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Quantum critical scaling for a Heisenberg spin-1
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We demonstrate quantum critical scaling for an S = 1/2 Heisenberg antiferromagnetic chain compound
Cu(C4H4N2)(NO3)2 in a magnetic field around saturation, by analyzing previously reported magnetization
[Y. Kono et al., Phys. Rev. Lett. 114, 037202 (2015)], thermal expansion [J. Rohrkamp et al., J. Phys.: Conf. Ser.
200, 012169 (2010)], and NMR relaxation data [H. Kühne et al., Phys. Rev. B 80, 045110 (2009)]. The scaling of
magnetization is demonstrated through collapsing the data for a range of both temperature and field onto a single
curve without making any assumption for a theoretical form. The data collapse is subsequently shown to closely
follow the theoretically predicted scaling function without any adjustable parameters. Experimental boundaries
for the quantum critical region could be drawn from the variable range beyond which the scaled data deviate from
the theoretical function. Similarly to the magnetization, quantum critical scaling of the thermal expansion is also
demonstrated. Further, the spin dynamics probed via NMR relaxation rate 1/T1 close to the saturation is shown
to follow the theoretically predicted quantum critical behavior as 1/T1 ∝ T −0.5 persisting up to temperatures as
high as kBT � J , where J is the exchange coupling constant.
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A quantum critical point (QCP) is a zero-temperature
singularity in the phase diagram of matter forming the border
between two competing ground states [1]. It is driven by a
nonthermal parameter such as a magnetic field, pressure, or
chemical substitution, and characterized by strong quantum
fluctuations. While a QCP is defined strictly at zero tempera-
ture, the interplay between quantum and thermal fluctuations
gives rise to a so-called quantum critical region at finite
temperatures in an extended parameter space (illustrated by
the yellow fan-out area in Fig. 1). This intriguing region
is characterized by the absence of energy scales other than
temperature as well as the corresponding critical properties of
physical observables, e.g., correlation or response functions,
which culminate into scaling behavior and universality [1–4].
Such quantum criticality has been experimentally observed
or inferred in diverse systems including magnetic insula-
tors [5–7], organic conductors [8], heavy fermions [9,10],
cuprates [11], pnictides [12], and cold atoms [13], and is widely
believed to underpin exotic phenomena like unconventional su-
perconductivity. However, understanding quantum criticality
through connecting microscopics to experimental observation
largely remains challenging [1,8–12,14].

Quantum magnets are an ideal playground in that respect
owing to their simple and well-defined Hamiltonian [15]. In
particular, one-dimensional (1D) spin systems for which exact
solutions are available may serve as a test bed for quantita-
tive comparison between theories and experiments [16–19].
Indeed, quite a few excellent quasi-1D quantum magnets
having accessible critical field strength, i.e., relatively small
exchange coupling strength, have been synthesized in single
crystals [20,21], which triggered activities for experimentally
probing various field-induced quantum criticality [22–25].

Arguably the simplest model to capture quantum criti-
cality, a nearest-neighbor S = 1/2 Heisenberg antiferromag-
netic chain, is realized in the organometallic compound
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Cu(C4H4N2)(NO3)2, CuPzN for short [26,27]. This material
has a relatively small exchange constant J/kB = 10.3 K along
the chain direction (crystallographic a axis of an orthorhombic
structure) [27], which results in a laboratory-accessible satura-
tion field Hs = 2J/gμB � 13.9–15 T depending on the field
orientation [28–30]. Its ground state is a Tomonaga-Luttinger
liquid (TLL) for H < Hs and a saturated ferromagnet with
a gap for H > Hs , leaving a QCP at H = Hs (see Fig. 1).
The field-induced quantum criticality of CuPzN has been
studied by using various experimental techniques including
magnetization [25], thermal expansion [31], and thermal
transport [32] measurements. The most recent high-precision
magnetization measurements [25], for instance, demonstrated
a theoretically predicted power-law behavior at Hs , (Ms −
M) ∝ T β , where Ms is the saturated magnetization, finding
critical exponent β = 0.48(1) in excellent agreement with the
theoretical β = 0.5 [33,34].

