
PHYSICAL REVIEW B 92, 184109 (2015)

Phase-field crystal approach for modeling the role of microstructure
in multiferroic composite materials

Matthew Seymour,1 F. Sanches,2 Ken Elder,2 and Nikolas Provatas1

1Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, QC, Canada
2Department of Physics, Oakland University, Rochester, Michigan 48309, USA

(Received 13 July 2015; published 23 November 2015)

This paper introduces a phase-field crystal (PFC) approach that couples the atomic-scale PFC density field
to order parameters describing ferromagnetic and ferroelectric ordering, as well to a solute impurity field. This
model extends the magnetic PFC model introduced by Faghihi et al. [N. Faghihi, Ph.D. Thesis, The University
of Western Ontario, 2012; N. Faghihi, N. Provatas, K. R. Elder, M. Grant, and M. Karttunen, Phys. Rev. E
88, 032407 (2013)] to incorporate polarization and concentration fields, as well as anisotropic ordering of
the magnetization and polarization fields as determined by the local crystalline orientation. Magnetoelectric
coupling is incorporated through the elastic coupling. Analytic calculations for a body centered-cubic (BCC)
system are presented to illustrate that the model reduces to the standard multiferroic phase-field models when
only a single crystal is considered. Two special cases of the model are then studied, the first focusing on
magnetocrystalline interactions in a system described by the two-point correlation function of the XPFC model
developed by Greenwood et al. [M. Greenwood, N. Provatas, and J. Rottler, Phys. Rev. Lett. 105, 045702
(2010); M. Greenwood, J. Rottler, and N. Provatas, Phys. Rev. E 83, 031601 (2011)], and the second focusing
on electrocrystalline interactions in a system described by the original PFC kernel developed by Elder et al.
K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett. 88, 245701 (2002); K. R. Elder and M.
Grant, Phys. Rev. E 70, 051605 (2004)]. We examine the small deformation properties of these two realizations of
the model . Numerical simulations are performed to illustrate how magnetocrystalline coupling can be exploited
to design a preferential grain texture and how defects and grain boundaries influence the ferroelectric coercivity.
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I. INTRODUCTION

When a solid undergoes a spontaneous transition to
a magnetized or electrically polarized state, its emergent
electromagnetic properties are strongly controlled by its mi-
crostructure because both the magnetization and polarization
couple strongly to the crystalline structure of a material [1].
For example, the efficiency of a transformer core is directly
influenced by its coercivity, which in turn is a function of the
polycrystalline grain size [2–6]. This interaction is also vital
to the control of flux lines in micromagnetic devices [7,8].
The emergence of a ferromagnetic or ferroelectric order can
also induce a strain in the lattice. This effect is referred to as
magnetostriction in the former case and the piezoelectricity in
the latter. The coupling between electric, magnetic and elastic
energy in materials has been exploited for many years. For
example, the ability to turn magnetic or electric energy into
mechanical energy and vice versa is the mechanism behind
many sensors and actuators. Materials that contain at least two
of the three properties, ferroelasticity, ferromagnetism, and
ferroelectricity are referred to as multiferroic.

While there exist some single phase materials that are
multiferroic typically these materials are unsuitable for prac-
tical applications as the magnetoelectric coupling is either
too weak or occurs at low temperatures [9]. In recent years,
researchers have been considering composite materials which
contain both ferromagnetic and ferroelectric properties (e.g.,
YMnO3 and BaNiGF4) [10–12]. Such materials are of great
interest as the elastic coupling between the materials can
be exploited by using either a magnetic field to control
ferroelectricity or an electric field to control magnetization.
The latter is particularly attractive for nonviotile memory

applications in semiconductors where the ability to write and
read on a magnetic material using an electric field is very
advantageous. Heteroepitaxially grown films offer a promising
configuration for such composite materials, although the great
costs associated with their fabrication makes them difficult
and expensive to realize. For this reason, there is a need
to understand the properties of self-assembled multiferroic
materials made by cost effective processes like sintering,
embedding particles of one material in another or eutectic
solidification [13–15]. The purpose of this work is to develop
a model of a binary polycrystalline multiferroic material that
can elastically couple the magnetism of one material to the
polarization of the other though the magnetostriction and
piezoelectric effects.

Modelling multiferroic material properties is challenging
because magnetization and polarization couple strongly to the
microstructure of a material. For example, the crystal lattice
often determines the direction in which the magnetic ( �m)
or electric ( �P ) dipoles align. However, in a real materials,
each grain typically has a different crystallographic orienta-
tion. This grain texture can significantly alter coercivity in
polycrystalline materials [2–6], a measure of the strength of
the external magnetic field needed to change the direction of
magnetization in the material. Furthermore, the presence of
grain boundaries, dislocations and magnetic impurities is also
expected to influence magnetization and polarization, either
directly or through the influence of such topological defects
on grain size. In addition, it is expected that the volume fraction
of composite components or phases also will be important.

Another difficulty in modeling multiferroics is due to the
multiple length and time scales that need to be considered.
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Molecular dynamics simulations offer an accurate way to
simulate atomic interactions. However, they are often limited
to nanoseconds time scales and nanometer length scales.
Traditional phase-field models describe multiferroics by a free
energy functional that couples polarization, magnetization and
strain. Phase field models are simple to implement numerically,
can access mesoscopic time and length scales [16] and are
amenable to highly scalable computational algorithms [17,18].
These models incorporate anisotropy with respect to an a priori
known crystal orientation and elasticity through the introduc-
tion of additional fields. For example, the Landau-Ginzburg-
Devonshire free energy [19] for ferroelectrics includes terms
like α11

∑
P 4

i + α12
∑

j>i P 2
i P 2

j , where α12 �= 2α11 and i

and j refer to cartesian coordinates. Grain orientation is
incorporated by coupling polarization or magnetization to a
local orientation parameter [20], which can be fixed from a
grain distribution or, in principle, evolved according kinetic
model. A drawback of traditional phase-field approaches is
that they typically lack an explicit connection to atomic scale
crystal structures.

An adaptation of the phase-field methodology that can
help resolve some of the aforementioned modeling challenges
is the phase-field crystal (PFC) model. PFC models are
based on free energy functionals that can be minimized by
periodic order parameters (e.g., triangular and square in two
dimensions or body centered cubic (BCC), face centered
cubic (FCC) and hexagonal closed packed (HPC) in three
dimensions). The orientation of the order parameter in a crystal
is arbitrary, i.e., the free energy F is written in a rotationally
invariant manner. This feature endows PFC models with the
ability to model elastic deformation, grain boundaries and
topological defects in a self-consistent and straightforward
manner [21–24]. The PFC order parameter is related to the
atomic number density as PFC models can be viewed as
approximations of classical density functional theory (CDFT)
expanded to second order in particle correlations [23,26–28].
Recent PFC extensions have been used to capture complex
structural transformations in pure materials [25,29–31] and
multicomponent alloys [32,33]. These have been used to
elucidate the physics of complex defect structures [34,35] and
their role in solid state precipitation [36–38]. More recently,
it has also been shown that it is possible to derive certain
traditional phase-field models directly from PFC models
through the use of course graining techniques [39,40]. This
latter line of research allows meso-scale phenomena to be
compter from the field models derived from microscopic PFC
theories [39–43].

This paper introduces a binary multiferoic PFC model that
couples the PFC crystal density field n and solute concentration
field c to magnetization ( �m) and polarization ( �P ) fields,
making it possible to couple ferromagnetic/electric domain
formation to grain orientation, grain boundaries, elastic strain,
defects and solute impurities. The coupling of �m and �P
with n at the atomic scale naturally leads to the emergence
of magnetic/electric anisotropy at the mesoscale as well as
the phenomena of magnetostriction and piezoelectricity. This
model extends the work of Faghihi et al. [44,45], which con-
sidered a single component ferromagnetic PFC model without
anisotropic ordering of �m. One of the important features

of the model introduced here is that the form of coupling
between n, �m, and �P determines the preferred crystallographic
directions in which �m and �P will order. This anisotropic
ordering is a very important physical feature that has been
used to explain the behavior of the magnetic coercivity in
polycrystalline materials [2–5]. The model presented here
does not consider the magnetoelectric coupling arising due
to magnetic ordering heterogeneity, a phenomenon that occurs
in some single phase materials at temperatures much lower
than those of the multiferroic materials we wish to address
with PFC modeling.

