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Imaging interatomic electron current in crystals with ultrafast resonant x-ray scattering
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We demonstrate how the technique of ultrafast resonant x-ray scattering can be applied to imaging dynamics
of electronic wave packets in crystals. We study scattering patterns from crystals with electron dynamics in
valence bands taking into account that inelastic and elastic scattering events induced by a broadband probe pulse
cannot be separated through the spectroscopy of the scattered photon. As a result, scattering patterns are not
determined by the structure factor at the time of measurement, but can encode the instantaneous electron current
between scattering atoms. We provide examples of how the interatomic electron current in a periodic structure
can be extracted from a single scattering pattern by considering valence electron-hole motion in (KBr)108 and
Ge83 clusters.
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I. INTRODUCTION

The ability to image electronic dynamics in real space
and real time is essential for a thorough investigation and
control of various chemical and physical transformations
of molecular structures and crystals. This task requires
angstrom spatial resolution, which corresponds to interatomic
distances in solids and molecules, and femtosecond and even
subfemtosecond temporal resolution, which is necessary to
capture electron dynamics. X-ray free-electron lasers, capable
of producing pulses of hard x rays with angstrom wavelengths,
are a promising tool to achieve these requirements [1–5]. Fem-
tosecond time resolution is already achieved at free-electron
laser facilities [6,7], and high-intensity attosecond pulses are
realizable using the techniques described in Refs. [8–13].

Recently, we introduced a method that employs ultrafast
hard x-ray pulses for imaging dynamics of nonstationary
electron systems in both real space and real time [14]. This
technique, combining elastic and inelastic ultrafast resonant x-
ray scattering (RXS), allows encoding the interatomic electron
current in a single scattering pattern in addition to the usual
structural information. This effect is due to inelastic processes
that unavoidably contribute to a scattering pattern obtained by
a broadband ultrafast probe pulse. In order to demonstrate the
principle of our method, we provided an illustrative example
of probing electron-hole motion in a diatomic molecule [14].

In this paper, we describe how our technique can be
applied to imaging electron dynamics in crystals. Electron
motion in crystals determines various fascinating ultrafast
phenomena relevant for technological applications. Especially,
this applies to light-driven phenomena, where transformations
of electronic, optical, or magnetic properties of a crystal
are triggered by the interaction of an ultrafast pump pulse
with electrons. Such light-induced phenomena include, for
example, insulator-to-metal transition in charge-ordered sys-
tems [15], light-driven electron current in dielectrics [16,17],
high-harmonic generation [18,19], and extraordinary carrier
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multiplication in semiconductors [20], and many other intrigu-
ing phenomena. In order to control such phenomena, the ability
to characterize electron dynamics is necessary.

In this paper, we demonstrate how ultrafast RXS can be ap-
plied to image coherent electron motion in crystals and discuss
conditions that are necessary to extract instantaneous inter-
atomic electron currents from a scattering pattern. Launching
and observing coherent electron dynamics in bulk crystals,
which is a process of interest in view of fundamental physics
as well as potential applications, has recently become possible
[15,19,21–23]. For instance, phase-stable high-harmonic tran-
sients covering the terahertz-to-visible spectral domain can be
induced and controlled in a bulk semiconductor by triggering
dynamical Bloch oscillations with THz pulses, which is an
important step towards terahertz-rate electronics [19]. It has
also been suggested that dynamical Bloch oscillations have an
effect on optical-field-induced currents in a wide-gap dielectric
[16,24]. It has been shown that coherent electron oscillations
accompany insulator-to-metal transitions in a charge ordered
organic crystal induced by few-optical-cycle infrared pulses
[15] and insulator-metal dynamics of a magnetoresistive
manganite induced by an ultrashort optical pulse [21].

As examples of coherent electron dynamics in crystals, we
consider coherent electronic wave packets in the valence bands
of KBr and Ge crystals triggered by a photoionizing pump
pulse. Creation of coherent electronic wave packets in valence
orbitals of atoms and complex molecules by a photoionizing
pump pulse has been demonstrated in attosecond science
[25–30]. Ultrafast control over ionization dynamics in solids
by attosecond light pulses is a rapidly emerging field in
attosecond science in view of potential applications for
ultrafast signal processing [31,32]. Although some theoretical
[33,34] and experimental [35,36] progress has been made
in understanding attosecond ionization of solids, no optimal
procedure for launching coherent electronic wave packets in
crystals by photoionization has yet been established. Here,
we do not aim at describing the formation of electronic wave
packets in solids through photoionization, but we use them
just as examples to analyze which dynamical information is
encoded in time-resolved RXS patterns from electronically
nonstationary periodic structures.
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In Sec. II, we discuss the formalism underlying ultrafast
RXS from electronic wave packets and show the connection
between the interatomic electron current and the Fourier trans-
form of a scattering pattern from Q space to real space [14].
We discuss in detail ultrafast RXS patterns and demonstrate
how the interatomic electron current can be extracted from a
scattering pattern using the example of coherent electron-hole
motion in KBr crystal in Sec. III. Another example, which
we provide in Sec. IV, is coherent electron-hole motion in the
two outermost valence bands of Ge crystal. We discuss the
difference between the scattering patterns and the procedures
to extract interatomic electron currents in KBr and Ge crystals.
We simulate the regions where a single electron hole is
distributed in the crystals by (KBr)108 and Ge83 clusters.

II. ULTRAFAST RESONANT X-RAY SCATTERING

We consider the process of ultrafast RXS, where, first, a
resonant x-ray probe pulse induces a transition of an electron
from a core shell of a certain atomic species to a valence band,
where electron dynamics is taking place. Then, the created
core vacancy is filled by some electron accompanied by the
emission of a photon that contributes to the scattering pattern.
For a stationary measurement, the major contribution to the
scattering pattern is due to elastic scattering events since they
sum up coherently. As a result, a stationary scattering pattern
depends on the static structure factor, which is determined
by the electron density. However, the situation is different
for time-resolved RXS from a nonstationary electron system,
the necessary condition for which is that the probe pulse
duration must be much shorter than the characteristic time
scales of electron dynamics. As a result, the bandwidth of
the probe pulse is much larger than the maximum splitting
of the energy levels involved in the dynamics, which leads
to the indistinguishability of elastic and inelastic scattering
processes. As a consequence, a scattering pattern obtained by
an ultrashort resonant x-ray pulse does not encode a structure
factor at the time of measurement and is not determined by
the electron density at the time of measurement, in contrast to
stationary RXS [14].

In Ref. [14], we investigated ultrafast RXS patterns ob-
tained by a probe pulse from an electronic system excited by
a pump pulse at time t = 0. Let the many-body Hamiltonian
of the system in the absence of an x-ray field be Ĥm with
eigenstates �I and eigenenergies EI . Thus, the electronic
system at time t is described by a density matrix

ρ̂m(t) =
∑
I,K

IIK (t)|�I 〉〈�K |, (1)

where the elements IIK (t) are determined by the pump pulse.
We demonstrated that the quantum electrodynamics treatment
based on the density matrix formalism within second-order
time-dependent perturbation theory [37] is necessary to cor-
rectly describe scattering patterns obtained by an ultrashort
x-ray pulse from this nonstationary electron system. The
resulting differential scattering probability (DSP) for a probe
pulse with intensity Iin(t) = I0 e−4 ln 2((t−tp)/τp)2

, which arrives

at time tp after the pump pulse, can be represented as [14]

dP

d�
= τ 2

pI0

4 ln 2c4

∑
Cq,Cr

[
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Q · {
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− RCr

})
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− sin
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(
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)(
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)
,
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∑
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dωksωksW
(
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)
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4 ln 2(
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)2 + �2
J /4

, (2)

where c is the speed of light, the sum over Cq and Cr goes over
all scattering atoms in the system situated at positions RCq

and
RCr

, respectively (atomic units are used for this and following
expressions). JCq(r) are intermediate states with an electron hole
in a core shell of atom Cq(r), the energy splittings between
which we assume to be much smaller than the bandwidth of
the ultrashort probe pulse (thus, EF − EJCq

= EF − EJCr
=

�ωJF ), and �JCq
= �JCr

= �J are the core-hole linewidths.

