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Suppression of Pauling’s residual entropy in the dilute spin ice (Dy1−xYx)2Ti2O7
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(Received 12 March 2015; revised manuscript received 7 September 2015; published 5 November 2015)

Around 0.5 K, the entropy of the spin ice Dy2Ti2O7 has a plateaulike feature close to Pauling’s residual entropy
derived originally for water ice, but an unambiguous quantification towards lower temperature is prevented by
ultraslow thermal equilibration. Based on the specific-heat data of (Dy1−xYx)2Ti2O7 we analyze the influence
of nonmagnetic dilution on the low-temperature entropy. With increasing x, the ultraslow thermal equilibration
rapidly vanishes, the low-temperature entropy systematically decreases, and its temperature dependence strongly
increases. These data suggest that a nondegenerate ground state is realized in (Dy1−xYx)2Ti2O7 for intermediate
dilution. This contradicts the expected zero-temperature residual entropy obtained from a generalization of
Pauling’s theory for dilute spin ice, but is supported by Monte Carlo simulations.

DOI: 10.1103/PhysRevB.92.180405 PACS number(s): 75.40.−s, 65.40.gd, 75.50.Lk

Spin-ice materials attract lots of attention due to their
exotic ground state and anomalous excitations [1–8], which
arise from a geometric frustration of the magnetic interactions
that prevents long-range magnetic order. Prototype spin-ice
materials are the pyrochlores R2Ti2O7 with Dy or Ho as
R3+ ions, which form a network of corner-sharing tetrahedra.
The crystal electric field causes a strong Ising anisotropy
with local quantization axes pointing from each corner of
a tetrahedron to its center. Thus, each magnetic moment
is restricted to one of the {111} directions and may point
only either into or out of the tetrahedron. The energy of
antiferromagnetic exchange and dipole-dipole interactions is
minimized when two spins point into and the other two point
out of each tetrahedron. This “2-in/2-out” ground state is
sixfold degenerate and fulfills Pauling’s ice rule describing
the hydrogen displacement in water ice with the residual
entropy SP = (NAkB/2) ln(3/2) [9,10]. Excitations are created
by single spin flips resulting in pairs of tetrahedra with
“3-in/1-out” and “1-in/3-out” configurations. As a conse-
quence of the ground-state degeneracy, each pair fractionalizes
into two individual excitations that can be described as
magnetic (anti)monopoles propagating independently through
the lattice [3,4,11,12]. The dynamics of these monopole
excitations is the subject of intense research [5,13–16].

Experimental evidence for Pauling’s residual entropy in
spin-ice systems stems from specific-heat measurements
[17–20] reporting a practically temperature-independent
entropy Sex(T ≈ 0.4 K) � SP. More recently, however,
extremely slow relaxation phenomena were observed for
Dy2Ti2O7 in low-temperature measurements of, e.g., the
magnetization [21,22], ac susceptibility [23], thermal transport
[24,25], or the specific heat [24,26,27]. Typically, these
phenomena set in below ≈ 0.6 K and signal strongly increasing
time scales for the internal thermal equilibration. Therefore,
the specific-heat values obtained by standard relaxation-time
techniques are too low and Sex(T < 0.5 K) < SP was reported
for thermally equilibrated Dy2Ti2O7 [27]. The origin of
this discrepancy remains to be clarified. Another open issue
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is the influence of nonmagnetic dilution on the spin-ice
ground state [28]. By generalizing Pauling’s approximation, a
nonmonotonic dependence SP(x) as a function of the dilution
content x was predicted [29]. This was essentially confirmed
by recent Monte Carlo (MC) simulations, but for x > 0.2
the numerically obtained entropy SMC(x,T < 0.7 K) falls
below the expected SP(x) [30]. A quantitative comparison
of SMC(x,T ) to experimental data Sex(x,T ) was not done in
Ref. [30] due to the experimental difficulties, which partly
arise from the slow thermal equilibration but also from the
uncertainty in estimating the phononic specific heat.

In this Rapid Communication, we present a detailed
specific-heat study of the dilution series (Dy1−xYx)2Ti2O7. We
find that the slow thermal equilibration is rapidly suppressed
with increasing dilution and vanishes for x � 0.2. For all x, the
experimentally derived Sex(x,T < 0.5 K) is smaller than SP(x)
and the deviation increases with x. The lowest-temperature
(T = 0.4 K) MC results also overestimate the magnetic
entropy of (Dy1−xYx)2Ti2O7, but well match the experimental
data at T = 0.7 K. With increasing dilution, our data reveal a
systematic increase of the temperature dependence of the low-
temperature entropy such that a zero-temperature extrapolation
suggests a complete suppression of the residual entropy or, in
other words, a nondegenerate ground state for x > 0.2.