However, despite the high quality data being available, we
find that for this simple spin-chain model the most dramatic
manifestation of quantum criticality, namely, quantum critical
scaling, has not been explored. Such scaling is a direct
consequence of the absence of energy scale other than tem-
perature such that the measured quantities, when scaled by the
temperature to a certain universal power, collapse onto a single
curve for the plot against an appropriate scaling variable [2–4].
To fully assess the universality of a quantum critical region
requires a demonstration of this scaling behavior.

Here we analyze the reported magnetization [25] and
thermal expansion [31] data, and successfully demonstrate
excellent scaling behavior over a wide range of temperature
and field around Hs . The collapsed magnetization data closely
follow the theoretical scaling function for a certain range,
which allows us to draw experimental boundaries of the
quantum critical region. Subsequently, we revisit the reported
NMR relaxation data [35] to show that the spin dynamics close
to Hs display the theoretically predicted power-law behavior
for a quantum critical region, up to rather high temperatures
kBT � J .
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FIG. 1. (Color online) Phase diagram of CuPzN where crosses
represent the magnetization M(T ) maxima as reported in Ref. [25].
Dotted and dash-dotted lines stemming from the saturation field rep-
resent the theoretical M(T ) maximum and the gap size, respectively.
Squares and circles represent the proposed experimental boundaries
of the quantum critical region (see the text). Inset shows a zoom-in
close to the saturation field.

Figure 2(a) shows (Ms − M)/H as a function of tempera-
ture in different fields H ‖ b, extracted from Ref. [25] where
they reported Hs = 13.97(6) T. To test for quantum critical
scaling, the data should be filtered such that those belonging to
the neighboring TLL and ferromagnetic phases are excluded.
The crossover temperature T ∗ separating a TLL at low temper-
atures from a high-temperature phase is marked by a cusplike
maximum in M(T ) for H close to Hs [36], which smoothly
connects to a broad M(T ) maximum at lower fields charac-

teristic of the development of antiferromagnetic correlations
in a spin chain [37]. These M(T ) maxima (crosses in Fig. 1),
close to Hs in particular, were shown to closely follow the
theoretical prediction kBT ∗ = 0.76328gμB(Hs − H ) [25,36]
presented by a dotted line in Fig. 1. This leads us to use for
H < Hs only the data belonging to T > T ∗. On the other side
of the phase diagram, the gap size � in the ferromagnetic
phase scales linearly with the field difference from Hs , i.e.,
� = gμB(H − Hs) [37], as presented by the dash-dotted line
in Fig. 1. We therefore use for H > Hs only the data belonging
to kBT > �. Lastly, we used only the data for kBT < J

to exclude thermal paramagnetic phase [gray background in
Fig. 2(a)]. The data set on a yellow background in Fig. 2(a)
corresponds to the filtered ones using the reported Hs [25].

We perform a data collapse without making any assumption
for a theoretical scaling function. A minimal form is assumed
as

Ms − M = T β�

(
gμB(Hs − H )

kBT λ

)
. (1)

The parameters β, λ, and Hs are determined by fitting the
data to an arbitrary function � represented by a third-order
polynomial with free parameters. We obtained as best fit λ =
0.98(2), which indicates that gμB(Hs − H ) linearly scales
with temperature. This is a signature of underlying quantum
criticality [2,34]. The obtained best fit β = 0.465(5) and
Hs = 14.00(3) T also agree with the temperature exponent for
Ms − M at Hs and the reported Hs value, respectively [25].
The inset of Fig. 2 shows a slice of the color map of goodness
of fit, defined by the residual sum of squares divided by the
number of degrees of freedom, as a function of β and λ at the
best fit Hs . Figure 2(b) plots (Ms − M)/T β against gμB(Hs −
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FIG. 2. (Color online) (a) (Ms − M)/H as a function of temperature at different fields, taken from Ref. [25]. The data on the blue and
green background belong to the ferromagnetic and TLL phases, respectively. The data set on a yellow background are used for data collapse
and scaling analysis. (b) The data collapse when Ms − M scaled by T β is plotted against a variable gμB(Hs − H )/kBT λ with λ = 1, where
the parameters were obtained by fitting the collapsed data to a third-order polynomial. Inset shows a slice of the color map of goodness of fit
at the best fit Hs as a function of β and λ. Solid line is the theoretical scaling function [Eqs. (2) and (3) in the text]. (c) The data collapse for
H > Hs and (d) for H < Hs
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H )/kBT λ using the best-fit parameters while setting λ = 1.
We find that the data accurately collapse onto a single curve
highlighting the scaling behavior. Moreover, the data collapse
is found to persist far beyond the fit range, as shown in
Figs. 2(c) and 2(d) for the H > Hs and H < Hs ranges,
respectively.

