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Modeling of the magnetic free energy of self-diffusion in bcc Fe
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A first-principles based approach to calculating self-diffusion rates in bcc Fe is discussed with particular
focus on the magnetic free energy associated with diffusion activation. First, the enthalpies and entropies of
vacancy formation and migration in ferromagnetic bcc Fe are calculated from standard density functional theory
methods in combination with transition state theory. Next, the shift in diffusion activation energy when going
from the ferromagnetic to the paramagnetic state is estimated by averaging over random spin states. Classical and
quantum mechanical Monte Carlo simulations within the Heisenberg model are used to study the effect of spin
disordering on the vacancy formation and migration free energy. Finally, a quasiempirical model of the magnetic
contribution to the diffusion activation free energy is applied in order to connect the current first-principles results
to experimental data. The importance of the zero-point magnon energy in modeling of diffusion in bcc Fe is
stressed.
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I. INTRODUCTION

Self-diffusion and substitutional impurity diffusion in
metals have been treated based on first-principles methods
in a number of recent papers [1–8]. In many cases, good
quantitative agreement is obtained between calculations and
experiments both in terms of activation energies and absolute
diffusion rates. In body centered cubic (bcc) Fe, a purely
theoretical approach to calculating the diffusion rate D(T ) as
a function of temperature T is hindered by the complications
associated with the magnetic transition occurring at the Curie
temperature TC. The apparent activation energy Q varies both
below and above TC, due to magnetic disordering. Therefore,
in order to describe self-diffusion and impurity diffusion
in Fe, the magnetic free energy G

mag
a (T ) associated with

diffusion activation (vacancy formation and atom-vacancy
exchange) must be modeled. A number of approximate or
semiempirical models for G

mag
a have been suggested in the

literature and then used in fitting to experimental data, see
Ref. [9] and references therein. Recent theoretical develop-
ments have made it possible to treat not only the magnetically
ordered states but also disordered states in calculating the
relevant activation enthalpies from first principles [7]. In other
words, the difference �QFM→PM ≡ QPM − QFM between the
ferromagnetic (FM) and the paramagnetic (PM) states can
be calculated. However, in order to predict absolute diffusion
rates, the full temperature dependence of G

mag
a (T ) must be

known. Reversely, if an assumed form for G
mag
a (T ) is used

in fitting to experimental data, extrapolations, e.g., to low
temperatures, may be misleading.

In the current paper we focus on the modeling of G
mag
a (T )

for the temperature range from 0 K to the fully disordered
state. While the prediction of diffusion parameters (prefac-
tors and activation energies) is relatively straightforward in
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nonmagnetic metals or in magnetic materials well below TC, it
is considerably more challenging to take magnetic disordering
into account. Achieving a purely theoretical description of the
magnetic free energy has proven very difficult even in bulk
Fe [10]. It is therefore expected to be no less difficult in the
modeling of diffusion, since the free energies of interest are
now defined per vacancy, or per activated state, with the bulk
free energy subtracted.

The magnetic free energy consists of an enthalpy and an
entropy part Gmag(T ) = H mag(T ) − T Smag(T ). In our current
approach we estimate G

mag
a (T ) for temperatures ranging from

zero to the melting temperature in the following steps. First,
we estimate �QFM→PM directly from first-principles density
functional theory (DFT) calculations by averaging over a
large number of supercell calculations in which the local
magnetic moments are randomly set. That is done for bulk,
vacancy, and transition state structures, respectively. Second,
the temperature variation of G

mag
a is studied within a Heisen-

berg model by means of classical and quantum Monte Carlo
(MC) simulations. In this approach, the magnetic properties
of bcc Fe are described by the interaction of localized spins
with spin quantum number S = 1. This approximation works
surprisingly well, e.g., TC is predicted to within 10%. However,
in an accurate description of the magnetic free energy in Fe one
should account for the fact that the effective spin interactions
are dependent on the global spin order. Lacking such a more
elaborate model of G

