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Incommensurateness in nanotwinning models of modulated martensites
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We study the formation of modulated martensites in ferromagnetic shape memory alloys by a mathematical
model originating from the nanotwinning concept. The results show that the incommensurateness, systematically
observed in experiments for the modulated phases, may be understood as a precursor effect of the intermartensitic
transitions, and its appearance does not contradict the nanotwinning concept itself. The model sufficiently explains
the different levels of incommensurateness reported from different experimental observations for the 14-layered
and 10-layered martensites of the Ni-Mn-Ga alloy and outlines the mechanism of formation of faults in the
stacking sequences of these materials.
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Low-temperature phases of many ferroic materials tend
to form so-called modulated phases, i.e., phases with small
periodic disturbances of the atomic positions in the crystal
lattice [1–3]. The wavelength of the modulation is typically
of the order of few (� 20) interatomic spacings and is always
aligned with some principal lattice vector, which enables the
construction of a supercell of the modulated structure.

Among the modulated phases, the modulated martensites
of ferromagnetic shape memory alloys, and of Ni-Mn-Ga in
particular [4–6], have been the most intensively discussed ones
recently. In these materials the lattice can exhibit modulations
with several different wavelengths (for example, a 10-layer as
well as a 14-layer modulation in off-stoichiometric Ni-Mn-
Ga) and also a nonmodulated tetragonal phase; as a result,
these materials can undergo a sequence of intermartensitic
transitions [6–9], i.e., transitions between differently modu-
lated structures or between the modulated and nonmodulated
(tetragonal) phases.

The simplest theoretical models explaining the formation
and structure of the modulated phases are the nanotwinning
models [10,11], originating from the concept of adaptive
martensite [12]. In these models the modulated phases are
interpreted as extremely fine first-order laminates of different
variants of the nonmodulated martensite. The nanotwinning
models give very good predictions of the effective lattice pa-
rameters of the modulated supercells and can also qualitatively
explain several effects observed in ferromagnetic shape mem-
ory alloys such as the coexistence of 14-layer modulated and
nonmodulated structures in Ni-Mn-Ga epitaxial films [11]. The
nanotwinning character of the modulations was also confirmed
by HRTEM observations [5]. However, the atomic positions
of the modulated phases determined by x-ray and neutron
diffraction measurements [13–17] systematically deviate from
the predictions of these models, showing that the modulation
function is rather smooth, not following the zigzag pattern
expectable for a first-order laminate with atomistically sharp
interfaces. Even more importantly, these measurements con-
firm that the modulations in many cases are incommensurate,
i.e., that the periodicity of the modulation function does not
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exactly fit the periodicity of the superlattice, which cannot be
expected from first-order laminates either. These deviations
from the nanotwinning model can be partially explained by
the presence of stacking faults [11,18] (imperfections of the
stacking sequence in the laminates) that affect the averaged
diffraction patterns, however, the nanotwinning models cannot
offer any explanation why such defects should massively
appear in the modulated structure. Moreover, as shown by
Li et al. [19], the smooth incommensurate modulations lead
to smaller misfits at the twinning planes between two differ-
ent variants of modulated martensites, which also disfavors
the nanotwinning concept. For these reasons, many authors
interpret the modulations rather as results of band Jahn-Teller
effect [20,21] and Fermi surface nesting [22].

In this paper, we show that the experimentally observed
smooth and incommensurate modulation functions are not in
contradiction with the nanotwinning models; on the contrary,
we show that some level of incommensurateness directly
results from these models.