The remainder of this paper is organized as follows.
Section II develops the model, describing its terms and
parameters. Section III describes the dynamical equations of
motion for n, �m, and �P . Section IV examines the model’s equi-
librium, anisotropic and small deformation elastic properties.
To minimize repetitive algebra, these properties are explicitly
derived only for the case of a ferro-magnetic system, since
the algebra is analogous for the ferroelectric case. Section V
examines two applications of the multiferroic PFC model.
The first relates crystal grain size and electro-crystalline
anisotropy to coercivity. The second demonstrates the role of
external magnetic fields on grain orientation selection during
coarsening. To further demonstrate the model’s robustness, the
first application utilizes involves the traditional PFC model and
the second the structural, or XPFC model.

II. MODEL FORMULATION

This section introduces a free energy functional to model
binary multiferroic polycrystalline materials. One of the guid-
ing principles of the model is that its long-wavelength, small
deformation limit reduces to traditional well-known phase-
field theories, which have been very successful in describing
ferromagnetic materials such as CoFe2O4 and ferroelectric
materials such as PbTiO3. Considering that the free energies of
such traditional models can contain ten to twenty parameters,
the proposed free energy will also require at minimum the same
number of adjustable parameters. Connecting the parameters
that enter the proposed model to these traditional free energies
is discussed in latter sections of the text.

The proposed multiferroic PFC model is described by the
following free energy functional:

�F = �F̃

kBT V ρ̄
=

∫
d�r(fid + fex + fm + fP + fc), (1)

where F̃ represents the dimensional free energy, T denotes
temperature, kB the Boltzmann constant, and ρ̄ some reference
liquid density around which the free-energy functional is
expanded. Each term in the integrand on the right is a
free-energy density.

The terms fid and fex in Eq. (1) are, respectively, the ideal
and excess free energy of a polycrystalline system, represented
by the reduced PFC density n(�r) ≡ (ρ(�r) − ρ̄)/ρ̄, where ρ(�r)
is related to the atomic number density of the material [24,46].
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These terms are given by

fid =n2

2
− t

n3

6
+ v

n4

12
, (2)

fex = − 1

2
n(�r)

∫
C2(|�r − �r ′|)n(�r ′)d3�r ′, (3)

where t and v are constants that set the bulk free energy [25].
The function C2(|�r − �r ′|) is the two point particle correlation
function. Two specific forms of C2 will be used in this paper.
These and the remaining terms of Eq. (1) are discussed below.

A. Ferromagnetic components of free energy density

The term fm is the magnetic free energy density, given by

fm = ωB

[
W 2

0

2
(∇ · �m)2 + (rm − ωmn2)

| �m|2
2

+ γm

| �m|4
4

−
2∑

j=1

α2j

2j
( �m · �∇n)2j − �m · �B + | �B|2

2

]
, (4)

where ωB = B2
0/(μ0kBT ρ̄) sets the scale of magnetic energy,

with B0 a reference magnetic field and μ0 is the magnetic
permeability of free space, and where �m is the magnetization
and �B is the magnetic field (both in dimensionless units).
The first term defines a generalized exchange energy gradient
term, where the magnetic correlation length is modulated by
the parameter W0. The second and third terms are mean field
type bulk free energy terms that control the ferromagnetic
transition temperature. They first appeared in a recent isotropic
version of the ferromagnetic PFC model model [45]. The
variables rm,ωm,γm are constants related to the equilibrium
magnetic energy of the material. The fourth term is new and
couples the anisotropy of �m to the crystal lattice through
gradients of n, which select different orientation states in PFC
models. The parameters α2,α4 (α2j , j = 1,2) will be shown to
control magnetorestriction and magnetic anisotropy in the in
the model. The last two terms in fm define the magnetostatic
free energy.

B. Ferroelectric components of free energy density

The term fP is the electric polarization free energy density,
given by

fP = ωE

{
−G2

�P · ∇2 �P
2

− G1
| �∇ × �P |2

2
+ (rp − ωpn2)

| �P |2
2

+
∑

j

[
σ2j

2j
| �P · ∇ n|2j + β2j

2j
| �P × ∇ n|2j + ν2j

2j
| �P |2j

]

+ | �E|2
2

}
, (5)

where ωE = ε0E
2
0/(kBT ρ̄) sets the scale of the polarization

energy, with E0 a reference dimensional electric field and ε0 is
the permittivity of free space, and where �P is the electrical
polarization, �E is the electric field (both in dimensionless
units). The first and second terms on the right hand side of

Eq. (5) control ferroelectric domain wall energy, where G1

and G2 are constants. The third term is added to control of the
ferroelectric phase transition, where rp and ωp are constants.
The fourth and fifth terms control anisotropy in polarization
by coupling �P to gradients in n through the constants σ2j and
β2j . The sixth term makes it possible to include higher order
bulk terms in | �P |, each controlled by the constants ν2j . The
last term in Eq. (5) is the electric dipole energy.

The ferromagnetic free energy has a simpler structure than
the ferroelectric free energy for two reasons. First, for magnetic
systems it is usually sufficient to describe the gradient energy
with one exchange constant, thus requiring a lower order
gradient expansion than the ferroelectric case, which requires
higher order gradients combinations to accurately describe
domain walls. Second, in ferromagnetic systems, a bulk
free energy expansion of order | �m|4 is typically sufficient
(e.g., CoFe2O4 [47]). Ferroelectric systems, however, typically
require higher order terms to describe experimental systems.
For example, PbTiO4 and BaTiO4 have been described by
sixth [48–50] and eighth [47] order polynomials in �P ,
respectively.

C. Alloy free energy density

The free energy density term fc accounts for the free
energy of impurities, described by a reduced concentration
field c(�r) ≡ C(�r) − C̄, where C(�r) is the ratio of the number
density of impurity atom ρB(�r) to the total number density
ρA(�r) + ρB(�r) and C̄ is some reference concentration. The
free energy density fc is given by

fc = 1

2
(a − bn2)c2 + c4

4
+ K

2
| �∇c|2

+ 1

2
(αm| �m|2 − αP | �P |2) c n2, (6)

where a, b, K , αm and αP are constants. The first three terms
of fc are the standard Cahn-Hilliard type terms that favor
phase separation at a particular temperature, which depends
on the average density through the n2 term. The last term in
fc favors a ferroelectric state of an alloy when c is positive
and a ferromagnetic state on an alloy when c is negative.
More complex alloys are possible by using more sophisticated
expansions. These will be examined elsewhere.

Table I shows the complete set of parameters appearing in
the terms in the model.

D. Magnetostatics and electrostatics

The total magnetic field �B (scaled by B0) is given by

�B = �Bext + �Bind, (7)

where �Bext denotes any externally imposed magnetic field,
while �Bind is the induced magnetic field satisfying

�Bind = �∇ × �A, (8)

∇2 �A = −�∇ × �m, (9)
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TABLE I. Model parameters for the ideal, ferromagnetic, ferro-
electric, and alloy components of free energy.