Next we compare the data collapse to the existing the-
ory [34]. The magnetization close to a field-induced QCP with
the dynamical exponent z = 2, i.e., quadratic dispersion, for a
Heisenberg antiferromagnet of dimension d < 2 is predicted
to follow the scaling form

Ms − M = gμB

(
2kBT

J

)β

M(μ/kBT ), (2)

where μ ≡ gμB(Hs − H ) plays the role of chemical potential
and the exponent β = d/2 [34]. In a 1D dilute magnon
limit close to Hs , mapping of interacting magnons onto free
fermions leads to the expression [33,34]

M = 1

π

∫ ∞

0

1

ex2−μ/kBT + 1
dx. (3)

The solid line in Figs. 2(b)–2(d) represents the theoretical
scaling function Eq. (3). We find that the collapsed data almost
perfectly follow the theoretical function with no adjustable
parameters, which is a clear experimental confirmation [38] of
the hypothesis coined as the zero scale-factor universality [34].

While the data collapse extends well beyond the fit range,
the data begin to show gradual deviation from the theoretical
function when moved sufficiently away from Hs . This is
shown in Figs. 2(c) and 2(d) for H > Hs and H < Hs ,
respectively. The deviation for μ/kBT � −1 [Fig. 2(c)]
reflects the opening of the gap by entering a nonuniversal,
ferromagnetic phase. On the other hand, the collapsed data for
H < Hs [Fig. 2(d)] still accurately fall on a single curve up to
the highest measured μ/kBT ∼ 3 × 102 despite a systematic
departure from the theoretical curve for μ � kBT . The data
for μ/kBT 
 1 belong to the TLL which itself is genuinely
a quantum critical state. However, TLL belongs to a different
universality class having a linear dispersion, i.e., z = 1, of
which quantum criticality including scaling behavior has been
widely investigated [5,17,24,39–41]. By locating the variable
range beyond which the data begins to show deviation from
the theoretical curve by 10%, for instance, we can draw
experimental boundaries of a quantum critical region as shown
in Fig. 1 by squares for H > Hs and circles for H < Hs . It may
be noteworthy that the scaling behavior for H > Hs persists
down to lower temperatures far below the gap size.

We further test quantum critical scaling by examining the
thermal expansion α. Figure 3(a) shows α(T ) at different
H ‖ b, taken from Ref. [31], where the inset shows the data set
filtered according to the same criteria as for the magnetization.
Figure 3(b) shows α scaled by T β against gμB(Hs − H )/kBT λ

where β, λ, and Hs were obtained by fitting the collapsed
data to a third-order polynomial. Again, the data collapse
is excellent with the best fit λ = 0.97(15) � 1 witnessing
quantum criticality, the β = −0.53(8) in agreement with the
theoretical −0.5 [42], and Hs = 13.89(9) T being consistent
with the reported value [25,31]. Similarly to the magnetization,

0 0.5 1 1.5
−4

−3

−2

−1

0

1

 T (K)

α
 (1
0−
6 /
K
)

 

 

 13.3 T
 13.5 T
 13.6 T
 13.7 T
 13.8 T
 13.9 T
 14 T
 14.1 T
 14.2 T
 14.4 T
 14.6 T
 14.8 T
 15 T

0 0.5 1 1.5

−3

−2

−1

0

1

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1.5

−1

−0.5

0

0.5

1

(a)

(b)

λ

β

-0.6

1.210.8

-0.5

-0.4

FIG. 3. (Color online) (a) Thermal expansion α as a function of
temperature at different fields, taken from Ref. [31]. Inset displays the
filtered data set used for the data collapse and scaling analysis. (b) The
data collapse by plotting α scaled by T β against a variable gμB(Hs −
H )/kBT λ. The parameters β and λ as well as Hs were obtained from
the best fit of the collapsed data to a third-order polynomial. Inset
shows a slice of the color map of goodness of fit at the best fit Hs as
a function of β and λ.

the data collapse extends far beyond the fit range (yellow
background).