Oriented (Dy1−xYx)2Ti2O7 samples of ≈ 20 mg were cut
from large mirror-furnace grown single crystals. The Dy:Y
ratio was checked by energy dispersive x-ray diffraction and
from the relative decrease of the saturation magnetization.
The results of both methods agree within a few percent to the
nominal concentration x. The specific heat was measured with
a home-built calorimeter from about 0.3 to 30 K in magnetic
fields of 0, 0.5, and 1 T applied along [100]. In general, the
standard relaxation-time method was used, but this method
fails if the internal thermal equilibration becomes too slow,
as is the case in the low-temperature range (T < 0.6 K) of
pure and weakly dilute (see below) spin ice. There, we used
a constant heat-flow method analyzing the heating curve over
a longer time scale [24], which is equivalent to the method
of Refs. [27,31] where the specific heat is derived from the
temperature-relaxation curve.

Figure 1 compares typical heating curves of the nor-
malized temperature difference 1 − �T (t)/�Tmax, where
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FIG. 1. (Color online) Heating curves 1 − �T (t)/�Tmax of
(Dy1−xYx)2Ti2O7 with x = 0–0.75. Here, �T (t) = T (t) − T0 is
measured relative to the base temperature T0 and �Tmax is its
limiting value. The dashed red lines are fits to those data showing
an exponential decay with a single relaxation time. (d) The heat Q(t)
stored in the sample divided by �T (t) approaches the total heat
capacity C in the long-time limit.

�T = T − T0 and T0 is the base temperature. At T0 �
0.8 K, the heating curves over the entire dilution range
in (Dy1−xYx)2Ti2O7 are straight lines in a semilogarithmic
representation. This is expected if the internal thermal equi-
libration, where internal means inside the sample as well as
between the sample and the platform, is much faster than the
thermal relaxation to the external heat bath. The heat capacity
is obtained via C = τK from the relaxation time τ and
the thermal conductance K = P/�Tmax between the sample
platform and the thermal bath with the heating power P . For
T0 � 0.5 and 0.36 K, however, the relaxation curves of pure
Dy2Ti2O7 become nonexponential due to slow internal thermal
equilibration. In these cases, the heat capacity is obtained from
the difference Q(t) = P t − ∫

K�T (t)dt between the total
dissipated heat and the heat flown from the platform to the
bath via C = Q(t)/�T (t), which approaches a constant in
the long-time limit [see Fig. 1(d)]. A weak thermal coupling
K is necessary to ensure measurable variations of �T (t)
over long-enough times, which restricts the measurements
to ≈ 1000 s in the actual setup. As shown previously [24],
our specific-heat data agree well with those of Ref. [26],
but both data sets are significantly larger than those obtained
by the standard relaxation technique [20] on Dy2Ti2O7 for
T < 0.6 K. Our technique and that of Ref. [26] have in
common that the heat pulses are analyzed over comparable
time scales of up to ≈ 1000 s. However, according to Ref. [27],
the time to reach internal thermal equilibration in Dy2Ti2O7

drastically increases to several 104 s below ≈ 0.4 K. Such
ultraslow equilibration effects cannot be captured in a setup,
whose temperature relaxes significantly faster towards that of

FIG. 2. (Color online) (a) Specific heat c(T ) per formula unit
(f.u.) (Dy1−xYx)2Ti2O7 for selected x with an expanded view of
the low-temperature range for all x in the inset. The phononic
contributions cph(x,T ) were estimated by the specific heat of
nonmagnetic Y2Ti2O7 after rescaling the temperature axis such that
the data sets match around T � 25 K, as is shown for x = 0 by the
dashed line. In (b), the resulting magnetic contribution cmag(x,T ) =
c(x,T ) − cph(x,T ) normalized by the Dy content is displayed in the
representation cmag/T vs T for T � 2.5 K. For Dy2Ti2O7, cmag/T

obtained either by a standard relaxation measurement (+ [20]) or
after extremely long-time equilibration (� [27]) are included.

the external heat bath. Consequently, our lowest-temperature
data (as well as those of Ref. [26]) significantly deviate from
the recently published specific heat of Dy2Ti2O7 that was
thermally equilibrated for much longer times [27]. As shown
in Fig. 2, our data match those of Ref. [27] at ≈ 0.4 K,
but exceed the data obtained by the standard relaxation
technique up to ≈ 0.6 K, above which all data sets finally
merge [32].

Concerning dilute (Dy1−xYx)2Ti2O7, the low-temperature
heating curves for x = 0.05 and 0.1 also become nonex-
ponential, but this effect is much less pronounced than in
pure Dy2Ti2O7, and for x � 0.2 the heating curves remain
exponential down to the lowest temperature (see Fig. 1).
Thus, our data show that the ultraslow thermal equilibration
in Dy2Ti2O7 is drastically suppressed by weak nonmagnetic
dilution. This could result from a suppressed slowing down of
the spin-ice dynamics due to an enhanced monopole density
in weakly dilute spin ice, because the monopole creation is
facilitated close to partially occupied tetrahedra [28].