DAB = 〈�A| ∫ d3r ψ̂† r ψ̂ |�B〉 designates the dipole matrix
element between electronic states |�A〉 and |�B〉, where ψ̂

(ψ̂†) is the electron field annihilation (creation) operator. ωks is
the energy of a scattered photon with a wave vector ks, W (ωks )
represents the spectral acceptance range of the photon detector,
�F = ωks − ωin + EF − 〈E〉, where ωin is the photon energy
of the probe pulse and 〈E〉 is the mean energy of the electronic
system described by Eq. (2). Q = kin − ks, where kin is the
wave vector of the probe pulse.

In contrast to the DSP from a stationary system, the DSP
in Eq. (2) is not centrosymmetric and does not encode a
structure factor at the time of measurement, i.e., dP/d� �∝
| ∑C fC(tp)eiQ·RC |, where fC(tp) is the scattering amplitude
of atom C at the time of measurement tp. However, some
useful information can indeed be extracted from ultrafast
RXS patterns. Namely, not only do they contain structural
information, but they also can provide the electron current
between scattering atoms at the time of measurement. In
this paper, we provide examples of ultrafast RXS scattering
patterns from crystals and discuss in detail what is actually
needed to extract the interatomic electron current from a
scattering pattern.

Interatomic electron current

During the time evolution of the electronic wave packet,
the electron charge is redistributed both between atoms in the
system and within each individual atom, thus, giving rise to
the interatomic and intraatomic contributions to the probability
current density j(r,tp), which is given by the relation

j(r,tp) = i

2
Tr{ρ̂m(tp)([∇ψ̂†]ψ̂ − ψ̂†[∇ψ̂])}. (3)

The field annihilation (creation) operator can be expanded in
terms of one-particle wave functions as ψ̂(r) = ∑

α ĉαφα(r)
[ψ̂†(r) = ∑

α ĉ†αφ∗
α(r)], where ĉα (ĉ†α) annihilates (creates) a
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particle in one-particle state φα(r). Representing the one-
particle wave functions as linear combinations of functions
φ̃i(r − RC) centered at site RC ,

φα(r) =
∑
C

∑
i

γαCi φ̃i(r − RC), (4)

the interatomic current between atoms Cq and Cr is

jqr (tp) = Im

⎛⎝∑
I,K

IIK (tp)
∑
α,β

〈�K |ĉ†β ĉα|�I 〉
∑
i,k

γ ∗
βCrk

γαCq i

×
∫

d3r φ̃∗
k

(
r − RCr

)∇φ̃i

(
r − RCq

))
. (5)

Note that the current jrq is opposite to jqr , which is consistent
with the fact that the current from atom Cq to Cr is opposite
to the current from atom Cr to Cq .

The interatomic electron current can be accessed via the
imaginary part of the Fourier transform of a scattering pattern
from Q space to real space,

Im

(
1

(2π )3

∫
d3Q

dP (Q)

d�
e−iQ·r

)
∝

∑
Cq,Cr

Jqr (tp)δ
[
r − (

RCq
− RCr

)]
, (6)

which is the sum of delta peaks weighted by functions
Jqr (tp) = Im[Aqr (tp)] and centered at positions correspond-
ing to vectors connecting scattering atoms Cq and Cr [14].
Applying Eq. (4) to dipole matrix elements DJCq I and DKJCr

,
the functions Jqr (tp) can be represented as

Jqr (tp) =Hqr Im

⎛⎝∑
I,K

IIK (tp)
∑
α,β

〈�K |ĉ†β ′ ĉβ

∣∣�JCr

〉
.

× 〈
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∣∣ĉ†αĉα′ |�I 〉
⎞⎠ ∑

i,k

γ ∗
βCrk

γαCq i d
∗
k,Cr

di,Cq
, (7)

where

di(k),Cq(r) =
∫

d3r φ̃i(k)
(
r − RCq(r)

)
(εin · r)φ̃∗

core

(
r − RCq(r)

)
.

(8)

Here, the operator ĉα′ creates an electron hole in a core
shell of atom Cq . Since the orbitals of electrons in core
shells of heavy atoms are strongly localized, a single function
φ̃∗

core(r − RCq
) with the corresponding coefficient γ ∗

α′Cqi ′ =
1 in the sum in Eq. (4) describes the core-hole wave
function. The operator ĉ†α annihilates an electron hole with
a wave function

∑
i,C γ ∗

αCiφ̃
∗
i (r − RC) in the valence band,

where the dynamics is taking place. We took into account
that an integral

∫
d3r φ̃i(r − RC)(εin · r)φ̃∗

core(r − RCq
) can be

very well approximated by di,Cq
δRCq ,RC

since the function
φ̃∗

core(r − RCq
) is strongly localized (here, δRC,RCq

is the
Kronecker delta). Therefore, the wave function of the valence
electron hole contributes only functions

∑
i γ

∗
αCq i φ̃

∗
i (r − RCq

)
to the integrals entering the dipole matrix element DJCq I

(analogously for the operator ĉ
†
β ′ ĉβ and atom Cr ).

The probe pulse is resonant with the transition of an electron
from a core shell to the valence band, where the dynamics is
taking place. Therefore, the terms in the sum over α,β in Eq. (7)
are nonzero only if electron holes in the valence bands exist.
Also, there would be no electron dynamics and, consequently,
no current in the valence bands, if they are filled. Therefore,
the terms in Eqs. (5) and (7) are nonzero for the same α and β,
and factors γ ∗

β,Crk
γα,Cq i entering factors Jqr and interatomic

electron-hole current jqr are the same under the assumption
stated. That means that Jqr (tp) is proportional at any tp to
some projection of jqr (tp) on the direction of the unit vector
n, as long as the ratio between di,Cq

d∗
k,Cr

and
∫

d3r φ̃∗
k (r −

RCr
)(∇ · n)φ̃i(r − RCq

) is equal for every i and k.

III. COHERENT ELECTRON-HOLE DYNAMICS
IN POTASSIUM BROMIDE

As the first example we consider electron-hole motion in
KBr crystal. KBr is an ionic crystal with the rock-salt crystal
structure, where the 4s electrons of K atoms are transferred to
Br atoms [38]. The p-character electrons centered on the Br
atoms form the outermost valence band of KBr. We assume
that a pump pulse ionizes KBr by removing electrons from
this band, i.e., by creating p-type electron holes centered
on Br atoms, and coherently triggered their dynamics (see
Fig. 1). Generally, each electron hole would be delocalized and
distributed over many Br atoms in some region. We assume
that the concentration of the electron holes is sufficiently low
to consider these regions isolated and the holes noninteracting.