Nanotwinning models explain the existence and structure
of the modulated phases based on the classical mathematical
theory of martensitic microstructures. In this theory, the
deformed configurations of the crystal y(�), where � is the
reference configuration, are expected to be minimizers of
energy:

E[y] =
∫

�

W (Dy)dx +
∫

�

ε|D2y|2dx, (1)

where the first term is the bulk energy, depending on the
deformation gradient Dy, and the second term represents the
energetic penalty for the interfaces. The bulk energy is typi-
cally multiwell, with the individual minima representing the
individual variants of martensite. Such a multiwell energy has
been routinely used following the pioneering works [23,24],
see, e.g., Refs. [25,26]. The form of the surface energy is
motivated by the standard choice in phase-field modeling
and is used in the context of shape-memory alloys in, e.g.,
Refs. [25,27]; a strongly related form is found in Refs. [28,29]
that predict branching of martensitic laminates. The parameter
ε in the surface energy term then determines how fine the
resulting laminates can be for prescribed boundary conditions.

1098-0121/2015/92(18)/180101(5) 180101-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.180101


RAPID COMMUNICATIONS
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FIG. 1. (Color online) The multiwell characters of the bulk en-
ergy (on the left) and the Fourier multiplier σ (ξ ) (on the right):
(a) a standard (quadratic) multiplier; (b) a multiplier favoring 14-
layer modulation; (c) a multiplier favoring 14-layer and 10-layer
modulations. The curves (a), (b), and (c) are vertically shifted for
vividness.

For simplicity and vividness, we restrict the modeling
setup in this paper to one dimension (1D) and to symmetric
modulations: we assume that the modulation function y =
y(x), giving the displacements of the atoms in the direction
perpendicular to the modulation direction x, oscillates around
some fixed, finite mean value, for example 〈y〉 = 0. For
Ni-Mn-Ga and other ferromagnetic shape memory alloys,
the real stacking sequences are typically asymmetric, such as
(32̄)2 for 10M martensite and (52̄)2 for 14M martensite, which
results in the monoclinic symmetry class of the modulated
phase; however, such effects cannot be sufficiently captured
in 1D, and so we assume existence of symmetric stacking
sequences such as (55̄) [30].

For this particular case where y represents the modulation
function in a nanotwinning model on a periodic reference
domain � ⊂ R of length l, the minima of W = W (y ′)
correspond to the deformation gradients representing the two
possible variants of nonmodulated martensite; let us denote
these deformation gradients as ±γ (Fig. 1). For the surface
energy term, the extremely fine oscillations necessary for
describing the modulations may indicate that ε → 0. However,
such a limit does not sufficiently represent the observed
tendency to form stacking sequences with the given periodicity
and long-range ordering. As seen from the Fourier transform
of this term, ∫

�

ε|y ′′|2dx = ε

∫
R

|ξ |2|ŷ ′(ξ )|2dξ, (2)

where ξ is the frequency vector, dξ = ∑
k∈Z δ(ξ − 2πk/l) is

the Dirac comb, and ŷ ′(ξ ) is the Fourier transform of y ′, the
surface energy is minimized when the dominant components
of the spatial frequency of the interfaces corresponds to the
minimum of the Fourier multiplier |ξ |2. This minimum is
attained for zero frequencies, i.e., no interfaces at all. To mimic
the spontaneous formation of the modulations we introduce a

more general Fourier multiplier σ (ξ ) = σ (|ξ |) that has wells in
the frequencies of oscillation observed in modulated structures
and otherwise growths quadratically. In the right part of
Fig. 1, the possible forms of such multiplier are sketched:
(a) the original multiplier σ (ξ ) = |ξ |2; (b) the multiplier for
materials with spontaneous formation of one modulated phase;
and (c) a multiwell multiplier for materials able to undergo
an intermartensitic transition between two different types of
modulations. Without loss of generality, we choose these two
minima as corresponding to 14-layer modulations (frequency
f14) and 10-layer modulations (frequency f10), f10/f14 = 7/5.

The resulting model combines some aspects of both the
nanotwinning concept (the modulated phase arises as a
laminate of individual nonmodulated building blocks) and the
electronic-structure based approaches (spontaneous symmetry
breaking with a preferred frequency). Such a combination
has been previously mentioned by Niemann et al. [11], who
pointed out that the Fermi surface nesting and Jahn-Teller
effect may serve as small initial disturbances of the lattice
triggering the formation of the nanolaminate.