The specific heat of (Dy1−xYx)2Ti2O7 measured in zero
magnetic field is displayed in Fig. 2(a). Above ≈ 1 K,
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c(x,T ) continuously decreases with increasing dilution x.
Below ≈ 10 K, this decrease essentially reflects the decreasing
amount of magnetic Dy ions, because the magnetic con-
tribution cmag dominates here. Above 10 K, the phononic
contribution cph starts to dominate and the systematic decrease
with increasing x can be traced back to the fact that Y is
much lighter than Dy. The molar mass per formula unit (f.u.)
of (Dy1−xYx)2Ti2O7 decreases from 533 to 386 g/molf.u. be-
tween x = 0 and 1, respectively. Thus, for larger x, the eigen-
frequencies of the acoustic phonon branches are enhanced and
the low-temperature increase of cph sets in at a higher temper-
ature. In order to estimate cph of the Dy-containing crystals,
the temperature axis of the measured c(T ) of the nonmagnetic
Y2Ti2O7 was rescaled such that it matches the specific heat of
(Dy1−xYx)2Ti2O7 around 25 K, i.e., c(x = 1,rxT ) = c(x < 1,

T � 25 K) with scaling factors ranging from rx = 0.8 to
0.95 for 0 � x � 0.75, respectively. As an example, the
resulting cph of pure Dy2Ti2O7 is shown as a dashed line
in Fig. 2(a) and the magnetic contributions derived via
cmag(x,T ) = c(x,T ) − c(x = 1,rxT ) are displayed for all x �
0.75 in Fig. 2(b). Here, the data are normalized to the amount
of the magnetic Dy ions and are displayed as cmag/T vs
T . In this representation, the data for all x almost coincide
above 2 K whereas a systematic low-temperature increase
of cmag/T evolves with increasing x. The latter observation
means that the low-temperature dependence of the entropy
∂S/∂T = cmag/T strongly increases with x. Note that this
conclusion is independent from the uncertainty in estimating
the phononic background because any realistic cph is negligibly
small compared to cmag in the entire temperature range of
Fig. 2(b). Moreover, it is also essentially independent from the
slow thermal equilibration effects, which are only present in
the weakly dilute samples at very low temperatures. As can be
seen in Fig. 2(b), the cmag/T data of thermally equilibrated
Dy2Ti2O7 [27] show a low-temperature increase, but still
remain below the corresponding data for x � 0.1.

The magnetic entropy S(T ) is obtained by temperature
integration of cmag/T and requires an estimate of cph. Often
cph is estimated by a Debye model or a simple power law,
e.g., βT 3 + β ′T 5, which match the measured total c(T )
around 15 K [17,18,29,30]. However, the corresponding cmag

bears several uncertainties concerning the higher-temperature
range, as discussed in Ref. [30]. In consequence, the obtained
entropy changes for finite magnetic fields do not reach the
full entropy S∞ = NAkB ln(2) � 5.76 J/mol K, even though
the fields are large enough to fully lift the ground-state
degeneracy [17,18,29]. This can be avoided when cph is
estimated by the measured c of a suitable nonmagnetic
reference material [19]. Here, we use the temperature-rescaled
cph of the nonmagnetic Y2Ti2O7 and check the reliability
of our procedure by measuring the specific heat of all
(Dy1−xYx)2Ti2O7 samples in B = 0.5 and 1 T applied along
the [100] direction. For this direction, field strengths between
0.5 and 1 T are, on the one hand, sufficient to reach a
fully saturated magnetization at T � 0.5 K. On the other
hand, such fields are still low enough to reach the full
entropy S∞ of a two-level system around 25 K, where the
thermal population of higher-lying crystal field levels is
still negligible [33,34]. Figure 3 summarizes the magnetic
entropy of the series (Dy1−xYx)2Ti2O7. In all cases, the

FIG. 3. (Color online) Entropy Sex(T ) of (Dy1−xYx)2Ti2O7 ob-
tained by integration of cmag/T measured in B = 0, 0.5, and 1 T
‖[100]. All curves are shifted to match the full entropy S∞ =
NAkB ln(2) of a two-level system at T = 25 K. The red dashed
lines mark the residual entropy SP(x) expected for B = 0 from a
generalized Pauling approximation [29].

integration constants were adjusted by S(25 K) = S∞ and for
each composition a magnetic-field independent cph was used.
For all x, the low-temperature extrapolations S(T → 0,B �
0.5 T) → 0 and thus clearly confirm the expected vanishing
residual entropy in finite fields.