The second pulse, which comes after the pump at some time
tp, probes the electron dynamics via the ultrafast RXS, which
is a two-step process. First, it resonantly excites the transition
of an electron from the 1s shell of Br to the valence band,
where the dynamics is taking place. Thereby, this absorption
step directly depends on the electronic wave packet state at the
time of measurement. Then, the created electron hole in the 1s

FIG. 1. (Color online) Electron-hole density at time tp in a
fragment of (KBr)108 cluster visualized using VESTA [39]. The orange
arrows represent the electron-hole currents jqr (tp) between the Br
atoms, and their lengths are proportional to |jqr (tp)|. The blue-framed
arrow represents a current parallel to the pulse polarization.
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shell of Br would be filled by either a valence electron or by
an inner-shell electron of Br accompanied by the emission of a
photon that reaches the detector. The second process does not
directly depend on the wave-packet state at time tp since the
wave packet has already been destroyed in the absorption step.
However, since the scattering probability is determined by both
processes, absorption and emission, the scattering pattern still
contains information about the wave packet.

A. Computational details

We simulated the region of the ionized KBr crystal, where
a single electron hole is present, by a cubic KBr cluster
consisting of 216 atoms. We performed the calculation of
the electronic structure of the neutral cluster within the
Hartree-Fock approach using the ab initio quantum chemistry
software package MOLCAS [40] with the STO-3G basis set
[41,42], which already gives satisfactory results for KBr.
The calculation was performed without periodic boundary
conditions and in the real space, which allowed extracting the
spatial orbitals of the singly ionized KBr cluster and their bind-
ing energies within Koopmans’ theorem [43]. There are 324
valence orbitals in the cluster since there are six p-like valence
electrons per Br atom. Therefore, there are 324 electronic states
involved in the dynamics of the wave packet in our simulation.

We assume that the pump and probe pulses do not
overlap temporally. Therefore, their actions can be described
separately [44]. We further assume that the pump pulse has
created a perfectly coherent superposition of the electronic
states, so that the elements IIK (t) in Eq. (1) can be represented
as IIK (t) = CIC

∗
Ke−i(EI −EK )t , where CI and CK are time-

independent coefficients. In principle, these coefficients must
be determined from the description of the specific process
triggering the wave packet. But, in this paper, our goal is
to demonstrate how, using ultrafast RXS, one can extract
information about nonstationary electron dynamics in a crystal
independently from how this electron dynamics was excited.
Therefore, we do not concentrate on the pump process and
choose coefficients CI,K randomly since the conclusions
presented below do not depend on the specific set of the
elements IIK (t) and are expected to remain valid even if the
state of the electronic system is a statistical mixture of states
[i.e., IIK (t) �= CIC

∗
Ke−i(EI −EK )t ].

The distribution of 324 energy levels reflects the main
features of the density of states of the valence band of bulk
KBr crystal [38]. With increasing number of atoms in the
cluster, the intervals between the energy levels decrease and
the distribution of the states tends to the density of states
of the valence band. Since the behavior of a wave packet is
determined by the energy states involved in the dynamics, the
description of the wave-packet dynamics in the crystal would
improve with increasing number of atoms in the cluster. Our
focus here is on analyzing time-resolved scattering patterns
from a wave packet in a periodic structure. As will be discussed
in the following, the conclusions about properties of such
scattering patterns do not change with increasing cluster size.

B. Scattering pattern

The duration of the probe pulse of 200 as is chosen such
that it is sufficiently short to capture the electron dynamics

of the wave packet, the characteristic time scale of which is
determined by the bandwidth of the valence band of 2.5 eV
[38]. The photon energy of the probe pulse ωin ≈ 13 keV is
tuned to the K edge of Br, providing a spatial resolution of
0.9 Å. Such subfemtosecond hard x-ray pulses can be pro-
duced at free-electron lasers using the strategies described in
Refs. [8–13]. The probe pulse propagates along the x direction
and its polarization is along the y axis, parallel to one of the
vectors connecting two Br atoms (see Fig. 1).

It follows from Eq. (2) that photons emitted from localized
electrons filling the 1s core hole in Br do not provide a
structure-dependent contribution to the scattering pattern.
Namely, if an electron localized at some atom Cl would take
part in the emission step by filling the core hole, then the final
state |F 〉 would be a state with an electron hole localized at
Cl . As a result, all terms (DJCr F · εs)(DFJCq

· ε∗
s ) except for

the term (DJCl
F · εs)(DFJCl

· ε∗
s ) in the sum over scattering

atoms Cq and Cr in Eq. (2) would be zero. Thus, photons
emitted by electrons from localized orbitals filling the core
hole would provide a signal that is constant over Q space,
thereby contributing only to the background. These photons
have energies lower than energies of transitions of electrons
from the outermost valence band to the 1s shell of Br and
can be suppressed by the spectral window function W (ωks )
centered at ωin. Thus, we assume that the spectral window
function W (ωks ) is centered at ωin and suppresses all photons
emitted by electrons lying deeper than the outermost valence
band. Without this assumption, the signal in a scattering pattern
would be larger, but its contrast would be lower.

Figure 2(a) shows the scattering pattern in the QyQz plane
at Qx = 0 from the singly ionized KBr cluster obtained by the
probe pulse arriving at time tp. The sample must be rotated
about the y axis as described in Appendix A in order to acquire
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FIG. 2. (Color online) Scattering patterns at the probe-pulse in-
tensity I0 from the ionized KBr cluster obtained by a y-polarized
x-ray pulse. (a) No polarization filter is applied in the measurement
of a scattered photon. (b) A polarization filter transmitting y-polarized
scattered photons is applied and the pattern is divided by the function
g(Q) [Eq. (B5)].
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data in this plane. Two conditions must be satisfied for Q points
in the plane to be accessible. The first condition is that |Q|
cannot exceed 2|kin| sin(θmax/2), where θmax is the maximum
scattering angle, which we set to 60◦. The second condition
is due to the inexistence of a configuration of vectors kin and
ks for some Q points (see Appendix A and Refs. [45,46] for
details). This condition limits the accessible area by two circles
of radius |kin| centered at the points (Qy,Qz) = (0,±|kin|).

The Q dependence of the scattering pattern in Fig. 2(a)
is given not only by the trigonometric functions in Eq. (2),
but also by the function Hqr , which contains a sum over
the two independent polarizations of the scattered photon.
Since the vector ks is different for every Q point, the terms∑

F,ss
(DFJCq

· ε∗
s )(DFJCr

· εs) in the function Hqr are also
different and depend on Q. This additional Q dependence
will manifest itself in the Fourier transform of the scattering
pattern to the real space, which would complicate its analysis.
In order to eliminate this dependence, we apply a polarization
filter that transmits scattered photons with polarization εp

(see Appendix B). Then, the term
∑

F,ss
(DFJCq

· ε∗
s )(DFJCr

·
εs) will be substituted by g(Q)

∑
F (DFJCq

· εp)(DJCr F · ε∗
p),

where the function g(Q) is given in Eq. (B5). Thus, by applying
a polarization filter, the dependence of the factor Hqr on Q can
be factored out independently of which polarization εp the
filter transmits.

Figure 2(b) shows the scattering pattern at t = tp obtained
with a filter transmitting only y-polarized photons and divided
by the function g(Q). Now, the pattern contains only the Q de-
pendence determined by the trigonometric functions in Eq. (2).
In this way, the periodicity of the pattern can be straightfor-
wardly determined, and it can be extrapolated to a region with
inaccessible Q in order to perform the Fourier transform of the
pattern to the real space. Looking at the pattern carefully, one
can notice that the point at (Qy,Qz) = (0,0) is not a center of
inversion symmetry, corroborating the discussion above that
the pattern is not determined by the usual structure factor
squared. The shape and positions of the peaks in the pattern
change depending on the probe-pulse arrival time. The contrast
and the mean signal of the pattern also slightly change in
time.