mag
a (T ) we proceed to evaluate two

semiempirical models used in the literature against our MC
data. Based on that comparison, we can link experimental
data on bulk magnetic enthalpies to a model of G

mag
a (T )

which is then linked to our first-principles calculations. The
result is critically compared with experimental and theoretical
estimates of the vacancy formation and diffusion free energies
in bcc Fe. Thus, the aim of the current work is not to present
a completely theoretical route to calculating diffusion rates in
magnetic metals and alloys, but rather to investigate separately
the magnetic terms, in order to point out problems that should
be addressed in future work.
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Our paper is structured as follows. Some basic theory and
a discussion of different models of the magnetic free energy
associated with diffusion are presented in Sec. II. In Sec. III the
computational methods based on first-principles DFT, and on
Heisenberg model MC simulations, are described. The results
are presented and discussed in Sec. IV, and the paper ends
with conclusions, Sec. V.

II. RATE THEORY OF DIFFUSION

The current modeling of vacancy-mediated diffusion is
based on standard lattice dynamics theory and transition state
theory (TST) [11,12]. In TST, the rate of vacancy migration is
related to the partition function in the 3N − 1 dimensional
hypersurface defining the transition state (TS). For tracer
diffusion in a pure crystal one then has

Dtr(T ) = 1
6 l2zν0fc exp{−[Gf(T ) + Gm(T )]}/kBT , (1)

where z = 8 is the coordination number for the bcc structure,
l is the jump length, ν0 is an attempt frequency, fc = 0.72 is
the correlation factor in bcc, and kB is the Boltzmann constant.
The Gibbs free energies of vacancy formation and migration
Gf and Gm can each be expressed in terms of the corresponding
enthalpy H and entropy S: G = H − T S.

For convenience we restate Eq. (1) as

Dtr = D0 exp{−[QFM + Q2T
2 + Gmag(T )

−�QFM→PM]/kBT }. (2)

Each term in the exponent refers to a sum of vacancy formation
and migration terms, e.g., QFM = H FM

f + H FM
m . The activation

energy in the FM region is assumed to consist of a static
part QFM, as obtained in standard DFT calculations, and a
second-order term Q2 to be discussed further on. Entropy
factors present in the FM region (vibrational and electronic) are
collected in the prefactor D0, while the magnetic free energy
is kept in the exponent. The term �QFM→PM is added because
the paramagnetic state is conveniently used as reference for
the magnetic terms.

A thermodynamic property associated with vacancy forma-
tion is defined as the difference between the systems with and
without a vacancy,

Xf = Xvac − N − 1

N
Xbulk, (3)

where N is the number of atoms in the bulk system. Similarly,
a thermodynamic property associated with vacancy migration
is defined as the difference between the system constrained at
the TS and the vacancy state,

Xm = XTS − Xvac. (4)

Then, for thermally activated diffusion one has

Xa = XTS − N − 1

N
Xbulk. (5)

The diffusion activation enthalpy is in bcc materials usually
found to be temperature dependent, which may be partly
due to electronic excitations, and partly to anharmonic lattice
vibrations [5]. Here we assume that a static and a second order
term, in addition to the magnetic term, are sufficient to describe

vacancy formation and migration,

H (T ) = H0 + H2T
2 + H mag(T ). (6)

A. The magnetic free energy

In the following section, a quasiempirical model of the
magnetic free energy of vacancy formation and migration is
presented. The bulk magnetic thermal capacity per atom is
written c(τ ), where τ = T/TC. Next, it is assumed that for a
vacancy concentration x � 1, the thermal capacity curve is
scaled according to

c(x,τ ) = (1 − x)c

(
0,

τ

1 − γ x

)
. (7)