Model parameters

Ideal free energy parameters
t,v Sets the form of the ideal bulk free

energy expansion [23,51,52]

Ferromagnetic parameters
ωB Sets the scale of magnetic energy
W0 Sets strength of the exchange interaction;

controls domain wall width
rm, ωm, γm Controls paramagnetic/ferromagnetic transition

and sets the saturation magnetization
α2j Magnetostriction and anisotropy

Ferroelectric parameters
ωE Sets the sale of polarization energy
G1,G2 Control domain wall energy
rP , ωP Controls ferroelectric phase transition
σ2j , β2j Piezoelectric effect and anisotropy
ν2j Control of higher order bulk �P terms

Alloy parameters
a, b Control phase seperation
K Compositional interface energy
αm Concentration dependence of magnetization
αP Concentration dependence of polarization

where �A is the vector potential. The total electric field �E
(scaled by E0) is given by

�E = �Eext + �Eind, (10)

where �Eext denotes any externally imposed electric field, while
�Eind is the dipole-induced electric field. It is described in terms

of a potential field according to

Eind = −∇φ, (11)

where φ is the electrostatic potential, given by the solution of

∇2φ = ∇ · �P . (12)

E. Two-point correlation functions

This work will examine the multiferroic model for two choices
of two-point correlation functions. The first case specializes
the correlation kernel in Eq. (3) to the single peak form in the
original PFC model introduced by Elder et al. [21,24]. Written
in Fourier space, this is given by

Ĉ2(q) = −�B − 1 + Bx(1 − q2)2, (13)

where �B controls temperature and Bx the elastic constant
of the solid phase [23]. This correlation function stabilizes
triangular symmetry in 2D and body centered cubic (BCC)
crystal structure in 3D. [21].

The second correlation function examined is the XPFC
kernel introduced by Greenwood et al. [25,46], which is the en-
velope of multiple Gaussian peaks in Fourier space, of the form

Ĉi
2(q) = e−σ 2k2

i /(2ρiβi ) e−(q−ki )2/(2ξ 2
i ), (14)

where q denotes wave-number magnitude and i denotes a
family of lattice planes with primary wave number ki , which

TABLE II. Model parameters for PFC and XPFC correlation
functions.

Correlation function parameters

PFC correlation function parameters
�B Temperature parameter
Bx Elastic constant of the solid phase

XPFC correlation function parameters
σ Temperature parameter
i Reciprocal space peak number
ki Reciprocal space peak wave number
βi Number of wave vectors in the ith family
ρi Planar atomic density
ξi Peak width; sets elastic constant

is referred to as the mode of the family i. The variable σ

parameterizes temperature. The constants ξi , ρi , and βi are,
respectively, the ith Gaussian width (which sets the elastic
constants along the �ki direction), the planar atomic density of
the ith family of planes, and the number of planes in the ith
family. Eq. (14) can stabilize triangular (2D) or BCC (3D) crys-
tals if one peak is used, or square (2D) and face-centered-cubic
(FCC -3D) if two peaks are used [25]. Table II summarizes the
constants entering each of the two correlations above.

III. DYNAMICS OF �m, �P , n, AND c

The density n and concentration c are driven by conserved
dynamics driven by fluxes proportional to the variation of the
free energy with changes in each of these fields. Namely,

∂n

∂t
= Mn∇2

(
δF

δn

)
, (15)

∂c

∂t
= Mc∇2

(
δF

δc

)
, (16)

where Mn and Mc are used to set the time scale of solute
versus total density diffusion. For a further separation of time
scales between purely diffusive dynamics and quasielastic
relaxation dynamics of n, an additional second order inertial
time derivative is required on both these equations as has
been illustrated in other works [22,53]. The magnetization
and polarization follow nonconserved dynamics of the form

1

τm

∂mi

∂t
= − δF

δmi

, (17)

1

τP

∂Pi

∂t
= − δF

δPi

, (18)

where τm and τP set the relaxation time scale of the magnetic
and polarization fields, respectively. It is noteworthy that
these dynamical equations for �m are not the usual Landau-
Lifshitz-Gilbert (LLG) type equations. The LLG equations
are valid at microscopic time scales when the conservation
of orbital angular momentum is relevant. On diffusional time
scales studied with PFC models, �m(�r,t) represents a locally
time averaged quantity, whose dynamics are driven by the
minimization of a free energy.
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It is instructive to write out explicitly the form of the dynamical equations for n, c, �m and �P . For the density field,

∂n

∂t
= Mn∇2

{
n − t

2
n2 + v

3
n3 −

∫
C2(|�r − �r ′|)n(�r ′) d�r ′ + ωB[−ωmnm2 + α2(( �m · �∇n)( �∇ · �m) + �m · �∇( �m · �∇n))

+α4(( �m · �∇n)3( �∇ · �m) + 3( �m · �∇n)2 �m · �∇( �m · �∇n))] + (αm| �m|2 − αP | �P |2)c n − ωE

∑
j

(σ2j
�∇ · [ �P ( �P · �∇n)2j−1]

+β2j [| �P × �∇n|2j−2( �∇ × �P ) · ( �P × �∇n) + ( �P × �∇) · | �P × �∇n|2j−2( �P × �∇n)] + ωpnP 2

}]
. (19)

For the concentration field,

∂c

∂t
= Mc∇2

[
(a − bn2)c + c3 − K∇2c + 1

2
(αm| �m|2 − αP | �P |2)n2

]
. (20)

For the components of the magnetization field,

1

τm

∂mi

∂t
= W 2

0 ∇2mi − [rm − (ωm − αmc)n2 + γm| �m|2]mi + α2( �m · �∇n)(∂in) + α4( �m · �∇n)3(∂in) + Bi. (21)

For the components of the polarization field,

1

τP

∂Pi

∂t
= G1∇2Pi + G2( �∇ × ( �∇ × �P ))i − (rp − (ωp − αpc)n2)Pi

+
∑

j

[σ2j ( �P · �∇n)2j−1 �∇n + β2j | �P × �∇n|2j−2 �∇n × ( �P × �∇n) − ν2j | �P |2j−2 �P ]i + Ei. (22)

Equations (9) and (12) are solved at each time step of the
dynamical evolution of n, c, mi , Pi, i = 1,2 (2D).

Equations (19) to (22) represent relaxational dynamics on
diffusional time scales, driven by a free-energy functional. As
a result they require, in principle, a stochastic noise source
to re-introduce the fluctuations washed out by the implied
time averaging. As we will not be examining nucleation and
interface fluctuations in this work, noise is left out of the
dynamics.

IV. EQUILIBRIUM PROPERTIES OF MODEL

This section examines the equilibrium properties of the
multiferroic PFC model, its anisotropy and its small deforma-
tion limit. To keep the algebra to a minimum, the mathematical
steps of these derivations are shown explicitly only for the 3D
ferromagnetic component of the model described by an XPFC
correlation function. The mathematical steps are similar for
the two types of models. The derivation of the piezoelectric
coefficients in the ferroelectric model is also discussed, and
results are shown for the case of the PFC correlation function.

A. Phase diagram

To represent the mean-field free energy of a solid phase in
a PFC model, the density field n(�r) is expanded as a Fourier
series over the appropriate Bravais lattice of the crystal phase
being considered. This is given in a general form:

n(�r) =
∑
�qj

η�qj
ei �qj ·�r , (23)

where the sum is over all reciprocal lattice vectors �qj of
the crystal. Reciprocal lattice vectors of the same length are

said to belong to the same mode, indexed by k in what
follows. We thus regroup the reciprocal lattice vectors by
mode and reference them as �qj → �qk,j . We similarly regroup
the amplitudes and reference them as η�qj

→ η�qk,j
. Further, for

simplicity, we take all the amplitudes in a mode to be equal and
real, i.e., η�qk,j

= φk for all j in the mode k. This assumption
is sufficient for constructing the phase diagram of the system.
With these considerations, Eq. (23) can be written as

n(�r) ≈ φ0 +
N∑

k=1

φk

⎛
⎝∑

�qk,j

ei �qk,j ·�r

⎞
⎠, (24)

where N is the number of modes considered for a specific
crystal structure of interest and φ0 has been pulled out of the
summation as this unique amplitude represents the average
density of the system and is therefore fixed due to density
conservation, serving as a parameter in the phase diagram.