Note that this scattering pattern is formed by a single hole
distributed over Br atoms in the cluster, and the diffraction
peaks in the pattern are due to the interference of segments
of the electron hole centered on different atoms (see Fig. 1).
With increasing cluster size, the contrast and the mean signal
strength of a scattering pattern averaged over time will not
change since still only a single electron hole would contribute
to the signal. A real scattering pattern from an ionized KBr
crystal would be formed by the sum of signals from all electron
holes in the crystal, which would enhance the number of
photons that reach the detector by a corresponding factor. In
Appendix C, we estimated that a KBr crystal with one electron
hole per one thousand atoms has to be irradiated with 3 × 1012

photons in order to achieve a signal of one photon per pixel
on average. Additionally, the contrast would be enhanced due
to Bragg reflections from electron holes that move coherently.
However, scattering patterns from KBr crystal and other alkali
halides would always have a low contrast compared to other
systems since valence electrons in alkali halides are to a large
degree localized [38].
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FIG. 3. (Color online) (a) The Fourier transform from Q space
to real space of the scattering pattern in Fig. 2(b). (b) Solid violet
line: time evolution of the amplitude of the circled peak in panel (a).
Orange dashed line: the sum of the currents between pairs of atoms
connected by the vector (0,RBr-Br,0).

C. Fourier transform of the scattering pattern

Figure 3(a) shows the imaginary part of the Fourier
transform from Q space to real space of the pattern from
Fig. 2(b). This and further plots of the imaginary part of the
Fourier transform we obtain with Eq. (6), which provides the
“ideal” Fourier transform of scattering patterns, as if they were
extrapolated to the region of infinite Qy and Qz. The Fourier
transform consists of delta peaks at points corresponding to
vectors connecting pairs of Br atoms (see Fig. 4). For instance,
the peak outlined by the circle in Fig. 3(a) corresponds to
the vector (0,RBr-Br,0) that connects all nearest-neighbor Br
atoms lying in the y direction, where RBr-Br = 4.7 Å is the
distance between the nearest-neighbor Br atoms. Amplitudes
of peaks at points (Ry,Rz) are opposite to amplitudes of peaks
at (−Ry,−Rz).

Now, let us consider the correspondence between the
imaginary part of the Fourier transform and the interatomic
electron current, which we discussed in Sec. II A. The electron
hole is created in the valence band of KBr that is formed
by 4p-type orbitals centered on Br atoms. Therefore, the
atomic functions φ̃i(r − RC), which we use to expand the
wave function of the electron hole [see Eq. (4)], are simply
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FIG. 4. (Color online) Br atoms in the projection of the KBr
cluster on the yz plane, illustrating how the KBr cluster is “seen”
by the resonant x-ray probe pulse propagating in the x direction. Also
shown is the projection of the probability current density [Eq. (3)] on
the yz plane jyz(r,tp).

4px-, 4py-, and 4pz-type orbitals centered on site C, which
we designate as φ̃px

, φ̃py
, and φ̃pz

, respectively. According to
Eq. (5), the interatomic electron-hole current is given by

jqr (tp) = Im

(∑
I,K

IIK (tp)
∑
b,c

γ ∗K
Crpb

γ I
Cqpc

×
∫

d3r φ̃∗
pb

(r − Rr )∇φ̃pc
(r − Rq)

)
, (9)

where b and c stand for x, y, and z, and γ I
Cqpc

and γ K
Crpb

are

coefficients for which the matrix element 〈�K |ĉ†β ĉα|�I 〉 in
Eq. (5) is nonzero. Let atoms Cq and Cr be nearest-neighbor
atoms aligned along the y direction. Then, the integral∫

d3r φ̃∗
py

(r − Rr )∇yφ̃py
(r − Rq) is much larger than the other

integrals involving functions φ̃px
, φ̃py

, φ̃pz
and operators ∇x ,

∇y , ∇z, meaning that the y component of the current jqr

would be the dominating one. Since only one integral provides
the dominating contribution to the amplitude of jqr , and the
4py-type function is real, |jqr (tp)| is simply given by

|jqr (tp)| ≈
(∫

d3r φ̃py
(r − Rr )∇yφ̃py

(r − Rq)

)

× Im

(∑
I,K

IIK (tp)γ ∗K
Crpy

γ I
Cqpy

)
. (10)

We obtain the same result that interatomic electron-hole
currents between nearest-neighbor Br atoms in KBr are aligned
along vectors connecting the corresponding atoms (see Fig. 1)
by numerically calculating the currents. Also, we find that
the current between atoms not lying next to each other is
negligible. This is because the functions φ̃py

(r − Rr ) and
∇yφ̃py

(r − Rq) centered on atoms Cr and Cq that are far apart
do not overlap with each other.

Now, let us consider the factor Jqr , which, according to
Eq. (7), is

Jqr (tp) = Hqr

∣∣dpy

∣∣2
Im

(∑
I,K

IIK (tp)γ ∗K
Crpy

γ I
Cqpy

)
,

dpy
=

∫
d3r φ̃py

(r − Rq)yφ̃∗
1s(r − Rq)

=
∫

d3r φ̃py
(r − Rr )yφ̃∗

1s(r − Rr ), (11)

where φ̃1s(r − Rq(r)) is the wave function of an electron hole
in the 1s shell of the Br atom at site Cq(r). Here, we took into
account that the integrals dpx

and dpz
are zero for a y-polarized

probe pulse. Comparing functions Jqr (tp) and |jqr (tp)|, one
can see that they are proportional at every tp with the coefficient
of proportionality being given by Hqr |dpy

|2/ ∫
d3r φ̃py

(r −
Rr )∇yφ̃py

(r − Rq). Due to the symmetry of the KBr crystal,
which has the rock-salt crystal structure, all pairs of Br atoms
connected by the same vector are equivalent to each other.
Thus, the sum

∑
F (DFJCq

· ε∗
s )(DJCr F

· εs) and, consequently,
the factor Hqr are equal for all pairs of Br atoms connected by
the same vector �Rqr = Rr − Rq . The integral

∫
d3r φ̃py

(r −
Rr )∇yφ̃py

(r − Rq) also does not change for the same �Rqr .
Thus, the coefficient of proportionality is identical for all pairs
of Br atoms connected by equal vectors.

The factor Jqr corresponding to the two atoms at sites Cq

and Cr connected by the vector (0,RBr-Br,0) contributes to
the amplitude of the peak outlined by the circle in Fig. 3(a).
This peak is formed not only by the single factor Jqr , but by
the sum of all factors Jq ′r ′ , the corresponding pair of atoms
Cq ′ and Cr ′ being connected by vectors with the projection
on the yz plane equal to (RBr-Br,0). This means that not only
nearest-neighbor Br-atom pairs lying in the y direction, but
also Br-atom pairs separated by a vector (2NRBr-Br,RBr-Br,0),
where N is an integer, contribute to this peak. However,
factors Jq ′r ′ for atoms Cq ′ and Cr ′ not lying next to each each
other are negligible due to the term

∑
F (DFCq′ · ε∗

s )(DFCr′ · εs)
entering Jq ′r ′ [see Eqs. (2) and (7)]. The less spatial orbitals
are distributed among both atoms Cq ′ and Cr ′ , the more this
term decreases. Thus, the peak at (RBr-Br,0) in Fig. 3(a) is
formed just by the sum of the factors Jq ′r ′ corresponding to
the pairs of atoms lying next to each other along the y direction
and is proportional to the sum of the interatomic electron-hole
currents between them.