With γ = 1, this model accounts for the effect of “dilution” by
removing magnetic couplings. With γ smaller or larger than
unity, the additional effect of strengthening or weakening of
the magnetic couplings of the surrounding lattice is accounted
for. The magnetic moments themselves are assumed to be
unaffected in this model. Application of the thermodynamic
relation c = dh/dτ = τds/dτ leads to

h(x,τ ) = (1 − x)(1 − γ x)h

(
0,

τ

1 − γ x

)
(8)

and

s(x,τ ) = (1 − x)s

(
0,

τ

1 − γ x

)
(9)

for the enthalpy and entropy, respectively. The corresponding
magnetic free energy is

g(x,τ ) = (1 − x)(1 − γ x)g

(
0,

τ

1 − γ x

)
. (10)

The free energy per vacancy is defined by

G
mag
f (τ ) = lim

x→0

[
∂

∂x
g(x,τ ) − (1 − x)g(0,τ )

]
, (11)

where we now use capital letters for properties expressed per
vacancy, or per activated state. The above equation corresponds
to the N → ∞ limit of Eq. (3). This leads to

G
mag
f (τ ) = −γg(0,τ ) + γ τg′(0,τ ) (12)

or

G
mag
f (τ ) = −γ h(0,τ ). (13)

The above discussion was focused on the formation of
vacancies. In the modeling of diffusion, one also has to
take the migration free energy G

mag
m into account. A simple

bond-cutting argument [13] leads to the expectation that the
free energy of diffusion should vary in the same way as that
of vacancy formation, but with a slightly higher prefactor, i.e.,
G

mag
a = −γah(0,τ ), with γa ≈ 5

4γ . Explicit calculations taking
into account the distance dependence of magnetic interactions
are presented in the current paper.

Girifalco arrived at G
mag
f (τ ) = −h(τ ) based on a rigorous

statistical mechanics treatment within a mean-field approach
[14] and in generalizations to quasichemical theory [15]. Braun
and Feller-Kniepmeier [16] assumed an expression similar to
Eq. (13) to hold with h(0,τ ) connected to the magnetization
curve via mean-field theory and γ taken as a fitting parameter.
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The formation of a vacancy can be seen as the introduction
of a nonmagnetic solute atom, and therefore the theory of
magnetic alloys can be applied. In this field, a different
treatment has been used [17], originating with the work
of Zener [18]. A shift of g(τ ) along the temperature and
free-energy axes is assumed, leading to the following free
energy:

G
mag
f (τ ) = �TX[s(0,τ ) − sPM], (14)

where �TX measures the rate of shifting as a function of
solute concentration. Thus, one finds that by shifting along the
temperature axis, the magnetic free energy varies as the bulk
magnetic entropy.

We have found that in fitting to self-diffusion data in bcc Fe,
it is not of crucial importance, in a numerical sense, whether the
scaling model or the Zener model is applied in combination
with some model of the magnetization curve. However, the
scaling model has the advantage of being more straightforward
to connect to theoretical calculations. By a derivation similar
to the one above for the vacancy formation free energy, one
arrives at Q = −γa[h(0,τ ) − τc(0,τ )], and by taking the high-
temperature and low-temperature limits,

�QFM→PM = −γa�hFM→PM, (15)

where �hFM→PM ≡ hPM − hFM. In other words, the scaling
model allows the parameter γa to be deduced directly from
theoretical estimates of the disordering enthalpy associated
with diffusion activation.

III. COMPUTATIONAL METHODS

A. First-principles calculations in the ferromagnetic state

Our first-principles calculations were performed within
the framework of the Kohn-Sham density functional theory
(DFT) implemented in the Vienna ab initio simulation package
(VASP) code [19–23]. The projector augmented wave (PAW)
method was used in the frozen core approximation, and the
Perdew-Burke-Ernzerhof (PBE) generalized-gradient approx-
imation (GGA) was used as electronic exchange correlation
function. All calculations were performed with a cutoff energy
of 350 eV, and a Monkhorst-Pack k-point mesh of 3 × 3 × 3
was used unless otherwise specified. The method of Methfessel
and Paxton of order 2 was used with a smearing width of 0.3 eV.
Supercells of 54 or 128 (3 × 3 × 3 and 4 × 4 × 4 conventional
bcc unit cells) were used, with periodic boundary conditions.