The expansion of Eq. (24) is inserted into the free energy
in Eq. (1), with the fP and fc contributions neglected for
simplicity, as explained above. In the mean-field limit used
to construct the phase diagram, terms of the form ei(�qi+�qj +...)·�r
emerge, which integrate to zero unless �qi + �qj + . . . = 0. This
is known as a resonance condition. After integration, the
resulting free energy will depend only on the amplitudes {φk},
{mi}, and the model parameters. We denote this mean field
free energy as Fmf({φk},{mi},σ ).

To proceed, the mean-field free energy (Fmf) is minimized
with respect to each φk . This yields a set of φk as functions
of φ0, mi , and σ . This minimization is done numerically.
For simplicity, the �m-φk couplings are neglected in the
determination of the φk . None of the results presented here
change qualitatively, and the symbolic manipulation becomes
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FIG. 1. (Color online) Amplitudes of the first three modes in
Eq. (24) as a function of φ0 for σ = 0.12 for the case of a single-
peaked XPFC correlation with k1 = 2

√
2π , 1/(2ρiβi) = 1/24

√
2,

t = v = 1.

more tractable. Figure 1 plots the first three amplitudes of a
BCC expansion versus φ0 for the case of the single-peaked
XPFC correlation kernel at σ = 0.12. We denote the Fmf

evaluated at the minimized φk by �F .
Where the amplitudes are zero the free energy of the liquid

is lower; where they are nonzero the solid free energy is lower.
This abrupt transition to zero in the order parameters in Fig. 1
corresponds to a cusp in the system free energy. This is seen
in Fig. 2, which plots �F versus φ0. The cusp corresponds to
the lowest possible average density at which a solid can exist.

Since φ0 is a conserved order parameter, the coexistence
region between the liquid and solid phases is found by
the common tangent construction (or Maxwell equal area
construction). Graphically, this amounts to finding the line
that forms a common tangent to the convex parts of the free
energy on either side of the cusp in Fig. 2. The tangent points
define the average coexistence densities of the liquid and solid,
respectively. These densities are found numerically.

To include more than one possible solid phase, an expansion
of the form of Eq. (24) is written for each structure considered.
In the present example, BCC and FCC solids are considered.

FIG. 2. (Color online) Free energy as a function of φ0 for σ =
0.12. The other parameters are the same as described in Fig. 1. Note
the kink at the liquid-solid transition.

FIG. 3. (Color online) Phase diagram for the magneto-XPFC
model, showing coexisting liquid, BCC and FCC phases, as well
as paramagnetic and ferromagnetic phases. α2 = 0.001, rm = 0.025,
ωm = 0.25, γm = 1. Generated using five modes (N = 5).

Each expansion is substituted into the free energy to construct
a mean-field free energy for that solid phase using the approach
described above for a BCC crystal. At each temperature σ , the
common tangent approach is used to define the coexistence
lines between liquid and BCC, liquid and FCC, and BCC
and FCC. Coexistence between any two phases will occur
over a different range of φ0. Calculating all such common
tangent segments over a range of temperatures results in the
complete phase diagram. An example is shown in Fig. 3 for
a liquid-FCC-BCC system. This phase diagram corresponds
to the model phase diagram first generated by Greenwood
et al. [25,46] to describe FCC-BCC-liquid coexistence in the
context of the XPFC model.

The paramagnetic-ferromagnetic transition line in Fig. 3
can be calculated for each solid phase using the solid ampli-
tudes derived above. Specifically, the expansion in Eq. (24)
leads to a magnetic part of the free energy of the form
Am2 + Bm4, with a constant B > 0. When A > 0, a single
minimum appears in the magnetic free energy density at �m =
0, which corresponds to paramagnetic ordering. When A < 0,
the free energy is minimized at some �m �= 0, corresponding
to ferromagnetic ordering. For each solid phase, the factor
A of the m2 term depends on the mode amplitudes φk of the
corresponding lattice, and the average density φ0. For example,
in the case of the single-peaked BCC correlation, the | �m|2 term
of the free energy becomes

1
2

[
rm − ωmφ2

0 + (
12k2

1α2 − 12ωm

)
φ2

1

+ (
12k2

1α2 − 6ωm

)
φ2

2 + (
72k2

1α2 − 24ωm

)
φ2

3

]| �m|2, (25)

where k1 = |�q1,j | is the length of the first set of reciprocal
lattice vectors. Inserting the amplitudes (from Fig. 1) into
the bracketed coefficient in Eq. (25) and setting it equal to
zero gives the ferromagnetic transition line. This is illustrated
in the phase diagram in Fig. 3. As mentioned above, the
dependence of φk on �m was neglected, which is exact at the
paramagnetic/ferromagnetic transition line where �m = 0.
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B. Magnetic anisotropy

Magnetic anisotropy is an essential feature in micromag-
netic phenomena. In the literature, magnetic anisotropy is
generally expressed with respect to specific orientations known
as easy axes. As an example, for uniaxial anisotropy with
symmetry along the z axis, the lowest-order anisotropic free
energy per unit volume is given by

fa = Kum
2
z (26)

with the easy axis in the z direction for Ku < 0, otherwise
for Ku > 0 there is an easy plane in the x-y plane. Cubic
anisotropy with symmetry along the x, y, and z axes is given
by

fa = Kc

(
m2

xm
2
y + m2

xm
2
z + m2

ym
2
z

)
(27)

with the easy axes along any of the six axes ±x̂, ±ŷ, or ±ẑ for
Kc > 0, or along any of the eight direction vectors ±x̂ ± ŷ ± ẑ

for Kc < 0. The above forms cannot be used in the PFC free
energy because the crystal orientation is not a priori known,
since the free energy is rotationally invariant.

The simplest expression that contains information on the
local crystal orientation is �∇n. In order to have magnetic
anisotropy that depends on the local crystal orientation, only
terms that couple �m with �∇n are included in the free energy.
One type of coupling is of the form

1

k
( �m · �∇n)k, (28)

where k is some even integer. To obtain N -fold symmetry it
is necessary (but not sufficient) that k be at least of order N .
That is, to obtain twofold symmetry, k = 2, while for fourfold,
k = 4, etc. Eq. (4) contains �m · �∇n coupling terms of order 2
and 4. The second-order term allows for uniaxial anisotropy
in systems with HCP ordering. The fourth-order term allows
for cubic anisotropy in BCC and FCC systems, as well as 2D
square systems. Two-dimensional triangular systems require
an additional sixth-order term.

To obtain an approximation of the long-wavelength form
of the anisotropy energy contained in the ( �m · �∇n)k terms in
Eq. (4), a single-mode expansion

n(�r) ≈ φ0 +
∑
�qj

φei �qj ·�r (29)

is inserted into Eq. (28), where �qj are the lowest-order
reciprocal lattice vectors of a crystal lattice. The result is

1

k

⎛
⎝∑

�qj

(i �m · �qj )φei �qj ·�r

⎞
⎠

k

. (30)

Expanding out Eq. (30) and applying the resonance condition
(i.e., terms of the form ei(�qj +�qk+···+�ql )·�r integrate to zero under
coarse graining unless �qj + �qk + · · · + �ql = 0), an approxi-
mation of the anisotropic free energy in the phase field limit
is obtained. For example, applying this procedure with k = 4

for a BCC lattice yields

fa = 1

Vu

∫
d�r

(
−α4

4
( �m · �∇n)4

)

≈ − 27

2
α4(k1φπ )4

(
| �m|4 − 7

9

(
m2

xm
2
y + m2

xm
2
z + m2

ym
2
z

))
,

(31)

where the integration is over unit cell of volume Vu = 1.
Note that since the result depends on the amplitude φ, the
anisotropy depends on both the average density and the
temperature parameter through the amplitude’s dependance on
these parameters. Equation (31) also ensures that anisotropy
vanishes in the liquid region of the phase diagram.