Now we turn our attention to the spin dynamics near
Hs probed via NMR relaxation rate 1/T1 measurements.
Figure 4(a) reproduces the temperature dependence of
13C 1/T1 in H = 13.80 T, taken from Ref. [35]. This field value
corresponds to 0.94Hs for the given orientation, i.e., H ⊥ a

and 50◦ from b to c [35,43]. NMR 1/T1 probes local electron
spin correlations in the low energy limit, and a power-law
behavior 1/T1 ∝ T θ is expected for a gapless, quantum critical
region [2,7,16]. We tried to fit the data to the power law while
varying the upper bound on the included temperature range.
The inset of Fig. 4(a) shows the goodness of fit of which the
minimum is obtained for the T � 20 K range. The solid line
in Fig. 4(a) is the corresponding best-fit result, which yields
θ = −0.50(2).

Theoretically, scaling arguments for a 1D QCP with z =
2 leads to 1/T1 ∝ T −0.5 [44]. Our fit result perfectly agrees
with this theoretical form. Meanwhile, the 1/T1 data have
been originally treated within the framework of TLL with the
help of field-theoretic calculations [43]. A TLL as a gapless
quantum critical state supports similarly a power-law 1/T1

behavior [16,41,45–51]. The corresponding exponent θ of a
TLL of quantum magnets is a function of M (and thus H ) that
effectively controls the spinon interactions [16]. When the
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FIG. 4. (Color online) (a) 13C NMR relaxation rate 1/T1 as a
function of temperature at H = 0.94Hs , taken from Ref. [35]. Solid
line is the best fit, θ = −0.50(2) for 0 < T � 20 K, to the power law
1/T1 ∝ T θ . Inset shows the goodness of fit as a function of upper
temperature bound for the fit range. (b) A scaled plot of 1/T1(T )
divided by T −0.5 against kBT/J .

TLL is tuned toward the limit of noninteracting spinons, i.e.,
H → Hs , the exponent approaches a universal value as θ →
−0.5 [41,45,46]. This may leave certain ambiguity whether
the observed θ = −0.5 corresponds to 1D QCP with z = 2
or noninteracting TLL with z = 1. However, for the given
H = 0.94Hs , the upper bound T ∗ for the TLL is expected
only ∼1 K [25,36], whereas the 1/T1 data and the power-law fit

were obtained for T > 1 K up to an order of magnitude higher
than T ∗. Thus we suggest that the observed 1/T1(T ) ∝ T −0.5

dictates the z = 2 QCP.
It was only recently that a fundamental question to what

extent quantum criticality would persist up in temperature [52]
was quantitatively addressed in experiments [7,53]. The
93Nb 1/T1 measurements on a transverse-field quasi-1D Ising
ferromagnet CoNb2O6 showed quantum critical behavior up
to as high a temperature as 0.4 times the underlying exchange
coupling scale [7]. This could be in line with the present
result for CuPzN. Figure 4(b) plots the 1/T1(T ) scaled by
T −0.5 against the normalized temperature kBT/J . This plot
emphasizes that the power law or quantum criticality persists
up to a temperature as high as kBT � J , being consistent with
the previous thermodynamic measurements of magnetization
and specific heat [25].

To conclude, by revisiting the existing experimental data,
we could demonstrate quantum critical scaling and define the
quantum critical region for a spin-chain compound CuPzN
around saturation. The scaling behavior for magnetization
and thermal expansion was demonstrated without making an
assumption for a theoretical function. The collapsed magneti-
zation data closely follow the theoretical scaling function of
the zero scale-factor universality for z = 2 for an extended
variable range, which allows us to draw the experimental
boundaries of the quantum critical region. The spin dynamics
close to the saturation probed via NMR relaxation display the
theoretically predicted power-law behavior characteristic of
quantum criticality up to as high a temperature as kBT � J .
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[49] B. Dóra, M. Gulácsi, F. Simon, and H. Kuzmany, Phys. Rev.

Lett. 99, 166402 (2007).
[50] Y. Ihara, P. Wzietek, H. Alloul, M. H. Rümmeli, Th. Pichler,
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