Structural relaxations of bulk, vacancy, and transition state
systems were carried out, with allowance of cell shape change
and cell volume change. The vacancy formation and migration
energies were then obtained in accordance with Eqs. (3) and
(4).

Frozen-phonon calculations [24] were used to obtain the
pre-exponential factor D0. Starting from the relaxed supercells,
small displacements were applied to each atom in five steps
between ±0.03 Å around the equilibrium position. Force
constants were fitted to the resulting forces and inserted into the
force constant matrix from which the eigenfrequencies ν are
obtained by diagonalization. In these calculations, the system
is in the FM state, and the influence of magnetic disordering
on the phonon frequencies is not modeled.

From standard lattice dynamics theory, the vibrational
entropy associated with vacancy formation is given in terms
of the eigenfrequencies ν of bulk and vacancy systems as

Sf = −kB

[∑
ln(νvac) − N − 1

N

∑
ln(νbulk)

]
. (16)

The vacancy jump frequency is given by the related
expression [12]

νm = z

∏3N−4
j=1 νvac

j∏3N−3
j=1 νTS

j

exp(−Hm/kBT ). (17)

By combining Eqs. (16) and (17), the prefactor in the fully
ordered ferromagnetic state D0 is readily found.

As previously mentioned, the formation and migration
enthalpies are expected to contain a second-order term in T

due to electronic excitations and anharmonic lattice vibrations.
Here we estimate the electronic part as follows. In the
independent-electron approximation and for a static density
of states nu.d for each spin channel, the electron entropy is
given by [25]

Sel = −kB

∫ ∞

−∞
[f (ln f ) + (1 − f ) ln(1 − f )](nu + nd)dE,

(18)
where f is the Fermi function and E is the energy. Via
thermodynamic integration one obtains the corresponding
shift in enthalpy. At elevated temperatures, in addition to a
broadening of the Fermi function, the shape of the density of
states (DOS) itself changes, something which is not taken into
account here. However, we expect that for temperatures up to
about Tm/2, the current approximation is reasonable. In order
to obtain a precise DOS, those calculations were done for 128
atoms, with the tetrahedron method for interpolation over a
mesh of 5 × 5 × 5 k points.

B. The paramagnetic state

Treating magnetic disorder from first principles is not
straightforward in systems containing defects and structural
relaxation. In Refs. [7,26] the spin-wave methodology was
used. Here we address the problem by averaging over randomly
generated spin states in supercell calculations. Starting from
structures relaxed in the ferromagnetic state, a set of calcula-
tions were carried out without further structural relaxation, but
with disordered spins. The initial magnetic moments were set
to two Bohr magnetons per atom, and the orientations were set
randomly with the constraint that the total magnetic moment be
equal to zero in the bulk system. In the vacancy and transition
state systems, the number of atoms is odd, and the initial total
magnetic moment will thus be two Bohr magnetons.

In order to minimize the statistical error in calculated defect
properties the spin structure for the vacancy and transition state
systems were the same as in corresponding bulk systems with
one atom missing. The averaging over spin states was then
done for defect properties as defined in Eqs. (3), (4), and (5).

During the electronic relaxation carried out in VASP both
the magnitude and the orientation of the spins were allowed
to vary. In the case that a spin is flipped, the above method
of averaging becomes invalid. We therefore discarded such
calculations, and from originally 80 separate calculations
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we could keep 41 sets of data for calculating the diffusion
activation energy Q by Eq. (5), and 35 sets of data for
calculation of the vacancy formation and migration enthalpies
by Eqs. (3) and (4).