The parameter α4 can be either positive or negative in
order to model different forms of anisotropy. Care must be
taken, however, because for a large enough positive α4, the
coefficient of m4 in Eq. (31) will exceed γm/4 and there will
be no finite global minimum for the free energy as a function of
�m. A similar issue exists with the φ4 coefficient and the coarse
grained term vn4/12 in the free energy. To avoid these issues
α4 must either be sufficiently small, or terms higher order than
fourth order in n must be added to fid.

The above derivation considered only a liquid-BCC-FCC
system. The XPFC formalism can also be used to model sys-
tems with HCP structure. Magnetically, these systems display
uniaxial anisotropy. An approximation for this anisotropy is
computed in an analogous manner as above, but now using the
( �m · ∇n)2 term, and taking into account the structure factors
that arise due to the additional basis atom needed to describe
HCP crystals. A single-mode expansion is not sufficient in this
case. The lowest-order (smallest �q) mode of the underlying
hexagonal Bravais lattice vanishes when the structure factor
of the two atom basis is computed. The next lowest-order mode
lies in the basal plane; we denote it’s amplitude with φ. With
these modifications to Eq. (29), the phase-field limit of the α2

term becomes

−α2

2
( �m · �∇n)2 ≈ − 4

3
α2φ

2k2
1

(| �m|2 − m2
z

)
, (32)

which is consistent with the form for uniaxial anisotropy.

C. Small deformation limit

Phase-field crystal models contain a natural elastic re-
sponse. An interesting consequence of magnetocrystalline
interactions is the capacity of crystal phases to deform in
the presence of a magnetic field. This effect is known as
magnetostriction in ferromagnetic materials and the piezoelec-
tric effect in ferroelectric materials. This section derives the
magnetostriction and piezoelectric coefficients of the present
model.

Before proceeding, the density expansion is simplified by
assuming that the amplitudes are complex and can vary in
space, i.e.,

n(�r) =
∑
�qj

η�qj
(�r)ei �qj ·�r . (33)
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The amplitudes are then decomposed in the form of a real
magnitude and complex phase, specifically,

η�qj
(�r) = φ�qj

ei �qj ·�u(�r). (34)

where �u(�r) is a displacement field that serves to strain the
system. Inserting Eq. (34) into Eq. (33) yields

n(�r) =
∑
�qj

φ�qj
ei �qj ·(�u(�r)+�r). (35)

We denote the spatial derivatives of �u(�r) as ∂rj
ui = uij

(i = 1,2,3). Expanding �u(�r) about a reference position in the
deformed material makes it possible to write ui(�r) = ∑

j uij rj ,
in the small deformation limit. Then, by defining q ′

j = qiuij ,
Eq. (35) can be re-expressed as

n(�r) =
∑
�qj

φ�qj
ei(�qj + �q ′

j )·�r . (36)

In reciprocal space, Eq. (36) becomes

n̂(�k) =
∑
�qj

φ�qj
δ((�qj + �q ′

j ) − �k). (37)

Equation (37) is used below to compute contributions to the
elastic energy arising from the relevant terms in the PFC free
energy.

1. Elastic energy density of the excess term

Equation (37) is first used to derive the elastic deformation
energy density from the excess term in the free energy. Namely,
substituting Eq. (37) into the excess term of the free energy,
fex [see Eq. (3)], gives, in reciprocal space,

Fel[n̂] = −
∑
�qj

φ2
�qj
Ĉ2(�qj + �q ′

j ), (38)

where Ĉ2 is rotationally symmetric. The magnitude of �qj + �q ′
j

can be written for small �q ′
j as (�qj + �q ′

j ) · (�qj/qj ) = qj +
1
qj

( �q ′
j · �qj ), where qj = |�qj |. This gives

Fel[n̂] = −
∑
�qj

φ2
�qj
Ĉ2

(
qj + 1

qj

( �q ′
j · �qj )

)
. (39)

To proceed further, a particular form of Ĉ2(�q) must be
defined. The common feature of correlation kernels in XPFC
models is that they contain peaks in reciprocal space at one or
more q values. Each peak i of the correlation kernel can be
approximated by a second-order expansion around the peak,

Ĉi
2(�q) ≈ A(1 − K(q − ki)

2 + . . .). (40)

Truncating this expansion at quadratic order and keeping only
the peak corresponding to the first mode of the Bravais Fourier
series of a BCC lattice (i.e., i = 1 with k1 = |�q1j |) gives, after
Eq. (40) is substituted into Eq. (39),

Fel[n̂] ≈ −φ2A

⎡
⎣12 − 2Kk2

1

⎛
⎝∑

i

ε2
ii +

∑
i<j

(
2ε2

ij + εiiεjj

)⎞⎠
⎤
⎦,

(41)

where εij = εji = (uij + uji)/2 is the infinitesimal strain
tensor. For the specific example of the XPFC correlation
function in Eq. (14), the expansion around the first peak gives

Ĉ1
2 (�q) ≈ e

− σ2k2
1

2β1ρ1

(
1 − (q − k1)2

ξ 2
1

)
. (42)

Comparing Eq. (42) with Eq. (40) gives

A = e
− σ2k2

1
2β1ρ1 , K = 1

ξ 2
1

. (43)

The elastic energy contribution from the excess term becomes

Fel,XPFC[n̂]

≈ −φ2e
− σ2k2

1
2β1ρ1

⎡
⎣12 − 2k2

1

ξ 2
1

⎛
⎝∑

i

ε2
ii +

∑
i<j

(
2ε2

ij + εiiεjj

)⎞⎠
⎤
⎦.

(44)

2. Magnetoelastic energy term

The next step is the calculation of the magnetoelastic free
energy. The density expansion of Eq. (35) is substituted into
the expression �m · �∇n, which gives

�m · �∇n =
∑
�qj

iφ�qj
(( �m · �∇)(�u · �qj ) + �m · �qj )ei �qj ·(�u+�r). (45)

Substituting the above expression into the magnetostriction
term of fm [see Eq. (4)], assuming a BCC lattice for the density
expansion, and applying the resonance condition gives

fme,XPFC[n̂]

= 1

Vu

∫
d�r

(
−α2

2
( �m · �∇n)2

)

≈ −2α2φ
2k2

1

⎛
⎝∑

i

m2
i (1 + 2εii) + 4

∑
i<j

mimjεij

⎞
⎠. (46)

Equations (46) and (44) are the basis from which the
magnetorestriction coefficients are calculated next.

3. Calculation of magnetostriction constants

Following Kittel [54], a cubic system is expected to have a
magnetoelastic free energy of the form

Fme = B1

∑
i

m2
i εii + B2

∑
i<j

mimjεij + 1

2
c11

∑
i

ε2
ii

+ 2c44

∑
i<j

ε2
ij + c12

∑
i<j

εiiεjj . (47)

When this free energy is minimized with respect to all the
strains we obtain the following stress-free strains:

εii = B1

c11 − c12

( | �m|2c12

c11 + 2c12
− m2

i

)
,

(48)

εij = − B2

4c44
mimj , i �= j .
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The magnetostriction constants λ100,λ111 are defined by [54]

δl

l
= 3

2
λ100

(∑
i

m2
i β

2
i

|m|2 − 1

3

)
+ 3λ111

∑
i<j

mimjβiβj

|m|2 , (49)

where δl/ l is the extension of the sample along the direction
of the unit vector �β due to the magnetization. It can be shown
that [54]

δl

l
=

∑
i�j

εijβiβj . (50)

Substituting the solutions from Eq. (48) into Eq. (50), dropping
constant terms, and comparing with Eq. (49), we obtain [54]

λ100 = −2

3

B1|m|2
c11 − c12

, λ111 = − 1

12

B2|m|2
c44

. (51)

Next, comparing Eq. (47) to Fel,XPFC + Fme,XPFC gives

B1 = −4α2φ
2k2

1, B2 = −8α2φ
2k2

1,

c11 = 4φ2k2
1AK, c44 = 2φ2k2

1AK, (52)

c12 = 2φ2k2
1AK,

which then yields from Eq. (51),

λ100 = 4

3

α2

AK
|m|2, λ111 = 1

3

α2

AK
|m|2. (53)

It can be seen immediately that λ100 = 4λ111. Hence it is not
possible with a single-peaked correlation kernel to tune λ100

and λ111 separately in order to match with two experimental
values. Indeed, in order to tune the magnetostriction separately
in this case, either the elastic anisotropy c44/(c11 − c12) or the
ratio of B1 to B2 must be tuned. The above result is a general
result of any single-peaked correlation function.

