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Weak phase stiffness and nature of the quantum critical point in underdoped cuprates
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We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be
quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal”
pseudogap phase without any free parameter. In the prototypical (La1−xSrx)2CuO4, a kinetics-driven d-wave
superconductivity is obtained above the critical doping δc ∼ 5.2%, below which complete loss of superfluidity
results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass
enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Finally,
a striking mass divergence is predicted at δc that dictates the occurrence of the observed quantum critical point
and the abrupt suppression of the Nernst effects in the nearby region.
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Considering the enormous amount of research activities de-
voted to the problem of high-Tc superconductivity, it is hardly
an exaggeration to regard it as one of today’s most important
unsolved problems in physics. Specifically in the underdoped
region of cuprates, it is now commonly accepted that the low
carrier density in the system necessarily leads to strong phase
fluctuation of the superconducting order parameter [1,2] due to
its conjugate nature to the number fluctuation. Consequently,
the transition temperature Tc is suppressed significantly below
the pairing energy scale that controls all essential aspects
of the standard theory of superconductivity [3]. The crucial
role of phase fluctuation [2,4,5] has recently gained strong
support from various experiments [6–9] in both the low-
temperature superconducting state and the “normal state”
above the transition temperature Tc, and is likely tied closely
to many of the exotic properties [2,10–14] in this region.

Nonetheless, besides this general understanding, several
key issues remain puzzling in the underdoped region. In
spite of an uneventful evolution of the one-particle spectral
function [13], the superfluid density reduces dramatically
near the observed quantum critical point (QCP) [15] (at the
critical doping δc ∼ 5.2% for doped La2CuO4), below which
superconductivity ceases to exist even at zero temperature.
The current consideration of phase fluctuation [2] would only
indicate a softer phase at lower carrier density, but offers no
explanation for the complete suppression of superconductivity
at zero temperature at δ < δc. Particularly in La2CuO4, δc

is quite far away from the antiferromagnetic (AF) phase
boundary, rendering the common consideration of competing
order unsatisfactory. This vanishing of superconductivity
below δc, the nature of the QCP, the dramatic reduction of
superfluid density nearby, and the controlling factor of the
value of δc, all remain challenging to our basic understanding.

Perhaps the most puzzling observation is the sudden
suppression of the observed Nernst effect at T > Tc around the
same critical doping δc [16]. This indicates that not only the
long-range phase coherence, but also the shorter-range phase
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coherence is lost near the QCP, a phenomenon unexplainable
via simple fluctuation scenario, for example due to low
dimensionality.

In this Rapid Communication, we demonstrate that these
puzzles can be quantitatively understood in the strong binding
limit of local pairs of doped holes. We obtain the zero-
temperature underdoped phase diagram with no need for
any free parameter, other than the experimental one-particle
spectral function of the pseudogap “normal” state. A kinetics-
driven d-wave condensate is found at δ > δc, with a largely
enhanced bosonic mass, m∗ > 40me. In great contrast, ground
states consisting of fluctuating p-wave pairs are found at
δ < δc, incapable of sustaining a condensate. At δ = δc, a mass
divergence results from the degeneracy of local d- and p-wave
symmetry, dictating the presence of the QCP. Correspondingly,
near the QCP δ � δc, the diverging mass explains the puzzling
dramatic reduction of phase stiffness in both long range
and shorter range. Our study provides a simple paradigm to
the behavior of local pairs in underdoped cuprates, and is
expected to inspire further experimental confirmations, as well
as re-interpretation of existing experimental observations.

Conceptually, a phase-fluctuation dominant superconduc-
tivity hosts relatively negligible amplitude fluctuation of the
order parameter at low energy/temperature. This implies that
the effective low-energy Hamiltonian for the charge and
pairing channels must have integrated out all pair-breaking
processes to conserve the amplitude of the order parameter,
for example, as in the x-y model [17]. The higher-energy
pairing scale should then manifest itself only through a strong
“pair-preserving” constraint of the low-energy Hamiltonian.
This is in perfect analogy to the replacement of repulsion
U of the Hubbard model by a “no double occupancy”
constraint in its lower energy counterparts, say the t-J model.
Consequently, an unconventional paradigm for the low-energy
physics emerges at T � Tc, which differs completely from the
emphasis of amplitude fluctuation in the standard theories. In
this physical regime, the details of the pairing mechanisms (AF
correlation [5,18–21], spin-fluctuation [22], or formation of
bipolaron [23]) are no longer essential. Instead, the physics is
now dominated by the effective kinetic energy that controls the
phase coherence. Since only one energy scale is essential in this
regime, the low-energy physics should be universal and simple.
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FIG. 1. (Color online) Doping dependent band dispersion ob-
tained from experiment [24,25] [dots in (a)], Eq. (1) [lines in
(a)], and the t-J model [26] (b), with chemical potential at zero.
(c) Corresponding τ , τ ′, and τ ′′ in the hole picture. (d) Doping
dependence of the effective mass of holes m∗

h in the major directions
indicated by the arrows in the inset.