C. Spin lattice simulations

In order to investigate how Gmag(T ) varies between the
low-temperature ferromagnetic and the high-temperature para-
magnetic states, we carried out a series of Monte Carlo (MC)
simulations within the classical and the quantum Heisenberg
models. The basic Hamiltonian to be studied is

E = −
∑
i �=j

Jij s̄i s̄j . (19)

Here s̄ represent either classical spin vectors, or quantum
spin operators. Simulations were carried out using the ALPS
package [27], and in the case of classical simulations also
using our own code. Interactions Jij up to nearest neighbor
(nn) or next-nearest neighbors (nnn) were taken into account.
In the case of nn, one single parameter J0 defines the systems;
for the vacancy system, eight interactions are cut, and in the
transition state, another seven are cut while six are reformed
(representing the six nearest neighbors of the jumping atom).
In the case of nnn interactions, an expression is needed for the
interaction strength as a function of distance J (r). We used the
relation in Ref. [28],

Jij (rij ) = J0A

(
1 − rij

rc

)3

�(rc − rij ). (20)

Here rc = 3.75 Å and � is the Heaviside step function. The
normalizing factor A was introduced by us to make the
cohesive energy equal to 4J0, as in the nn model. Structural
relaxation was not considered in the spin lattice simulations.

For most MC simulations, a system of 8 × 8 × 8 lattice
sites was used. Typically, 106 MC sweeps were used for
thermalization, and 107 sweeps for data collection. In the
classical simulations, spins were updated by random reori-
entation, while in the QM simulations, the loop algorithm [29]
was used. The calculated critical temperature was obtained as
TC = 2.05J0/kB in the classical nn bulk system, in agreement
with previous studies [30].

IV. RESULTS

A. First-principles calculations of diffusion parameters

Calculated vacancy formation and migration activation
enthalpies are presented in Table I for the ferromagnetic
and the paramagnetic states. The ferromagnetic calculations
are in general agreement with previous calculations. Ex-
perimental data on vacancy formation are based mainly on
Doppler-broadening positron annihilation studies for which
the contribution from vacancies is very difficult to distinguish
in the ferromagnetic region. Therefore, the experimental value
of H FM

f is somewhat uncertain. The migration enthalpy, on
the other hand, is measured by electrical resistivity changes
in annealing experiments at T ≈ 400 K, i.e., well into the
ferromagnetic region. The current result (H FM

m = 0.69 eV) is
in good agreement with the recent analysis by Tapasa et al.
[31], as well as with previous first-principles calculations
[6,7,32,33].

By averaging over randomly generated spin structures we
estimated the paramagnetic vacancy formation and migration
enthalpies H PM

f and H PM
m according to Eq. (3) and (4), and

the paramagnetic migration energy QPM according to Eq. (5).
The distributions of energies in the respective cases are shown
in Fig. 1, where Gaussian kernel smoothing with a standard
deviation of 0.3 eV was applied. The enthalpies calculated
for the PM state can be compared with previous results based
on spin-wave calculations. The vacancy migration enthalpy
agrees with that in Ref. [7], while our estimate of the vacancy
formation enthalpy is significantly lower than that in Refs.
[7,26].

There are multiple peaks seen in the energy distributions in
Fig. 1. At this stage, it is not clear if this is due to statistical
fluctuations or if there is any physical significance to the peaks.
In the latter case, it would probably be linked to the local spin
structure around the vacancy and transition state, respectively.

B. The electronic contribution

In earlier studies of vacancy formation and migration in the
group-VI metals, the electronic contribution to the activation
enthalpies was shown to play an important role [35]. In the
present study, this contribution was computed based on the
0 K density of states as described in Sec. III A. For the bulk
system, we find that the calculated electronic contribution
to the thermal capacity is well described by a second-order

TABLE I. Calculated diffusion activation parameters compared with other calculations and experimental data when available. Energies are
in eV, entropies in kB, attempt frequency ν∗

0 in THz, and the diffusion prefactor D0 is given in m2/s.