To go beyond the single-peak result, it is necessary to add
a second peak to the correlation function, which corresponds
to the second BCC mode. Doing so and performing some
tedious but straightforward algebra as discussed above using
a two-mode density expansion gives

Fel,XPFC2[n̂] ≈ 2φ2
1k

2
1

((
A1K1 + 2r2A2K2

) ∑
i

ε2
ii

+A1K1

∑
i<j

(2ε2
ij + εiiεjj )

⎞
⎠, (54)

where

Ai = e
− σ2k2

i
2βi ρi , Ki = 1

ξ 2
i

, (55)

and where r = φ1/φ2, while constant terms have been ignored.
Similarly expanding fm with a two-mode density expansion
gives the two-mode magnetoelastic energy to second order:

Fme,XPFC2[n̂]

≈ −2α2φ
2
1k

2
1(1 + r2)

⎛
⎝∑

i

m2
i (1 + 2εii) + 4

∑
i<j

mimjεij

⎞
⎠.

(56)

Comparing Fel,XPFC2 + Fme,XPFC2 to Fme in Eq. (47) gives

B1 = −4α2φ
2k2

1(1 + r2), B2 = −8α2φ
2k2

1(1 + r2),

c11 = 4φ2k2
1(A1K1 + 2r2A2K2), (57)

c44 = 2φ2k2
1A1K1 c12 = 2φ2k2

1A1K1.

Thus the magnetostriction constants now become

λ100 = 4

3

α2(1 + r2)

A1K1 + 4r2A2K2
|m|2, (58)

λ111 = 1

3

α2(1 + r2)

A1K1
|m|2. (59)

So that λ100 = 4λ111(1 + 4r2(A2K2)/(A1K1))−1. It is note-
worthy that although A1 and A2 are fixed in the XPFC
model, K1 and K2 [Eq. (55)] are tunable parameters. The
magnetostriction constants can therefore be tuned individually
through the addition of higher-order peaks in the XPFC
correlation function. Note that A1, A2, and r in general depend
on the system parameters of temperature (σ ) and average
density, making the magnetostriction constants functions of
temperature and average density. A similar approach could be
followed for other crystal symmetries such as FCC.

4. Piezoelectric coefficients in the ferroelectric model

This section summarizes the piezoelectric coefficients of
the ferroelectric model, where fm is neglected. The results are
for the case of the PFC correlation in Eq. (13). The details
will be left out as the mathematical steps are identical to the
ferromagnetic case shown above.

To proceed, the density is once more expanded according
to the single-mode expansion in Eq. (33) and substituted into
fid + fex + fP , where the excess term is the single peaked
expression in Eq. (13), which gives rise to the BCC structure in
3D. Assuming a complex amplitude of the form in Eq. (34) and
applying the resonance conditions yields a long wavelength
free energy density of the form

f = a2φ
2 − a3φ

3 + a4φ
4 + 8Bx |∇φ|2Blφ2

0 − t

3
φ3

0

+ ν

4
φ4

0 + felas(εij ,Pi,φ), (60)

where φ is the single-mode amplitude and φ0 the average
density. Here, a2,a3,a4,t,ν are constants, while Bl is the
liquid compressibility. The expression felas(εij ,Pi,φ) denotes
the elastic free energy density, which is a function of the
strains, polarization components and solid order parameter.
Minimizing the elastic free energy with respect to the stains,
∂felas/∂εij = 0 gives the following stress free strains:

ε0
ii = Q11P

2
i + Q12

∑
j �=i

P 2
j , ε0

ij = Q44PjPj , i �= j, (61)

where Q11 = (2β2 − 3σ2)/Bx, Q12 = (σ2 − 2β2)/Bx , and
Q44 = (Q11 − Q22)/2. Equation (61) implies that there is
a strain whenever there is polarization of a material, a
phenomenon known as piezoelectricity. Expanding the elastic
term for strains about their stress free values given by Eq. (61)
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give the following for the form of the elastic free energy:

felas = 1

2
C11

3∑
i=1

ε̃2
ii + 2C44

3∑
i=1

3∑
j>i

ε̃ii ε̃ij + C12

3∑
i=1

3∑
j>i

ε̃ii ε̃jj ,

(62)

where ε̃ij ≡ εij − ε0
ij , C11 = 8Bxφ2, and C12 = C44 = C11/2.

The form of ferroeletric anisotropy can be obtained by
substituting the stress free strains into Eq. (60). This gives
an anisotropic free energy of the form

fP = α1| �P |2 + α11

3∑
i=1

P 4
i +

3∑
i=1

3∑
j>i

P 2
i P 2

j + α112

3∑
i=1

P 6
i

+ α112

3∑
i=1

3∑
j>i

P 2
i P 4

j + α123P
2
1 P 2

2 P 2
3 , (63)

where α1, α11, α111, α112, and α123 are constants, related to the
parameters of Eq. (5) and listed in Appendix A. Equation (63)
is precisely the form of the bulk terms in the traditional Landau-
Ginzburg-Devonshire free energies used in standard phase-
field models of ferroelectric materials [20,48].

V. NUMERICAL TESTS AND APPLICATIONS OF MODEL

To illustrate how the methods proposed in the previous
section capture the essential features of multiferroic materials,
several numerical simulations are illustrated here on both
ferroelectric and magnetic systems. For simplicity, two-
dimensional systems of square or triangular symmetry were
considered for both ferroelectric and ferromagnetic simula-
tions. In ferroelectric simulations, triangular symmetry was
simulated using usinge Eq. (13) for Ĉ2, while for ferromagnetic
simulations, triangular and square symmetries were simulated
using Ĉ2 in Eq. (14) with one and two peaks, respectively.
Ferroelectric coupling will be presented elsewhere.

A. Ferromagnetism in square polycrystalline order

Using a two-dimensional square XPFC correlation with
fourfold anisotropy, we tested for magnetic hysteresis
and the effects of magnetic fields on grain growth in
a pure material. Simulations were carried using Eu-
ler’s method. The numerical mesh spacing and time
steps were �x = 0.1 and �t = 0.001, respectively. Unless
otherwise stated, the parameters used were (t,v) = (1,1),
(W0,rm,ωm,γm) = (0.1,0.01,0.4,1), (ξ1,ξ2) = (0.9,1.27279),
(ρ1,ρ2) = (1,

√
2/2), (β1,β2) = (4,4), and (Mn,τm) = (1,1).

Other parameters are specified in the text.