In Fig. 3(b), we depict the amplitude of the encircled peak
as a function of the time of the probe-pulse arrival and the
time evolution of the computed sum of the currents between
all pairs of nearest-neighbor Br atoms connected by the vector
(0,RBr-Br,0). In agreement with the previous discussion, we
find that the time evolution of the amplitude of this peak
precisely follows the time evolution of the sum of the currents.

To sum up, the interatomic electron currents in the outer-
most valence band of KBr are nonzero for nearest-neighbor
Br atoms and are aligned along directions connecting the
pairs of atoms. The sum of the interatomic electron currents
between atoms lying along a vector �Rqr is encoded in the
ultrafast RXS scattering pattern obtained by a probe pulse
polarized along �Rqr . The time evolution of the peak at the
position �Rqr in the imaginary part of the Fourier transform
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of the scattering pattern follows the time evolution of the
sum of interatomic currents. This concept works precisely
for systems where the same single function φ̃i per scattering
atom contributes to both the interatomic electron currents in
some direction �Rqr and the signal due to the probe pulse
polarized along some direction εin (in general, not necessarily
the same as �Rqr ). This conclusion is deduced for electronic
wave packets in periodic structures, but also works for the
finite KBr cluster as follows from Fig. 3(b).

IV. COHERENT ELECTRON-HOLE DYNAMICS
IN GERMANIUM

The second example that we consider is the coherent
valence electron-hole motion in germanium crystal launched
by a photoionizing pump pulse (see Fig. 5). We assume a probe
pulse with a photon energy ωin ≈ 11 keV, which corresponds
to a spatial resolution of 1.1 Å, tuned to the transition of an
electron from the 1s shell of Ge to the valence band. The
probe-pulse duration of 200 as is the same as in the previous
example. We again assume that the electron holes in the crystal
do not interact and simulate an isolated region of Ge crystal,
where a single electron hole is present, by a cluster of 83 Ge
atoms. The shape of the cluster is chosen such that there
is a maximum number of nearest-neighbor atoms per atom.
Therefore, the boundary of this cluster tends to a sphere. Our
results do not depend on the choice of cluster shape, but do
depend on the number of nearest-neighbor atoms since they
provide the largest contributions to a scattering pattern.

We performed the calculation of the electronic structure of
the neutral Ge cluster within the Hartree-Fock approach using
the ab initio quantum chemistry software package MOLCAS

[40] with the correlation-consistent basis set cc-pVDZ [42]
without periodic boundary conditions. We obtained the spatial
orbitals of the singly ionized Ge cluster and their binding
energies within Koopmans’ theorem [43]. Germanium has the

FIG. 5. (Color online) Electron-hole density at time tp in a
fragment of Ge cluster visualized using VESTA software [39]. The
orange arrows represent the electron-hole currents jqr (tp) between
the Ge atoms, and their lengths are proportional to |jqr (tp)|.

diamond crystal structure and, similarly to diamond, each Ge
atom forms covalent sp3 bonds to four neighboring Ge atoms.
Since Ge atoms on the surface of the cluster have less than four
nearest neighbors, they have unsaturated bonds, which lead to
a distortion of the electronic structure of the whole cluster. We
solved this problem by saturating these bonds with hydrogen
atoms. This does not influence the results since only Ge atoms
scatter in our case.

The sp3-hybridized electrons form two outermost valence
bands of germanium with a maximum energy splitting of
4.5 eV [47]. The wave functions φ̃1(2),i of the hybrid orbitals are
a linear combination of one s and three p orbitals of each Ge
atom, which we denote as φ̃s , φ̃px

, φ̃py
, and φ̃pz

, respectively.
The indices 1 and 2 in the function φ̃1(2)i stand for each of the
two atoms in the primitive unit cell of Ge and i designates the
index of the wave function:

φ̃1(2)1 = 1
2

[
φ̃s ± (

φ̃px
+ φ̃py

+ φ̃pz

)]
,

φ̃1(2)2 = 1
2

[
φ̃s ± (

φ̃px
− φ̃py

− φ̃pz

)]
,

(12)
φ̃1(2)3 = 1

2

[
φ̃s ± (−φ̃px

+ φ̃py
− φ̃pz

)]
,

φ̃1(2)4 = 1
2

[
φ̃s ± (−φ̃px

− φ̃py
+ φ̃pz

)]
,

where the φ̃1i functions have the plus sign in front of
the round brackets, and the φ̃2i have the minus sign.
The sp3 orbitals are extended in the directions of the
nearest neighbors. For instance, let the atom situated at
position (0,0,0) have index 1. Then, φ̃1i functions are
centered on this atom and its nearest neighbors are sit-
uated at positions (a0/4,a0/4,a0/4), (a0/4,−a0/4,−a0/4),
(−a0/4,a0/4,−a0/4), and (−a0/4,−a0/4,a0/4), where a0 =
5.658 Å is the lattice constant of Ge. All these atoms have
index 2 since functions φ̃2i centered on them are extended in
the opposite directions as compared to φ̃1i . Therefore, nearest-
neighbor atomic orbitals in Ge always have different indices.

Now, let us consider the electron hole currents between
nearest-neighbor Ge atoms. Let the atomic orbitals at site Rq

have index 1, and the atomic orbitals at site Rr have index 2,
then

jqr (tp) = Im

(∑
I,K

IIK (tp)
∑
i,k

γ ∗K
Crk

γ I
Cq i

×
∫

d3r φ̃∗
2k(r − Rr )∇φ̃1i(r − Rq)

)
, (13)

where γ I
Cq i and γ K

Crk
are the coefficients for which the matrix

element 〈�K |ĉ†β ĉα|�I 〉 in Eq. (5) is nonzero. This time, all
integrals involving functions φ̃1(2)i(k) and operators ∇x,y,z are
of the same order, and there is no preferred direction of the
interatomic currents between nearest-neighbor atoms in Ge
(see Fig. 5).

The corresponding factor Jqr (tp) for a probe pulse polar-
ized in some direction εin is

Jqr (tp) = Hqr Im

(∑
I,K

IIK (tp)
∑
i,k

γ ∗K
Crk

γ I
Cq id

∗
2kd1i

)
,

(14)

d1(2)i(k) =
∫

d3r φ̃1(2)i(k)(r)(εin · r)φ̃∗
1s(r),
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FIG. 6. (Color online) Scattering patterns at the probe-pulse in-
tensity I0 from the ionized Ge cluster obtained by an x-ray pulse
polarized along (3,1,1) direction. Q along direction perpendicular
to the illustrated plane is zero. (a) No polarization filter is applied
in the measurement of the scattered photon. (b) Polarization filter
transmitting scattered photons polarized along (1,1,1) direction is
applied and the pattern is divided by the function g(Q) [Eq. (B5)].

where φ̃1s(r − R) designates the wave function of an electron
hole in the 1s shell of the Ge atom located at position R.
For the factor Jqr (tp) to follow the time evolution of some
projection of jqr (tp) onto a unit vector n, the polarization of
the probe pulse should be chosen such that d∗

2kd1i has the same
coefficient of proportionality with respect to

∫
d3r φ̃∗

2k(r −
Rr )(∇ · n)φ̃1i(r − Rq) for every i and k.