Below, we proceed to (1) obtain the effective kinetics of
the doped holes from the experimental one-particle spectral
function in the “normal state” pseudogap phase, (2) derive
the effective motion of tightly bound pairs of holes under the
pair-preserving constraint, and (3) solve the resulting bosonic
problem to address the physical issues quantitatively without
any free parameter.

(1) Effective kinetics. The dots in Fig. 1(a) give the
dispersion of the main features in the experimental spectral
functions of the “normal state” of (La1−xSrx)2CuO4 in the
pseudogap phase, obtained by angular-resolved photoemission
spectroscopy (ARPES) [24,25]. One notices immediately that
the dispersion is strongly doping (δ) dependent, especially
near (π,0). Judging from the close resemblance to the
published t-J model solutions [26] in Fig. 1(b), this strong
band renormalization likely originates from the competition
between the bare kinetic energy and the AF interaction [27].
The effective kinetics of carriers can then be captured by the
irreducible kinetic kernel τ ≡ G−1

L − G−1 (in matrix notation
and in the hole picture) through the measured one-particle
propagator G and a reference nonpropagating Green’s function
GL, defined with a single pole at the central energy of the
band. The real part of the off-site elements of τ thus controls
the propagation of the carriers, just like the effective hopping
matrix elements. The imaginary part of τ gives the decay of
carriers and becomes large at ω > 0.3 eV where the spectral
function is broad and the quasiparticle description no longer
applies. Since only the average motion at long time scale is of
significance in this study, we will drop the imaginary part and
represent the average kinetics via

H =
∑
ii ′

τii ′c
†
i ci ′ + H.c. (1)

for simplicity [28]. In this case, τii ′ is equivalent to those from
a tight-binding fit of the experimental dispersion.

Note that this Hamiltonian is only meant to capture
the average effective kinetics of the fully renormalized

one-particle propagator. It does not contain information of the
pairing interaction that connects to the high-energy sector. The
use of the Hamiltonian representation here is merely for better
clarity of the underlying physics [28]. Furthermore, τ is to be
distinguished from the “bare” hopping parameter t commonly
used in the Hubbard or t-J model, as τ have fully absorbed
the effects of interactions and constraints. Finally, the actual
carriers do not need to be quasiparticles, and their “diffusive”
nature near (π,0) can be included by keeping the full τ in the
study [28,29], and all our physical conclusions below would
remain.

The resulting doping dependent first, second, and third
neighbor kernels, τ1, τ ′, and τ ′′, are shown in Fig. 1(c), and
correspond to dispersion curves [lines in Fig. 1(a)] comparable
to the experimental ones. Interestingly, as δ decreases, τ ′′ is
found to increase steadily approaching the value of τ ′, and then
exceeds τ ′ right at δc! This is apparently not a coincidence,
and reveals an important clue to the nature of the QCP to
be discussed below. Due to the strong AF correlation, the
fully dressed τ1 is negligibly small at the underdoped regime
and will be dropped from our further analysis. As a reference,
Fig. 1(d) also shows a weakly doping dependent effective mass
of the doped holes, m∗

h, for δ > 5.2% in three major directions,
consistent with the current lore [30].

(2) Motion of tightly-bound pairs. Since it is unlikely that
doped holes can doubly occupy the same site in a weakly
doped AF Mott insulator, it is reasonable to assume that under
a strong binding, pairs mostly consist of nearest-neighboring
holes. It is thus convenient to employ a bosonic representation
of pairs, b

†
ij = c

†
i↑c

†
j↓, located at neighboring sites i and j

with opposite spin. Such a real-space hole pair can result from
numerous high-energy mechanisms [5,20,21,23], and is to be
distinguished from the real-space singlet pair of electrons in
RVB-like constructions [31].

Now, consider the motion of a single pair of holes (blue and
red filled diamonds) located in the fermion lattice in Fig. 2(a).
Under the pair-preserving constraint, only three potential
destinations (empty diamonds) for each hole are allowed,
two via second neighbor hopping, τ ′, one via third neighbor
hopping, τ ′′. Converting to the lattice of bond-centered pairs
in Fig. 2(b), one finds a checkerboard lattice consisting of two
nonequivalent sites, each connecting to four first neighboring
sites via τ ′, but to only two second neighboring sites via

unit cell 

τ' 

τ' τ" 

τ" 
τ' 

(a)  (b)  