1. Magnetic hysteresis

We consider here the simplest case of magnetic hysteresis of
a perfect crystal, with an alternating magnetic field aligned to
the magnetocrystalline easy axis. In this situation, the magnetic
free energy can be written in the form

fm( �m) = f1( �m) − �m · �B. (64)

In general, this free energy will have a number of stationary
points defined by ∂fm/∂mi = 0. Those which are also local

FIG. 4. Hysteresis loop for a single two dimensional square
crystal. System parameters are as stated at the beginning of the section
with σ = 0.04, n0 = 0.05, and (α2,α4) = (0.001,−0.01).

minima will be stable and magnetization can come to rest
there. With an external magnetic field present, and oriented
in the reverse direction, some local minima can become
metastable. Eventually, at high enough external fields, these
metastable points become unstable and the magnetization
abruptly reverses. Reversing the external field repeats this
cycle in the opposite direction. Plotting the magnetization
against the external field results in a hysteresis loop, such
as the one shown in Fig. 4 for a two-dimensional single square
crystal.

To produce the hysteresis loop in Fig. 4, the system was
brought to magnetic saturation by an initially strong external
field. After a set amount of time the process of measuring the
hysteresis loop began. The external field was brought through
ten successively decreasing values. For each external field
value the magnetization was allowed to relax until d �m/dt was
smaller than a convergence value (10−5 in Fig. 4), ensuring that
the magnetization had reached a local minima corresponding
to each value of the external field. The external field was then
decreased to its next value. As the strength of the external
field increases in the negative direction the magnetization
eventually reverses direction. This process gives the drop from
the upper left quadrant to the lower left quadrant of the loop in
Fig. 4. Once the external field was at its negative extreme the
process was reversed and the external field increased at each
step back towards its initial value, causing the magnetization to
reverse again. This process produces the raise from the lower
right to upper right quadrants of the loop in Fig. 4. Figure 5
plots the magnetization (both mx and my) versus time for the
entire process. Note that the magnetization reverses by rotation
of the magnetization vector.

2. Solidification under an external field

The ability to use external magnetic fields to influence
the growth of crystal grains has potential applications in
microstructural engineering. Here, we consider simulations
where crystal seeds of random orientations nucleate, grow,
impinge, and coarsen with and without the influence of an
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FIG. 5. Plot of magnetization components mx and my vs. time (t)
for the hysteresis loop in Fig. 4. Note that the magnetization reverses
by rotation of the magnetization vector.

external field. We simulated a large two-dimensional system
(4000�x × 4000�x) with 160 randomly oriented square
seeds. Solidification was initiated following a quench to σ =
0.04 and n0 = 0.05. (α2,α4) = (0.001,−0.0005) and the other
parameters are as discussed in the introduction to this section.
When present, the magnetic easy axes lie along the diagonals
of the unit cell. This sequence is depicted schematically in
Fig. 6.

Two simulations are run with the same pseudorandom seed:
one with an external field and one without. A snapshot in time
of the density field n(�r,t) for the two cases is shown in Fig. 7 for
t = 5.75 × 104�t . The red lines mark the polycrystalline grain
boundaries in the two cases. In order to investigate the effects of
the external field on grain orientation, we computed the power
spectrum of the density field n as a function of orientation (θ )
at the distance in k space of the first Bragg peak. The difference
in these power spectra is depicted in Fig. 8 after 1.4 × 105 time
steps. The external field is oriented at an angle of θ = π/4;
thus a crystal grain oriented with its principle reciprocal lattice
vectors along the directions θ = 0,π/2,π,3π/2 will have its
easy axes aligned to the external field. Figure 8 shows that a
greater portion of grains evolve to become aligned along these
angles when the external field is present.

We also compared the power spectra of the same system at
late and early times. Figure 9 shows such a comparison for the
system with an external field present, where the density field is
evaluated at tearly = 1 × 104�t and tlate = 1.4 × 105�t . From
it we can draw the same conclusion as in Fig. 8: the presence

�B

FIG. 6. Randomly oriented crystal seeds growing under the
influence of an external field.

AB

C
D

E

AB

C
D

E

G

FIG. 7. (Color online) Comparison of initially identical systems
grown under an external magnetic field (left) and no field (right). The
crystal grains aligned with the x-y axes (such as A and G) have their
easy axes aligned with the external field, and grow at the expense of
those that are not aligned (such as D).

of the external field results in preferential growth for those
grains with easy axes that are aligned to it.

B. Ferroelectricity in triangular polycrystalline materials

This section presents 2D simulations using the single-
peak PFC correlation kernel of Eq. (13), which produces
anisotropic ordering. Systems of triangular symmetry are
elastically isotropic and the terms | �P · �∇|2j and | �P × �∇|2j

do not produce anisotropic terms in �P if j < 3 (unlike
the BCC case which produce anisotropy at order j =
2). Thus for a minimal two-dimensional model of trian-
gular symmetry to produce anisotropy, at least one term
of order j = 3 must also be considered. The parameters
in all ferroelectric PFC model simulations were zero ex-
cept, (Bx,t,v) = (1,1,1), (σ2,σ6) = (0.14,0.012), (γ6,γ8) =
(−0.006,0.0064)(rp,ωp) = (0.002,0.08), and G2 = 0.4. The
simulations were conducted on a periodic system with
grid spacing �x = 0.78438 and time step �t = 0.2. Equa-
tions (22) and (19) were solved using semispectral methods.

1. Piezoelectric effect

To show the piezoelectric effect, a single crystal in equi-
librium with a liquid phase with average density difference
n0 = −0.03 was subjected to an electric field in several
different orientations with magnitude of | �E| = 0.005. The
model parameters were chosen such that in the absence of
applied fields the equilibrium state is nonferroelectric (i.e.,
above the transition temperature). When no field is applied, a
small crystal forms a roughly hexagonal shape and the lattice
has triangular symmetry as shown in Fig. 10(a). When the

FIG. 8. Difference in power spectra of a polycrystalline solid
grown in an external field (Pex) and no external field (P0), respectively.
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FIG. 9. Difference in power spectra of a polycrystalline solid
grown in an external field at late (Pl) and early (Pe) times, respectively.

electric field is applied, the crystal polarizes such that the
polarization field is in the opposite direction of the applied
field to minimize electric field energy. The polarization in
turn induces an elastic strain in the crystal as shown in
Figs. 10(b)–10(d).

The displacements of the atomic positions after the field is
applied can be seen by comparing the locations of the density
maxima with respect to the superimposed white hexagon in
this figure. In the absence of an applied field, the maxima lie
on the hexagon as shown in Fig. 10(a). This polarization/elastic
coupling is the piezoelectric effect. Similar behavior also
was observed when a magnetic field is applied, as shown
in a prior publication [44,45] for an isotropic variant of the
ferromagnetic model presented here. Thus the model presented
in the previous section naturally incorporates the piezoelectric
effect and magnetostriction. It also is interesting to note that
the overall crystal shape changes, such that it elongates in the
direction of zero strain (i.e., perpendicular to the applied field).

FIG. 10. (Color online) Piezoelectric effect. In this figure, an
electric field is applied to a single crystal coexisting with the liquid
phase. The color is proportional to n and the direction of the field is
indicated in each figure. The same white hexagon is superimposed
on each crystal to highlight the displacement of the atomic locations
after the external electric field is applied.

FIG. 11. Anisotropic ordering. The probability of the �P aligning
in a given polarization direction, θ is shown. Ordering occurs at
multiplies of 60◦ consistent with the symmetry of a two-dimensional
triangular lattice.

2. Anisotropic ordering

As discussed previously, when a material undergoes a
ferroelectric or ferromagnetic transition, the orientation of
�P and �m are often determined by the anisotropy of the

crystalline lattice. This anisotropic ordering plays a large
role in determining, for example, the electric and magnetic
coercivity in polycrystalline materials [2–6]. To show that
anisotropic ordering occurs and to verify the approximate
analytic calculations, simulations were conducted below the
ferroelectric transition in a periodic simulation cell. For these
simulations the initial condition was a small perfect single
crystal in an orientation and under conditions consistent with
Fig. 10(a), and random fluctuations for the polarization field,
�P . The dynamical equations were evolved until the equilibrium

was reached. Approximately 800 different initial conditions
were run and the equilibrium polarization direction was
calculated for each run. A histogram of the final orientations
is shown in Fig. 11. It is important to note that the selection of
the polarization directions, 0◦, 60◦, 120◦, etc., were due to the
orientation of the crystal. If the initial crystal was rotated by
10◦ then the polarization directions would be 10◦, 70◦, 130◦,
etc. These simulations clearly show that the easy directions for
the polarization field are determined by the crystal lattice.