We find that, for interatomic currents between atoms
connected by the vector (a0/4,a0/4,a0/4), a pair of n and
εin, for which the condition above is approximately satisfied,
is n = (− 2√

6
, 1√

6
, 1√

6
) and εin = ( 3√

11
, 1√

11
, 1√

11
). In Fig. 6, we

show the scattering patterns obtained with the probe pulse
with polarization ( 3√

11
, 1√

11
, 1√

11
). We again apply a spectral

window function W (ωks ) that suppresses photons emitted
by electrons lying in bands deeper that the two outermost
ones. This condition is not necessary, but desirable to obtain
a higher contrast in the scattering patterns. No polarization
filter for scattered photons is applied in the case of Fig. 6(a).
The scattering pattern in Fig. 6(b) is obtained with a filter
transmitting scattered photons polarized along (1,1,1) and
is divided by the function g(Q) [see Eq. (B5)]. Here, the
contrast of the scattering patterns is much higher than in
the previous example (see Fig. 2) since nearest-neighbor Ge
atoms in the crystal are closer to each other, at a distance
of 2.45 Å, which is about two times less than the distance
between nearest-neighbor Br atoms in KBr. As a consequence,
the spatial orbitals in Ge are rather delocalized, leading to an
increase of the factor

∑
F (DFJCq

· ε∗
s )(DJCr F · εs), as we have

discussed earlier. We also find that three times less photons,
1 × 1012, than in the case of KBr are necessary to obtain a
signal of one photon per pixel on average in Ge crystal with
one electron hole per one thousand atoms (see Appendix C).
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FIG. 7. (Color online) (a) The Fourier transform from Q space
to real space of the scattering pattern in Fig. 6(b). (b) Solid violet
line: time evolution of the amplitude of the circled peak in panel (a).
Orange dashed line:

∑
qr (jqr · n) + ∑

q ′r ′ (jq ′r ′ · n), where �Rqr =
−�Rq ′r ′ = (a0/4,a0/4,a0/4).

Figure 7(a) shows the imaginary part of the Fourier
transform from Q space to real space of the scattering pattern in
Fig. 6(b). This Fourier transform has much more pronounced
peaks as compared to the case of KBr [see Fig. 3(a)] since not
only nearest-neighbor atoms, but also next-nearest-neighbor
atoms in Ge (distances 4 Å) provide noticeable factors Jqr .
The peak corresponding to atoms connected by the vector
(a0/4,a0/4,a0/4) is indicated by the circle. The plane of the
scattering pattern was chosen such that this peak does not
overlap with any other prominent peaks. Thus, its amplitude
is given by the sum of factors Jqr corresponding to atoms Cq

and Cr connected by the vector (a0/4,a0/4,a0/4).
Although each individual Jqr (tp) is approximately pro-

portional to the projection of the corresponding interatomic
current jqr (tp) · n, the coefficient of proportionality is different
for different pairs. This is connected with the fact that a Ge
crystal has two scattering atoms in the primitive unit cell in
contrast to the KBr crystal, which has only one Br atom in
the primitive unit cell. Namely, let atoms Cq and Cr have
indices 1 and 2 and atoms Cq ′ and Cr ′ have indices 2 and 1,
respectively. If both pairs of these atoms are nearest-neighbor
atoms along the (1,1,1) direction, then �Rqr = −�Rq ′r ′ . The
integrals

∫
d3r φ̃∗

2k(r)(∇ · n)φ̃1i(r − �Rqr ) and
∫

d3r φ̃∗
1k(r −
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�Rqr )(∇ · n)φ̃2i(r) in Eq. (13) then are opposite [see Eq. (12)].
At the same time, the factors d∗

2kd1i = d2id
∗
1k and Hqr = Hr ′q ′

are equal for these pairs. Therefore, the sum Jqr + Jr ′q ′ ,
which contributes to the amplitude of the peak at �Rqr , is
proportional to (jqr − jr ′q ′ ) · n = (jqr + jq ′r ′) · n.

In agreement with the previous discussion, we find compu-
tationally that the amplitude of the encircled peak in Fig. 7(a)
follows the sum

∑
qr (jqr · n) + ∑

q ′r ′(jq ′r ′ · n), where �Rqr =
−�Rq ′r ′ = (a0/4,a0/4,a0/4) and Cq and Cr are atoms that
have index 1 and 2, Cq ′ and Cr ′ are atoms that have index 2
and 1, respectively [see Fig. 7(b)]. The agreement between the
time evolution of the amplitude of the peak and the sum of the
currents is not as perfect as in the previous example since they
are both determined by several functions φ̃1(2)i per atom. The
electron-hole dynamics is faster than in the previous example
since the two outermost valence bands of germanium have a
larger maximum energy splitting than in the outermost valence
band of KBr (4.5 eV against 2.5 eV) [see Fig. 3(b)]. The ampli-
tude of the interatomic currents is larger than that in KBr since
spatial orbitals of Ge are delocalized to a much higher degree.

To illustrate the kind of information one would obtain with
this method for nearest-neighbor atoms in Ge crystal, let some
atom C be situated at the center of our Ge cluster. We would
be able to obtain the sum of interatomic electron hole currents
from atom C to its nearest neighbors minus the sum of the
interatomic currents from the nearest neighbors to the next-
nearest ones plus the sum of the currents from the second-
nearest neighbors to the third-nearest ones and so on.

The interatomic currents between second-nearest-neighbor
atoms in Ge crystal, which are separated by about 4 Å, are
also prominent in contrast to the case of KBr. We found
that these currents have the largest component along the
direction connecting the atoms, and their amplitudes can be
found by applying a probe pulse polarized along the same
direction. Figure 8 shows the scattering patterns with and
without a filter for scattered photons obtained with a probe
pulse with polarization εin = ( 1√

2
, 1√

2
,0). The imaginary part

of the Fourier transform of the pattern in Fig. 8(b) is shown
in Fig. 9(a). The encircled peak in Fig. 9(a) corresponds to
atoms connected by the vector (a0/

√
2,a0/

√
2,0), which is

parallel to εin. The plane of the scattering patterns depicted in
Fig. 8 was chosen such that this peak does not overlap with
other prominent peaks. Similar to the case of nearest-neighbor
atoms, the coefficient of proportionality between a factor
Jqr (tp) and |jqr (tp)| depends on the index of atoms Cq and Cr ,
which now have the same indices in a pair. The time evolution
of this peak approximately follows the time evolution of
the sum

∑
qr |jqr | + ∑

q ′r ′ |jq ′r ′ |, where �Rqr = −�Rq ′r ′ =
(a0/

√
2,a0/

√
2,0), atoms Cq and Cr both having index 1,

and atoms Cq ′ and Cr ′ both having index 2 [see Fig. 9(b)].
Note that although the projections of the currents between
nearest-neighbor and next-nearest-neighbor atoms, depicted in
Figs. 7(b) and 9(b), are of the same order, the amplitudes of the
currents between nearest-neighbor atoms are approximately
three times larger than the amplitudes of the currents between
next-nearest-neighbor atoms.