Ferromagnetic Paramagnetic

Hf Hm Q Sf ν∗
0 D0 Hf Hm Q

54 atoms 2.15 0.69 2.84 4.37 12.7 5.85 × 10−5 1.54 ± 0.16 0.40 ± 0.17 1.97 ± 0.2
128 atoms 2.17 0.70 2.87 4.83 11.6 8.46 × 10−5

Experimental data
Ref. [34] 2.0 ± 0.2 2.87 1.79 ± 0.10
Ref. [31] 0.65 2.3 × 10−5

Other theoretical results
Ref. [26] 2.26 1.77
Ref. [7] 2.13 0.64 2.77 1.98 0.43 2.41
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FIG. 1. (Color online) The distribution of energies in the param-
agnetic calculations of (a) the vacancy formation enthalpy and (b)
the vacancy migration enthalpy. The lower panels show (c) the bulk
enthalpy per atom and (d) the diffusion activation enthalpy. The results
are based on averaging over 35–40 random spin states, and Gaussian
smearing has been applied for visualization. Solid lines and dashed
lines represent the mean values and median values, respectively, in
each data set.

function cel = c2T
2 with c2 = 2.1 × 10−8 eV/K2. This is in

fair agreement with the fit to experimental data in Ref. [36],
c2 = 3.35 × 10−8 eV/K2, considering the approximations
involved.

For diffusion activation in bcc Fe, we find that the
term stemming from electronic excitations is relatively small
compared to the magnetic contribution in line with findings
in Ref. [6]. We have assumed that the electronic contribu-
tion as calculated here, i.e., Qel = Q2T

2, with Q2 = 1.1 ×
10−7 eV/K2, captures the essential part of the second-order
term of Q(T ).

C. Heisenberg model Monte Carlo simulations

The classical and quantum Heisenberg models were em-
ployed to study the temperature variation of H

mag
f and Qmag.

Starting with the bulk calculations, the magnetic enthalpy per
atom is shown in Fig. 2. The data were scaled so that the
classical disordering enthalpy �hFM→PM corresponded to the
one obtained in the current DFT calculations: 0.20 eV/atom.
From that, the Curie temperature is found to be approximately
1140 K in the case of the quantum MC (QMC) calculations,
i.e., within 10% of the experimental value. The experimental
magnetic enthalpy hmag(T ), as obtained by subtracting other
contributions such as phonons and electronic excitations [36],
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FIG. 2. (Color online) Bulk magnetic enthalpy from classical and
quantum MC simulations. The experimental curve [36] based on heat
capacity measurements is included for reference.

is also inserted in Fig. 2. One notes that the experimental curve
saturates more rapidly above TC compared to the classical
or quantum MC ones, which remain below zero even at
temperatures several times higher than TC. Although such high
temperatures are well into the molten region, it shows that there
is an inconsistency in the current understanding of the separate
effect of spin disordering in Fe.

The difference between the enthalpies obtained in classical
and quantum MC at zero temperature corresponds to the
magnetic zero-point energy, and equals a half of the total
disordering enthalpy. A corresponding term is expected also
for the defect parameters, and one should be careful to
distinguish between the classical and quantum FM states. In
the latter, magnetic fluctuations are present also at 0 K.

The calculated magnetic vacancy formation enthalpy is
presented in Fig. 3 along with estimates based on the scaling
model, Eq. (13), and the Zener model, Eq. (14). It is seen
that the scaling model describes the enthalpy well up to and
somewhat above TC, while the Zener model gives a somewhat
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FIG. 3. (Color online) The magnetic part of the vacancy forma-
tion enthalpy calculated using MC simulations based on the classical
and quantum mechanical Heisenberg model. Solid and dashed lines
refer to the scaling and shift (Zener) models, respectively.
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FIG. 4. (Color online) The magnetic part of the diffusion activa-
tion enthalpy calculated using MC simulations based on the classical
and quantum mechanical Heisenberg model. Solid and dashed lines
refer to the scaling and shift (Zener) models, respectively.

better description in the PM region, in terms of enthalpy
difference. However, the Zener model becomes nonphysical
in the limit T → 0, which is most clearly seen in the classical
result, where Hf deviates.

