting procedure. We have
found that the remaining four components of the SAE tensor
are enough to reproduce our data.

APPENDIX B: PERTURBATIVE TREATMENT OF
TRIPLET SUBLEVELS SPLITTING BY UNIFORM

DM AND SAE COUPLINGS

Strong-rung Jrung � Jleg limit allows us to use wave func-
tions of the isolated dimers as a zero-order approximation. For
the dimer located at the nth rung wave function of the ground
state is ψn0 = 1√

2
(|↑↓〉n − |↓↑〉n) and wave functions of the

excited triplet are ψn11 = |↑↑〉n, ψn10 = 1√
2
(|↑↓〉n + |↓↑〉n),

and ψn1−1 = |↓↓〉n. Wave function of the collective ground
state is �(0) = ∏

p ψ
(p)
0 and single-particle excited states with

the excitation at the nth dimer can be built as

�
(1)
n11 =

n−1∏
p=0

ψp0ψn11

N∏
p=n+1

ψp0 (B1)

and similarly for other spin projections. Many particle excited
state can be constructed similarly keeping in mind hard-core
repulsion as only one excited state per dimer is allowed.

One-particle states are N -fold degenerated, this degenera-
tion will be lifted by interdimer exchange coupling Jleg giving
rise to excitations dispersion.

We consider the effect of interdimer DM interaction (5)
with DM vectors oppositely aligned on the legs of the ladder.
This configuration conserves symmetry axis (direction of the
DM vector, which we will use as z direction), thus excitations
will have well defined Sz values. Interdimer DM interaction

can then be expressed as

V = D

2ı

∑
n

[S−
1,nS

+
1,n+1 − S+

1,nS
−
1,n+1

− S−
2,nS

+
2,n+1 + S+

2,nS
−
2,n+1]. (B2)

By applying this operator to the ground state and to one-
particle excited states we obtain

V �(0) = 0, (B3)

V �
(1)
n10 = 0, (B4)

V �
(1)
n11 = D

2ı

( − �
(2)
n10;(n+1)11 + �

(2)
n10;(n−1)11

)
, (B5)

here �
(2)
n10;m11 are two-particle excited states with S = 1,Sz = 0

excitation on the nth rung and S = 1,Sz = 1 excitation on the
mth rung.

Thus, interdimer DM interaction mixes Sz = ±1 single-
particle excited states with Sz = ±1 two-particle excited
states. This mixing results in the second order perturbative
correction to the energy of the single-particle state δE =
− D2

2Jrung
, Sz = ±1 being shifted down. As this correction is

the same for all Sz = ±1 states, weak interdimer Heisenberg
coupling Jleg will not affect it.

This result differs from the effect of intradimer DM inter-
action which mixes S = 1,Sz = 0 state with S = 0 state and
shifts the energy of the S = 1,Sz = 0 up by D2

4Jrung
. However,

both interdimer and intradimer DM interaction results in the
easy-axis anisotropy for the triplet excitations (energy of the
Sz = ±1 states is lower than the energy of the Sz = 0 state).

Note also that the effective anisotropy for the triplet
excitations is easy axis, while usual anisotropy due to DM
interaction (e.g., anisotropy of the order parameter in the
ordered state of an antiferromagnet) is of easy plane type. This
“inversion” of anisotropy seems to be a common feature of all
spin-gap magnets: it was obtained by perturbative analysis of
the role of single-ion anisotropy in a Haldane magnet [44]
and was observed in a Haldane magnet PbNi2V2O8 [45],
similar inversion of the anisotropy type between the anisotropy
of triplet excitations and order parameter anisotropy in a
field-induced ordered phase of a spin-gap magnet follows from
macroscopic approach [5].

Effect of the symmetric anisotropic coupling on a strong-
rung ladder can be considered similarly. Our aim here is to
illustrate that its contribution is linear on a coupling parameter
along the rung so we consider simple axial SAE coupling in
the form

V = Aleg

∑
n,j

Sz
j,nS

z
j,n+1 + Arung

∑
n

Sz
1,nS

z
2,n, (B6)

here n enumerates rungs (dimers) and j enumerates legs
of the ladder (spins in the dimer), Aleg and Arung are
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SAE coupling constants along the leg and rung of the
ladder.

By applying this operator to the ground state and to the
one-particle excited states one can ascertain that SAE coupling
along the legs mixes ground sate and single-particle states
with two-particle states and will give some corrections in the
second order of perturbations, while SAE coupling on the
rungs gives energy corrections already in the first order on

the coupling parameter: energies of the ground state and of
the Sz = 0 component of triplet state are shifted (per dimer)
by − 1

4Arung, while energies of the Sz = ±1 components are
shifted by + 1

4Arung. Zero-field splitting of triplet levels equal
to 1

2Arung appears, its type (easy axis or easy plane) depends
on the sign of coupling parameter Arung, which can be both
positive and negative.
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