It is also possible to find other polarizations εin of the
probe pulse that will provide other projections jqr · n of
interatomic currents either between atoms connected by the
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FIG. 8. (Color online) Scattering patterns at the probe-pulse in-
tensity I0 from the ionized Ge cluster obtained by the x-ray
pulse polarized along (1,1,0). Q along direction perpendicular to
the illustrated plane is zero. (a) No polarization filter is applied.
(b) Polarization filter transmitting scattered photons polarized along
(1,1,0) is applied and the pattern is divided by the function g(Q).

vector (a0/4,a0/4,a0/4) or by other vectors. In order to
determine the polarization εin of a probe pulse that provides
a peak with an amplitude following some projection of the
interatomic currents between atoms connected by a vector
�Rqr , we performed an analysis of the integrals d∗

2kd1i and
j2k1i = ∫

d3r φ̃∗
2k(r − Rr )(∇ · n)φ̃1i(r − Rq). It follows from

Eq. (8) that the integrals d1i and d2k do not depend on the
sites on which the functions φ̃1i and φ̃2k are centered. The
integral j2k1i also does not depend on the particular sites Cq

and Cr , but only on the vector �Rqr between them. Therefore,
one can compose two 4 × 4 matrices using the integrals d1i ,
d2k , and j2k1i(�Rqr ,n) independently from specific atomic
sites. The first matrix is a function of εx

in, ε
y
in, and εz

in, and
its ikth element is d∗

2kd1i . The second matrix is a function
of nx , ny , and nz, and its ikth element is j2k1i at a given
vector �Rqr . Then, one has to find pairs of εin and n for
which these two matrices are approximately proportional to
each other. For analysis, we used the functions φ̃1i and φ̃2k

from Eq. (12) to compose the matrices and determine the
pairs of εin and n. The resulting pairs of εin and n were the
input for the numerical calculations of scattering patterns and
interatomic currents. Since the matrix with the elements d∗

2kd1i

is not a linear function of εin, a superposition of such matrices
at different polarizations can be a matrix that is not possible
to obtain with a single εin. Therefore, in principle, if it is
necessary, one can measure several scattering patterns with
different polarizations of the incoming beam and use a linear
combination of their Fourier transforms in order to follow a
certain projection of interatomic currents.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have discussed the information that
one can obtain, using the ultrafast RXS, about coherent
nonperiodic electron dynamics in crystals. As an example
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FIG. 9. (Color online) (a) The Fourier transform from Q space
to real space of the scattering pattern in Fig. 8(b). (b) Solid
violet line: time evolution of the amplitude of the circled peak
on panel (a). Orange dashed line:

∑
qr |jqr | + ∑

q ′r ′ |jq ′r ′ |, where

�Rqr = −�Rq ′r ′ = (a0/
√

2,a0/
√

2,0), atoms Cq and Cr both having
index 1, and atoms Cq ′ and Cr ′ both having index 2.

of such dynamics, we considered electron-hole motion in
the valence bands of ionized crystals. The bandwidth of the
ultrashort probe x-ray pulse has to be larger than the width
of the electron band where the dynamics takes place, in
order to capture the dynamics. Since inelastic contributions
unavoidably contribute to a scattering pattern obtained by such
a pulse, ultrafast RXS from a nonstationary system provides
in general information different from that of stationary RXS
[14]. Namely, we have shown that ultrafast scattering patterns
are not centrosymmetric and do not resolve the standard
structure factor. They still resolve structural information and,
additionally, can resolve the interatomic electron current
between the scattering atoms.

We have described a procedure to extract the interatomic
electron currents from a single two-dimensional (2D) scatter-
ing pattern by performing a Fourier transformation from Q
space to real space. If a proper polarization of the incoming
probe pulse has been chosen, the time evolution of the
amplitude of a certain delta peak in the Fourier transform
follows the time evolution of the sum of the interatomic
currents between atoms connected by the same vector. The

required polarization of the probe pulse can be determined by
an analysis of the electron structure of the crystal, an example
of which for Ge crystal is at the end of the last section.
Although our analysis was performed for periodic crystals,
our simulations on clusters reproduce these findings.

In this paper, we have considered just 2D scattering patterns.
It should be possible to extract much richer information about
the electron dynamics by measuring three-dimensional (3D)
scattering patterns of a sample. It seems likely that one
could develop suitable phase-retrieval algorithms to obtain
contributions by individual atomic pairs to a scattering pattern.
In order to factor out the additional Q dependence in the
scattering patterns due to different scattering angles at every
Q point, we have applied a polarization filter for scattered
photons (see the discussion in Sec. III B). In principle, it should
be possible to find a less experimentally sophisticated way
to eliminate this additional Q dependence in the scattering
patterns.

It follows from our estimate that both Ge and KBr crystals
with one electron hole per 105 Ge or Br atoms have to be
irradiated with ≈1015 photons in order to achieve a signal
of one photon per pixel on average. Subfemtosecond hard
x-ray pulses that will be produced by free-electron lasers may
contain ≈1010 photons [8–13]. That means that the data can
be accumulated using 105 shots of such pulses, which can
be produced in 20 min with a repetition rate of 100 Hz. As
shown in Appendix C, the number of required photons is
determined by the penetration depth of the x-ray beam, but
does not depend on the interaction area. Therefore, the only
restriction concerning the focal area of the probe x-ray beam
is that it should be smaller than the pumped area of the sample
and there is more freedom to lower the intensity of the beam
in order not to damage a sample.

Since the goal of this study is to describe what information
one can extract about the electronic motion independently from
how it was launched, we have considered random electronic
wave packets. Thus, it is demonstrated which information can
be provided by ultrafast RXS in a general case of coherent
electronic dynamics. When one studies scattering patterns in
connection with some particular pump process, it should be
possible to obtain even more comprehensive insight about the
induced electronic motion.

We believe that our technique to study coherent electron
dynamics in solids and to extract interatomic electron currents
has a high potential in view of recent advances in creating
coherent wave packets in crystals [15,19,21–23] and the
growing role of ultrafast light-induced processes for high-
speed electronics [16,17,20], electrooptics [18,19], and optical
phase manipulations [15,21].

APPENDIX A: PROCEDURE TO OBTAIN A SCATTERING
PATTERN IN A PLANE IN Q SPACE

All scattering patterns in the paper are presented in a Q‖Q⊥
plane at zero Q�, where Q‖ is parallel to the polarization
of the probe pulse εin, Q⊥ is perpendicular to εin, and Q�
is perpendicular to both Q‖ and Q⊥. The sample is at rest
in this reference frame, but it has to be rotated in order to
obtain data points in this plane. It is important for our study
that εin is always parallel to a certain interatomic vector. In
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xy
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Q

FIG. 10. (Color online) Rotation of the kin vector in the sample-
fixed reference frame employed here. The sphere represents the
Ewald’s sphere associated with the depicted kin vector. The plane
represents the plane with Q points where the data are collected.

order to understand how the sample should be rotated in this
case, let Q‖ and Q⊥ be aligned along the y and z directions,
respectively. In the sample-fixed reference frame, we rotate kin

instead of the sample.
We rotate kin around the y axis such that εin is always along

the y direction. Therefore, kin is rotated in such a way that
it extends from the origin to a point that moves on the blue
half-circle as shown in Fig. 10. The sphere in Fig. 10 is the
Ewald’s sphere centered at the depicted kin vector. The green
plane in Fig. 10 is the QyQz plane, where we aim to collect
the data. The vector Q = kin − ks lies in the QyQz plane if
the vector ks points from some point on the plane to the center
of the sphere. Since we focus on ks with |ks| ≈ |kin|, ks must
point from a point at the boundary of the sphere to its center. A
vector ks satisfying both conditions is shown in Fig. 10. Thus,
kin provides Q points on the QyQz plane lying on the circle
where this plane crosses the Ewald’s sphere associated with
kin. The largest circle of Q points is obtained for kin parallel to
the z axis, and just the zero point in the QyQz plane is obtained
for kin parallel to the x axis.