Now we come to the question of whether there is ex-
perimental evidence for a degenerate zero-field ground state
in the dilute spin ice (Dy1−xYx)2Ti2O7. Because of the
ultraslow thermal equilibration, we restrict this discussion
to T � 0.4 K for the weakly dilute samples with x � 0.1.
As is shown in the inset of Fig. 3(a), the low-temperature
entropy of pure Dy2Ti2O7 is close to the expected SP and has
a weak, but finite, temperature dependence. This approximate
plateaulike feature of the entropy is one justification for the
description of Dy2Ti2O7 in terms of a classical spin ice down
to these temperatures. The finite slope, which, according to
Ref. [27], further increases below 0.4 K, however, indicates
that some kind of ordered ground state ultimately evolves
in Dy2Ti2O7. One may expect this to occur due to quantum
effects, additional weaker interactions, and/or magnetoelastic
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coupling, but the real ground states of this and other (quantum)
spin-ice candidates are in most cases not known (see, e.g.,
Refs. [35–37]). Recently, various ordered ground states for
Dy2Ti2O7 have been suggested which can arise depending
on the strength of quantum tunneling [38]. Moreover, weak
nonmagnetic dilution may induce transitions to a so-called
topological spin glass [28], with a gradual suppression of the
residual entropy setting in at Tc(x) [39].

Concerning the entropy of the dilute (Dy1−xYx)2Ti2O7,
the plateaulike feature around 0.5 K rapidly vanishes and the
temperature dependence of Sex(x,T ) strongly increases with x.
Nevertheless, for x � 0.1, a linear extrapolation Sex(x,T → 0)
would still yield a finite zero-temperature residual entropy,
what may be interpreted as reminiscent of spin-ice behavior in
this intermediate temperature range. Towards larger x, how-
ever, the slope ∂Sex/∂T = cmag/T becomes so large that an
interpretation in terms of a finite residual entropy is no longer
justified. For comparison with theoretical predictions, the
generalized Pauling residual entropy SP(x) from the early work
of Ke et al. [29] is shown by the dashed lines in Fig. 3. Although
SP(x) is a zero-temperature result it is significantly larger than
the experimental Sex(x,T ), in particular, for x � 0.2. Such a
deviation has already been found in a recent comparison of
SP(x) with the low-temperature entropy SMC(x,T ) obtained
by MC simulations [30]. In Fig. 4, we include Sex(x,T ) of
(Dy1−xYx)2Ti2O7 to this comparison. For T = 0.7 K, Sex(x,T )
is quantitatively reproduced by SMC(x,T ) in the entire dilu-
tion range 0 � x � 0.75. In contrast, the lowest-temperature
MC data SMC(x,T = 0.4 K) overestimate the experimental
results and essentially reproduce Sex(x,T = 0.5 K). Thus,
an extension of the MC simulations to lower temperatures
and including quantum effects would be highly desirable.
Concerning the predicted nonmonotonic x dependence, a
shallow maximum of the entropy around x ≈ 0.2 is also
present in Sex(x,T � 0.4 K), while below that temperature
the slow thermal equilibration for x � 0.1 prevents a definite
conclusion. From x = 0.5 to 0.75, the entropy increases again
and we think that this reflects the fact that with increasing
x the average dipole-dipole interaction decreases. Thus,
the temperature-dependent drop of the entropy continuously
shifts towards lower temperature and, as a consequence,
the entropy at constant temperature continuously increases
with x.

FIG. 4. (Color online) Comparison of the low-temperature en-
tropy Sex(x,T ) of (Dy1−xYx)2Ti2O7 (symbols) with the corresponding
SMC(x,T ) from MC simulations (solid lines [30]) and the zero-
temperature residual entropy SP(x) (dashed line) expected from a
generalized Pauling approximation [29].

In conclusion, we find that the ultraslow thermal equi-
libration in pure spin ice Dy2Ti2O7 is rapidly suppressed
upon dilution with nonmagnetic Y and vanishes completely
for x � 0.2. In general, the low-temperature entropy of
(Dy1−xYx)2Ti2O7 considerably decreases with increasing x,
whereas its temperature dependence drastically increases.
Thus, there is no experimental evidence for a finite zero-
temperature entropy in (Dy1−xYx)2Ti2O7 above x � 0.2, in
contrast to the finite SP(x) expected from a generalized
Pauling approximation [29]. Monte Carlo simulations of the
low-temperature entropy [30] quantitatively agree with the
experimental Sex(x,T ) at T = 0.7 K, but a systematic deviation
develops at lower temperature. Thus, the classical spin-ice
model is applicable down to this intermediate temperature
range, but additional experimental and theoretical work is
necessary to unravel the true ground state of the dilute spin
ice (Dy1−xYx)2Ti2O7.
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