Despite the fact that the modulations occur on the atomistic
scale, the model is formulated within continuum mechanics.
This is justified by the fact that we aim to model a repre-
sentative structure that can be understood as the best fitting
average over a large number of samples. In this way, we mimic
common experimental tools for determining the structure of
the modulated phase like x-ray diffraction.

Let us first discuss in detail the case (b) in Fig. 1, i.e., the
effect of one additional minimum on the multiplier function
σ (ξ ) onto the energy minimizers. The total energy reads

E[y] = 1

A

∫
�

W (y ′)dx + A

∫
R

σ (ξ )|ŷ ′(ξ )|2dξ, (3)

where A is a weighting factor of the interfacial energy [31].
If the interfacial term dominates the energy (i.e., A → ∞ in
the sense of a 	 limit), minimizers of E are sine waves with
a frequency determined by the wells of σ and with prescribed
symmetry; recall here that the Fourier transform of a sine-wave
is a Dirac delta located in its frequency. In contrast, if the
bulk term dominates (i.e. for the 	-limit A → 0), minimizers
correspond to triangle waves. Recall that the spectrum of a
triangle wave is a collection of Dirac delta functions, with the
highest contribution in a dominant frequency f and then with
decreasing weights in the higher harmonics 3f , 5f , 7f , etc.

In Fig. 2, the behavior in the 	 limits is compared to
the case when both bulk and interfacial energies play a role
(A ∼ 1), for which the minimizer was found numerically.
This minimizer roughly corresponds to triangle waves with a
truncated spectrum because of quadratic growth of interfacial
energy, which leads to “blurring” of laminate interfaces. Let
us mention that the blurring is necessarily stronger for higher
dominant frequencies (i.e., stronger for f10 than for f14 in
our case), as the higher harmonics for higher frequencies are
energetically more expensive due to the quadratic character
of the function σ (ξ ) for |ξ | → ∞. From the heuristics point
of view, this finding is in agreement with the experimental
observations for Ni-Mn-Ga, where much smoother modulation
functions are observed for the 10-layered martensite than for
the 14-layered martensite. However, for any choice of A, the
energy minimizers are perfectly commensurate.
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FIG. 2. (Color online) Visualizations of effective modulated unit
cells corresponding to energy minimizers for A → ∞ (a), A ∼ 1
(b), and A → 0 (c). The dashed line denotes the deformation y ′

corresponding to one of the minima of the bulk energy.

A more complicated situation arises in the case shown
in Fig. 1(c), when the minima corresponding to both a
10-layer as well as 14-layer modulations are present. As
known from the significant hysteresis for the 10-layer ↔
14-layer intermartensitic transitions observed experimentally
in Ni-Mn-Ga, there may exist relatively broad temperature
intervals in which such coexistence of two minima is possible.

For example, Khovailo et al. [22] observed an austenite
→ 10-layered martensite → 14-layered martensite sequence
upon cooling, but a direct 14-layered martensite → austenite
transition upon heating in a Ni2.16Mn0.84Ga alloy, which
indicates that the temperature interval of stability the 10-
layered phase is completely overlapped by the stability interval
of the 14-layered phase.

In this case, we do not attempt to model the intermartensitic
transition itself (which would involve the discussion of the
localization effects and compatibility between phases, both
not treatable in our periodic 1D setting). Nevertheless, the
proposed model enables a discussion of the effect of the
presence of the second minimum onto the (local) energy
minimizers. Figure 3(a) shows the evolution of the energy
minimizing modulation function of a 14-layered martensite
with the increasing depth of the minimum located at f10