FIG. 2. (Color online) Illustration of kinetic processes of a pair of
holes (filled diamond) to its six allowed destinations (open diamonds)
under the “pair-preserving” constraint (a), through τ ′ (solid lines) and
τ ′′ (dashed lines). The same is equivalently represented by ellipsoids
denoting a pair and its allowed six neighbors (b). The yellow area
denotes the “extended hard-core constraint” that excludes other pairs.
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τ ′′. This pivoting motion of the paired holes can then be
represented by

Hb =
∑
ii ′j

τii ′b
†
ij bi ′j + H.c. (2)

The same motion was previously derived via a rigorous
separation of many-body Hilbert subspace of paired holes [32].
Optionally, one can also include both the real and imaginary
part of τ via the equation of motion, or the ladder dia-
grams [28,29]. Although inclusion of the imaginary part of
τ introduces broadening of the bosonic propagator at higher
energy, it has little effect on the condensation taking place at
low energy.

Note that the hole pairs b are under a strong “extended
hard-core constraint”: b

†
ij b

†
i ′j ′ = 0 if i = i ′ or j = j ′. This is

inherited from the Pauli exclusion principle of the original
fermion operators and that double occupancy of electrons are
not allowed in the low-energy sector. Indicated by the yellow
area in Fig. 2(b), this constraint forbids occupation by another
pair at any of the six potential hopping destinations of a pair.
It can be considered as an infinite short-range repulsion that
determines the bare scattering length between pairs, and is
responsible for stabilizing the bosonic system against phase
separation [33].

(3) Results. We diagonalize Eq. (2) first without the
extended hard-core constraint, using a unit cell containing
four sites shown in Fig. 2(b). This choice explicitly allows
one s-, two p-, and one d-wave superposition within the
unit cell, and equates the doping level per unit cell in this
lattice and that in the standard fermion lattice. Figure 3(c)
illustrates the resulting band structure in the superconducting
phase at doping δ = 15% > δc. It shows that at low enough
temperature a Bose-Einstein condensate (BEC) would take
place at a single minimum at momentum q = 0, with a pure
d-wave symmetry (red color). As in standard dilute bosonic
systems, one thus expects a d-wave superfluid with finite
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FIG. 3. (Color online) The band dispersion of the hole pairs
without the extended hard-core constraint, at δ < δc (a), δ = δc (b),
and δ > δc (c). Panels (d) and (f) illustrate the dominant kinetic
process and the Wannier function corresponding to the lowest band
in (a) and (c) respectively. (e) Strongly enhanced effective mass of
the pairs m∗ and the mass of the holes, m∗

h.

stiffness, once a scattering length (derived primarily from the
extended hard-core constraint) is switched on.

The local d-wave structure of the pair is better illustrated
in real space via the corresponding Wannier function in
Fig. 3(f), computed from the Fourier transform of the Bloch
functions of the lowest band. The low-energy pairs has clear
d-wave symmetry with nodes along the (π,π ) directions of
the standard Fermion lattice, in perfect agreement with the
experimental observations [13,34,35]. [Notice in Fig. 2(a)
that our fermionic lattice is rotated by 45◦ from the usual
convention.]

We stress that our resulting local d-wave symmetry is
completely driven by the fully screened kinetic energy [36,37].
It originates from the dominance of positive τ ′ of the local pair,
which prefers energetically opposite sign of the wave function
across first neighbors, thus favoring a d-wave symmetry [see
Fig. 3(f)]. In comparison, the positive τ ′′ favors the opposite
sign across the second neighbors, thus p-wave symmetry [see
Fig. 3(d)]. Therefore, τ ′ and τ ′′ compete by lowering the band
energy of d and p bands, respectively.

This explains the long-standing puzzle of the lack of
superconductivity at lower doping (δ < δc). Since in this
region τ ′′ > τ ′ [cf. Fig. 1(c)], Fig. 3(a) shows that a local
p-wave pair has lower energy than d-wave pairs. Furthermore,
in the checkerboard lattice in Fig. 2(b), the parity of p states
dictates a line of degeneracy (green flat band in Fig. 3) from
(0,0) to (π,π ). The pairs can therefore populate any arbitrary
state along this line without ever forming a BEC. The system
is thus composed of incoherent p-wave pairs, an effect of
quantum phase fluctuation beyond the original consideration
of thermal phase fluctuation [2].

The competition between d wave and p wave also offers
a natural explanation of the dramatic phase softness and the
low superfluid density of the underdoped cuprates. Indeed,
even near the optimal doping (δ ≈ 15%), the comparable
value of τ ′′ and τ ′ leads to a large effective mass of the pair
m∗ = (�2/l2)d2εk/dk2 ≈ 12m∗

h ≈ 59me (l being the lattice
constant). This gives a rather long penetration depth λ =√

m∗c2

4πe2ns
≈ 7000 Å (taking ns ∼ δ per unit cell), in reasonable

agreement with the experimental value [38]. Furthermore, as
δ decrease toward δc, τ ′′ grows to the value of τ ′, reducing
the separation of the d band and the p band, and in turn
flattening the d band. The effective mass of the d band thus
increases significantly [Fig. 3(e)], consequently giving rise to
the observed very small phase stiffness.