We note that the 0 K vacancy formation enthalpy contains
a magnetic zero-point energy term which is negative, i.e.,
the classical enthalpy is larger than the quantum mechanical
one. Since the classical and quantum mechanical results differ
substantially below TC, it is important to distinguish between
the two when first-principles results are compared with
experimental findings. For instance, the current first-principles
results for H FM

f correspond to the classical case, while fits to
experiments include quantum mechanical effects below TC.
We will distinguish between the two cases by the superscript
“cl” or “qm,” respectively.

The calculated magnetic diffusion activation enthalpy
Qmag(T ) is shown in Fig. 4. As seen, within the current model
of distance-dependent interaction parameters Jij , Qmag/H

mag
f

is close to the expected fraction 5/4 discussed in Sec. II.
The Heisenberg model applied here corresponds to the

case γ = 1, i.e., the formation of a vacancy corresponds to
the cutting of the surrounding magnetic interactions, without
further modification of the interactions. Consequently, one
finds that the predicted 0 K vacancy formation energy H

mag
f

equals �hFM→PM, both in CMC and QMC calculations. In
the classical case this follows immediately from considering
the static energy of forming a vacancy. By contrast, typical
results based on DFT calculations or on experimental facts
(see Table I), imply that H

mag
f � 2�hFM→PM, suggesting

that formation of a vacancy is associated with weakening
of the local interactions surrounding it, in addition to the
bond-cutting effect itself.

D. Comparison with experimental diffusion data

Having calculated the ferromagnetic parameters (activation
enthalpies and prefactors), as well as the electronic and mag-
netic contributions, we could in principle compare calculated
and experimental values of D(T ) directly. However, it turns
out that this approach does not lead to a good description

of experimental diffusion rates, neither quantitatively nor
qualitatively. There are a number of reasons for this. First,
as discussed, e.g., in Refs. [10,16], the Heisenberg model does
not describe the magnetic free energy realistically enough,
see also Fig. 2. Instead, we use the fact that the scaling model
describes quite well the magnetic part of the vacancy formation
and migration free energies, in particular it is straightforward
to connect it with static 0 K first-principles results via Eq.
(15). Therefore, we combine Eqs. (2) and (13) and take h(0,τ )
from the bulk magnetic enthalpy as measured experimentally
and parametrized in Ref. [36]. Second, we expect errors in the
calculated parameters QFM and γ , and therefore they are taken
as fitting parameters. The prefactor D0 and the second-order
term Q2, on the other hand, are taken from the current
calculations since the result is less sensitive to uncertainties
in those parameters. For instance, our previous experience
shows that vibrational prefactors are much less sensitive to the
choice of exchange-correlation functional, compared with the
activation energy Q, in the relevant temperature range.

The result of a fit of Eq. (2) to experimental data
in the α phase of Fe is shown in Fig. 5, with Qfit =
2.91 eV and γ fit

a = 4.2. The activation energy is close to the
calculated value in Table I, however one must keep in mind
that the calculated value QFM,cl refers to the classical FM
state. Based on the current DFT calculations, a zero-point
energy of approximately 0.4 eV should be subtracted before a
comparison is made with QFM,qm from experiments.