The direction of kin that provides a given Q point in the
QyQz plane can be determined using three conditions: |kin| ≈
|ks|, kin ⊥ εin, and |kin| = ωin/c. This gives us the following
system of equations for kinx , kiny , and kinz:

(kinx − Qx)2 + (kiny − Qy)2 + (kinz − Qz)
2 = ω2

in

c2
,

kiny = 0, (A1)

k2
inx + k2

iny + k2
inz = ω2

in

c2
,

with two solutions

kin =

⎛⎜⎝±

√√√√ω2
in

c2
−

(
Q2

y + Q2
z

)2

4Q2
z

,0,
Q2

y + Q2
z

2Qz

⎞⎟⎠. (A2)

The solution with the positive kinx corresponds to vectors kin

with the terminal point at the half-circle in Fig. 10. The square
root in the expression for kinx limits the accessible Q points
by two circles of radius ωin/c centered at points (0,±ωin/c) in
the QyQz plane.

APPENDIX B: POLARIZATION FILTER FOR
SCATTERED PHOTONS

In this Appendix, we derive the expression for the DSP
under the assumption that the detector measures Iks , the
intensity of light polarized along εp and scattered with a
scattering vector Q = kin − ks. The derivation of the DSP in
Ref. [14] must be modified for the observable intensity [48]

Ôks = c

2π
(Ê−(r,t) · ε∗

p)(Ê+(r,t) · εp), (B1)

Ê+(r,t) = i
∑
ss

√
2πωks

V
εsâkse

−iωks t+iksr, (B2)

Ê−(r,t) = −i
∑
ss

√
2πωks

V
εsâ

†
ks

eiωks t−iksr, (B3)

where the sum is over two possible polarizations of ks and V

is the quantization volume. Then,

Iks = lim
tf →+∞ Tr

[
ρ̂f (tf )Ôks

]
, (B4)

where ρ̂f (tf ) is the total density matrix of the electron system
and the electromagnetic field at time tf after the action of
the probe pulse. The resulting intensity does not depend on
position r and time t . The expression for the DSP is then
derived from Iks .

The new condition of measurement results in substitution
of polarizations εs1,2 in the terms

∑
ss

(DJCr F · εs)(DFJCq
· ε∗

s ) in
the expression for the DSP in Eq. (2) for their projections on εp.
The projections of εs1,2 are εp cos(ν1,2), where cos(ν1,2) is the
angle between εs1,2 and εp: cos(ν1,2) = (εs1,2 · εp). Let εs1 be
perpendicular to εp, then εs1 = [ks × εp]/|ks| and εs2 = [ks ×
[ks × εp]]/|ks|2. Thus, the term

∑
ss

(DJCr F · εs)(DFJCq
· ε∗

s )
in the new expression for the DSP turns into g(Q)(DJCr F ·
εp)(DFJCq

· ε∗
p), where the function

g(Q) = ([ks × [ks × εp]] · εp)2c4/ω4
in (B5)

depends on Q = kin − ks via Eq. (A2). We took into account
that |ks| ≈ |kin| = ωin/c.

APPENDIX C: ESTIMATE OF THE REQUIRED
NUMBER OF PHOTONS

The number of photons Nph that has to be sent on the sample
in order to get a signal of one photon per pixel is given by
Nph = (〈Pph〉Nh)−1, where 〈Pph〉 is the average probability to
scatter a photon into a pixel from a single scattering particle by
a single incoming photon, and Nh is the number of scattering
particles, which are electron holes in our case. The number of
the electron holes that interact with the probe pulse is given
by Nh = f0lpdh, where f0 is the interaction area, lp is the
penetration depth of the x-ray beam, and dh is the number of
electron holes per unit volume. We assume that there is one
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electron hole per 105 Br or Ge atoms in KBr or Ge crystals,
respectively.

〈Pph〉 is given by f −1
0 �p〈dσ/d�〉, where �p is the

pixel size and 〈dσ/d�〉 is the mean differential scattering
cross section. 〈dσ/d�〉 can be derived from the mean DSP,
which, as follows from Figs. 2, 6, and 8, is approximately
I0 × 10−27 cm2/W for a probe pulse with intensity I0, duration
τd = 200 as, and photon energy ωin on the order of 10 keV
for both KBr and Ge crystals. Thus, 〈dσ/d�〉 ≈ 4 × 10−10 Å2

and

Nph = 2.5 × 109 Å
−2

/(lpdh�p) (C1)

for both crystals. The pixel size �p is given by (λ/ 3
√

Vh)2,
where λ is the wavelength and Vh = d−1

h is the volume, where
a single electron hole is distributed.

We estimate the penetration depth in KBr and Ge crystals
as lp = lm/10. lm is the lesser of the two mean-free paths
(σresdh)−1 and (σiondcr )−1, where σres is the total photoabsorp-
tion cross section of an ionized atomic bromine or germanium
in the case of KBr or Ge crystals at the energy ω1s-4p

resonant with the 1s-4p transition of Br or Ge, respectively.
σion = σ Br

ion + σ K
ion is the sum of photoionization cross sections

of neutral atomic bromine and potassium at the energy ω1s-4p

in the case of KBr crystal. Since the densities of neutral Br and
K atoms dBr

cr and dK
cr are equal in KBr, σ K

iond
K
cr + σ Br

iond
Br
cr =

σiondcr , where dcr = dK
cr = dBr

cr . σion is the photoionization
cross section of germanium at the energy ω1s-4p and dcr is the
atomic density of neutral Ge atoms in the case of Ge crystal.
We calculate σres and σion with the XATOM toolkit [49].

There are four Br atoms in the cubic unit cell of KBr with
the lattice parameter 6.6 Å. Therefore, dcr = 1.4 × 10−2 Å−3

and dh = 1.4 × 10−7 Å−3. The wavelength of the incoming
radiation λ = 0.9 Å results in a pixel size of �p = 1 × 10−4

for KBr crystal. We obtain σres = 2.5 × 10−2 Å2, σ Br
ion = 2.9 ×

10−5 Å2, and σ K
ion = 2.3 × 10−5 Å2 from the calculation, which

results in lp = (σiondcr )−1/10 = 1.4 × 105 Å. Thus, we obtain
from Eq. (C1) that 6 × 1015 photons are needed for KBr in
order to obtain a signal of one photon per pixel.

Ge crystal has eight atoms in its cubic unit cell with a
lattice parameter of 5.7 Å. Therefore, dcr = 0.04 Å−3 and dh =
4 × 10−7 Å−3. The wavelength of the incoming radiation λ =
1.1 Å results in a pixel size of �p = 3 × 10−4 for Ge crystal.
We obtain σres = 4.0 × 10−2 Å2 and σion = 6.7 × 10−5 Å2

from the calculation, which results in lp = (σiondcr )−1/10 =
3 × 104 Å. Thus, we find that 2 × 1015 photons are required
for Ge in order to obtain a signal of one photon per pixel.

The number of required photons may deviate in a real
experiment. First, the estimate strongly depends on the density
of holes Nph ∝ d

−5/3
h . Second, if all electron holes move

coherently in a crystal, a signal would be coherently enhanced.
That means that one would probably see a pronounced Bragg
pattern and fewer photons will be required to resolve a signal.
However, if all electron holes behave differently, then the
object size that has to be resolved would be larger than the
subvolume there a single electron hole is situated. That means
that the pixel size that we assumed would be smaller, and the
number of required photons would be larger [see Eq. (C1)].
However, one may use the larger pixel size and average over
the different dynamics of the various subvolumes.
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