Simulations of polycrystalline samples also were con-
ducted to show that each grain will select a polarization
direction determined by the orientation of the individual
grains. Results of the simulations are shown in Fig. 12,
which shows a sequence of heterogeneous nucleation, growth
and impingement at an average density n0 = −0.005 and
quench temperature parameter �B = 0. It is seen that each
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FIG. 12. (Color online) Heterogenous polycrystal nucleation,
growth, and impingement from a supercooled melt. In each figure, the
color is proportional to the orientation angle of the polarization field
within a grain. The inset in (b), (c), and (d) shows the polarization
vector for the region inscribed by the black square. The number of
time steps following the initial condition in (a), (b), (c), and (d) are
200,300, 400, and 1000, respectively. Defects in the polarization field
are marked by small white dots and a rapidly change orientation.

grain chooses a single orientation after nucleation. If two or
more grains impinge with different polarization directions,
defects in the polarization field can appear. An example is
highlighted in the inset of Fig. 12, which shows the emergence
of a point defect after four grains impinge. This typical
simulation illustrates the robustness of the multiferroic PFC
to model polycrystalline materials in which the easy axes for
polarization are determined by the local crystal orientation.

3. Ferroelectric coercivity

The magnetic coercivity Hc is strongly correlated with the
grain size D in polycrystalline samples such that Hc ∼ D6

for small grain size and Hc ∼ 1/D for large grains, where
the crossover occurs when D is the size of the magnetic
exchange length Lex. Both behaviors have been theoretically
attributed to the anisotropic ordering of the magnetization
field [2–6]. Since it is the anisotropic nature of the ordering
that is responsible for such behavior it is expected that similar
behavior will occur in ferroelectric systems. To examine the
1/D behavior, the exchange length must be much smaller
than the grain size. To examine this phenomena, simulations
were conducted on a polycrystalline system containing four
grains of different orientation. In these simulations, four
seeds, of orientations θ = 22.3◦,12.2◦,6.7◦, and −19.9◦, were
introduced into a supercooled melt at zero electric field
using the same parameters as in the preceding simulation of
polycrystalline growth (Fig. 12). The systems were evolved for
a time of t = 2000 at which time a polycrystalline sample was

FIG. 13. Coercivity as a function of grain diameter D, expressed
in terms of the atomic spacing a. The coercivity Ec is half the width
of the hysteresis loops at Px = 0. The line is a fit to Ec = E0

c + A/D.
In the inset, Px(x) is plotted as a function of position across a 180◦

domain wall in a single-crystal system.

formed. The systems were then subjected to a time dependent
external electric field. The dynamics of the n were stopped
to avoid grain coarsening during the simulation. The electric
coercivity Ec was then measured as a function of the system
size, as the size was increased (which increases the diameter
D of each grain). A plot of Ec versus D is shown in Fig. 13.
The inset of this figure shows the behavior of Px across a
180◦ domain wall in a single crystal system, indicating a
ferroelectric exchange length of approximately W ≈ 6a. As
can be seen in this plot, Ec ∼ 1/D for large-sized grains
and some deviations occur for the smallest grain diameter
(D ∼ 14a) as expected since D/2 ≈ W .

VI. DISCUSSION AND CONCLUSIONS

This work presented a new multiferroic phase-field crys-
tal (PFC) model that enables the study of anisotropic
magneto/electro-crystalline interactions, which can be sim-
ulated alongside the usual elastic, plastic, and thermody-
namic driving forces that dictate the formation of complex
microstructures in complex multiferroic materials.

The model presented here extends the magnetic phase-field
crystal model developed by Faghihi et al. [44,45] in two
important ways. First, it adds the capability to simultaneously
model both ferromagnetism and ferroelectricity, as well as
coupling between the two phenomena. Second, this work
introduced new magnetic/density (or ferroelectric/density)
couplings in the free energy functional (i.e., ( �m · �∇n)2j ,
| �P · �∇n)|2j , and | �P × �∇n)|2j ). These couplings were shown
analytically and numerically to induce anisotropic ordering of
the magnetic and polarization fields. Namely, it was shown that
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TABLE III. Normalized reciprocal lattice vectors used in calculations.

Lattice Mode Vectors

BCC 1 {(1,1,0), (1,0,−1), (0,1,−1), (1,0,1), (1,−1,0), (0,1,1), (0,−1,−1),

(−1,1,0), (−1,0,−1), (0,−1,1), (−1,0,1), (−1,−1,0)}
2 {(2,0,0), (0,2,0), (0,0,−2), (0,0,2), (0,−2,0), (−2,0,0)}

HCP 1 {(0,0,1), (0,0, − 1)}
2

(
4
√

2
3

){
(1,0,0),

(
1
2 ,−

√
3

2 ,0
)
,
(

1
2 ,

√
3

2 ,0
)
, (− 1

2 ,−
√

3
2 ,0),

(− 1
2 ,

√
3

2 ,0
)
, (−1,0,0)

}

the local crystal orientation alone determines the local ordering
directions of the magnetic and polarization fields. This is a
critical feature that influences many physical properties of
multiferroic materials.

The long-wavelength properties of the model were also ex-
amined and shown to self-consistently reproduce the physical
features associated with magnetostriction and the piezoelectric
effect. Specifically, the magnetostriction and piezoelectric
coefficients were derived and their form was connected to the
multipeaked structure of the two-point correlation kernel used
in the PFC excess free energy. Notably, it was found that with a
two-peaked PFC correlation kernel, it is possible to arbitrarily
control the value of these two coefficients. The forms of the
long wavelength limit of the two cases of the model studied
were found to be the same as those used in phenomenological
multiferroic phase-field models in the literature.

The present work can be extended in several important
ways. On the applications side, since the phase-field crystal
model incorporates elastoplasticity in polycrystalline materi-
als, it can be used to examine the role of external magnetic
or electric fields on the evolution of defect structures, on
diffusion time scales. In effect, this can open a window into
the exploration of microstructure engineering via low level
external fields in multiferroic materials. Another interesting
direction is the use of coarse graining techniques such as those
presented elsewhere [39,40,43,55] to derive novel multiferroic
phase-field models based on complex order parameters. Such
models naturally incorporate grain boundaries, elasticity, and
some dislocation properties. It is noteworthy that such models
are immune from the CPU limitation of traditional multiphase-
field models, which require as many order parameters at crystal

grains (or phases in the case of an alloy). In this case, an
arbitrary number of crystal orientations and phases could be
modelled by a single complex order parameter. This will be
the topic of upcoming publications.

APPENDIX A: ANISOTROPIC FERROELECTRIC FREE
ENERGY COEFFICIENTS

The values of the coefficients that go into Eq. (63) are

α1 = rp

2
+ φ2(8β2 + 4σ2 − 3ωp),

α11 = ν4

4
+ φ2

(
φ2(54σ4 + 130β4) + 4

Bx
(2β2 + σ2)2

)
,

α12 = ν4

2
+ φ2

(
φ2(66σ4 + 218β4)

+ 24

Bx

(
4β2

2 − 4β2σ2 + 3σ 2
2

))
, (A1)

α111 = ν6

6
+ φ6

3
(4000σ6 + 10640β2),

α112 = ν6

2
+ 8φ6(275σ6 + 1061β6),

α123 = ν6 + 16φ6(835σ6 + 924β6).

APPENDIX B: RECIPROCAL LATTICE VECTORS

Table III lists the reciprocal lattice vectors used in amplitude
expansion calculations [56].
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