From the fit we also find �QFM→PM,qm = 0.42 eV, to be
compared with the result from the current DFT calculations,
0.40 eV, where we have used the fact that �QFM→PM,cl =
2�QFM→PM,qm for localized spins with S = 1. Thus, we find
that the experimentally estimated γ fit

a = 4.2 is reasonably
close to the theoretical value found here, γa = 4.0. Using this
theoretical value and fitting Q gives a result which is virtually
identical to that in Fig. 5. However, since there are fairly large
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FIG. 5. (Color online) Experimental diffusion data together with
a two-parameter fit of the current diffusion model (see text). The fit
was done for data in the ferromagnetic α region and slightly above
(T < 1185 K). The deviation between the fitted line and experimental
data in the high-temperature bcc phase (δ-Fe) is within a factor of
3.5, which can be seen as a measure of the quality of the model. The
experimental data can be found in Refs. [37–40].
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statistical uncertainties in our estimate of γa, we prefer not to
use it as a fixed parameter.

In the fit shown in Fig. 5, only data in the α region below
1185 K were used. The deviation between the fitted curve and
experimental data in the bcc δ phase above 1667 K is within a
factor of 3.5, which can be seen as a measure of the quality of
the model.

The role of the Heisenberg model simulations in the current
work is twofold. First, the simulations suggest that the scaling
model can be applied to describe vacancy formation and
diffusion activation. It has the advantage over the Zener model
that the parameter γa can be deduced directly from first-
principles calculations of the disordering enthalpy �QFM→PM,
by Eq. (15). A corresponding relation applies for the formation
enthalpy. Second, the current simulations demonstrate clearly
that the quantum mechanical solution for the spin system, and
the corresponding zero-point magnon energy, substantially
influence the results below TC and must be accounted for.
Specifically, defect formation and diffusion activation energies
obtained in standard DFT calculations are not the same as those
inferred from experimental data. A similar effect exists for
phonon excitations below the Debye temperature TD. However,
since TD is around room temperature in most metals and alloys,
this effect rarely shows up in diffusion data and one can stick
to a classical treatment of the phonon free energy.

V. CONCLUSIONS

The magnetic contribution to the vacancy formation and
migration free energies in bcc Fe has been investigated.
The current first-principles random-spin calculations can
be directly compared with previous spin-wave calculations.
Reasonable agreement is obtained for the magnetic part of
the vacancy migration enthalpy, while the current calculation
gives a somewhat lower value of the corresponding formation
enthalpy. The issue is worth further investigation, especially
since the sum of the two �QFM→PM,qm obtained here corre-
sponds to typical values based on fits to experiments.

Our simulations based on a next-nearest neighbor Heisen-
berg model provide a description of the shape of the magnetic

part of the diffusion activation free energy, in the temperature
range of the FM to PM transition. However, this simplified
model does not take into account that the effective spin
interactions are long ranged and also dependent on the global
spin order. Therefore, a semiempirical model has been used in
this work to fit experimental self-diffusion data. The result of
this fit can be compared with first-principles estimates of the
magnetic part of the diffusion activation enthalpy, specifically
�QFM→PM via Eq. (15). Although the statistical uncertainty in
the current theoretical estimate of �QFM→PM is substantial, a
coherent picture still emerges. The shift in activation enthalpy
between the FM and the PM states is roughly four times the
bulk disordering enthalpy, i.e., γa ≈ 4. Within a Heisenberg
model with fixed spin interactions, this value is expected to be
roughly 1. Therefore, we draw the conclusion that the local spin
interactions are weakened when the vacancy or the activated
state are formed. It would be of great interest to check this
result against more detailed DFT calculations.

Finally, we point out that the FM vacancy formation en-
thalpy, migration enthalpy, and diffusion activation enthalpy all
contain a contribution due to quantum mechanical fluctuations,
also at 0 K (the zero-point magnon energy). This term needs
to be accounted for when DFT calculations are compared
with experiments. Our estimate is that the diffusion activation
enthalpy, as well as the vacancy formation enthalpy, calculated
from first-principles DFT within the GGA, are underestimated
with about 10%. This would be in line with what has been
found in other metals such as Al and Mo [5,41].
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