This analysis reveals the simple yet exotic nature of the
observed QCP at the end of the underdoped superconductivity
region δc = 5.2%: It is dictated by the diverging effective mass
of the local pairs [Fig. 3(e)]. At this point τ ′ = τ ′′ and the
d-wave and p-wave pairs become locally degenerate and the
d band is thus completely flat, as shown in Fig. 3(b). Since
the effective mass now diverges, the pairs can no longer
propagate and align the phase to develop a condensate. In
essence, it is the perfect quantum interference between τ ′ and
τ ′′ that renders the local pairs immobile, and in turn disables
the phase coherence of superconductivity.

This result also explains nicely the puzzling dramatic
suppression of diamagnetic response [39] and Nernst
signal [16] near δc. Indeed, within phase fluctuation scenario,
a divergent mass might be the only way to completely
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FIG. 4. (Color online) Experimental supports of predicted mass
divergence via (a) nonlinear doping dependence of inverse penetration
depth and (b) nonlinear correlation between inverse penetration depth
and transition temperature Tc.

suppress the shorter-range coherence responsible for a strong
diamagnetic response.

Our predicted mass divergence near QCP is actually
strongly supported by experimental measurements of pen-
etration depth λ of the underdoped YBa2Cu3Oy samples.
Figure 4(a) shows that over the entire underdoped region,
the measured λ−2 [40] deviates significantly from the sim-
ple λ−2 ∝ δ relationship to be expected with a constant
effective mass. On the other hand, our theory with large
doping-dependent effective mass reproduces very nicely the
experimental observation. An even more direct evidence is
provided by the recent measurement on the extremely under-
doped YBa2Cu3Oy samples near the QCP [7]. The observed
relationship between low-temperature λ−2 and Tc in Fig. 4(b)
shows a strong nonlinear dependence. In fact, the same
behavior has also been observed via mutual inductance [41].
The zero slope at λ → 0 can be interpreted as an indirect
evidence of the mass divergence, and our theory reproduces
very nicely the experimental observation [42].

Our analysis has a wide scope of implications in the
electronic structure of the underdoped cuprates that deserve
further investigations. As δ decreases toward δc, the diverging
mass makes perfect sense to the observed dramatic enhance-
ment of the isotope effect [43], as coupling to the slower
lattice degree of freedoms is more effective for heavier pairs.
Similarly, together with mass enhancement, the proximity to
the incoherent local p wave [cf. Fig. 3(c)] allows the observed
increase of residual specific heat [44]. Given their finite
amplitude along the d-wave nodal directions [cf. Figs. 3(d)

and 3(f)], the enhanced fluctuation to local p-wave pairs also
can explain the recently observed pseudogap along the nodal
direction [45] in heavily underdoped samples. At δ < δc,
the infinite degeneracy of the incoherent p wave along the
antinodal directions [cf. Fig. 3(a)], with their infinite mass
and unusually enhanced scattering, gives a new paradigm
to the insulating [46] glassy [47] electronic structure and
the non-Fermi-liquid transport [48]. Our result suggests that
the system is glassy not only in the spin channel, but also
in the charge and pairing channel as well. Obviously, our
theory is consistent with the observed charge 2e quanta across
the superconducting-insulating transition [49], which raised
a serious issue: How can a system of charge 2e bosons be
insulating? If it is just Anderson localization, how can δc not
present strong sensitivity to disorder? Our result provides a
long-sought disorder-insensitive alternative paradigm. Finally,
it is curious to notice, across δc, the same 45◦ rotation in the
directions of the dominant hopping, the nodal structure of local
pairs, and the observed stripe correlation [50].

In conclusion, we demonstrate that all the key features of
superconductivity in the underdoped cuprates can be described
quantitatively in the strong binding limit, without the use of
any free parameter. The d-wave symmetry is found to originate
from the renormalized kinetic energy, and the observed
superconductivity can be understood as a superfluid of dilute
real-space hole pairs. Our result explains the lack of super-
conductivity at δ < δc due to quantum fluctuation associated
with incoherent local p-wave pairs. In the underdoped regime,
a large effective mass enhancement of the hole pairs is found
responsible for the observed weak phase stiffness. Finally, the
observed δ = 5.2% QCP is found dictated by the divergence of
the effective mass of the hole pairs, which also make sensible
the dramatic reduction of diamagnetic response (the Nernst
effect) near the QCP. These successes support strongly a simple
description of bosonic condensate for the underdoped cuprates
and enable further reconciliation of seemingly contradicting
experimental conclusions in the field.
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