for A ∼ 1. The numerical calculations were performed on a
domain of length equivalent to 70 interatomic spacings with
periodic boundary conditions; the maximal frequency allowed
in the calculation was f2 to avoid aliasing effects. Figure 3(a)
covers one half of this domain, the solution in the second half
was identical but mirror-reversed about the x axis. The first
calculation was done for only one minimum (at f14) on the
σ (|ξ |) function; subsequently, the additional minimum was
placed at f10 and its depth was gradually increased without
altering the depth of the f14 minimum. It is seen that resulting
modulation function evolves from perfectly 14-layer periodic
commensurate case into incommensurate, with the positions
of maxima and minima shifting in different directions, the
amplitudes decreasing, and the modulation curves getting
smoother. In the half of the length of the computational
domain (i.e., after 35 atomic spacings), the modulation period
again matches the periodicity of the interatomic spacing,
but this matching is forced by the finite size of the domain
and the assumed periodicity; the tendency to deviate from
perfect commensurateness and to attain smoother modulation
functions is, however, clearly demonstrated.
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FIG. 3. (Color online) (a) The evolution of the modulation function of the 14-layered martensite with the increasing depth of the f10

minimum (one half of the computational domain is shown); (b) visualization of the stacking sequences corresponding to the starting and final
depths of the f10 minimum.
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Figure 3(b) shows a visualization of the effect of the depth
of the second minimum onto the modulated structure. If the f10

minimum is of a smaller or similar depth as the f14 minimum,
the structure remains commensurate with a perfectly periodic
(77̄) stacking sequence, only the modulation amplitude
slightly decreases and the oscillations become smoother.
After the second minimum becomes significantly deeper, the
stacking sequence becomes strongly faulted; the resulting unit
cell can be then only roughly described by a (68̄) sequence.
A very similarly faulted stacking was observed also in the
experiments: Righi et al. [13] reported on a (42̄52̄43̄) sequence
appearing instead of the perfect (52̄)2 stacking in 14-layered
martensite of Mn-rich Ni-Mn-Ga. It is also illustrative to
discuss the behavior of this energy minimizer in the 	 − limit
for A → ∞, where the minimizer converges to a superposition
of multiple sine waves with the preferred frequencies, which
is similar to the approximations of the modulation functions
used in the analysis of x-ray measurements, for example, in
Ref. [14].

In summary, the proposed model is able to capture many
features of modulated martensites observed experimentally,
both these understood as confirming the nanotwinning con-
cepts and those understood as contradicting it. Although the
model assumes that the modulated structure is composed of
nonmodulated building blocks (i.e., a direct coexistence of NM
and 14-layer modulated via a branched structure discussed
in Ref. [11] is possible), it predicts well the smoothening,
incomensurateness, and formation of stacking faults. All
these effects are shown here to follow from an additional
possible periodicity of the modulations, i.e., from a presence
of an additional minimum on the σ (ξ ) multiplier. If the
material tends to undergo an intermartensitic transition, and
this second minumum becomes deeper, the level of irregularity
increases. Thus the incommensurateness may be be understood
as some kind of precursor effect for the intermartensitic
transition, but may appear also in materials without the
intermartensitic transition, as the second minimum could be
deep enough to alter the energy minimizing structure, but

not sufficiently deep to trigger the transition. The literature
data show that the 10-layered and 14-layered martensite in
Ni-Mn-Ga can exhibit several different levels of incommen-
surateness [6,32–34], ranging from perfectly commensurate
structures to heavily distorted modulations. This indicates that
the commensurateness/incommensurateness is not intrinsic to
the modulated structure, but is controlled by some additional
external parameter. From the proposed model, we suggest that
this external parameter may be the finer structure of the Fourier
multiplier.

Nevertheless, the origin of the intermartensitic transitions
in FSMAs is not fully resolved yet. As shown, e.g., by
Velikokhatnyi and Naumov [35], mainly, the 10-layer modula-
tions in Ni-Mn-Ga may lead to energy reduction via the Fermi
surface nesting, which is also in agreement with the anomalous
increase of electrical resistivity in the 10-layer modulated
phase reported by Khovailo et al. [22]. The 14-layer modulated
martensite can be, on the other hand, stabilized by excess Mn
atoms in off-stoichiometric alloys [36]. Simultaneously, the
formation of the stacking sequences is probably also affected
by the Jahn-Teller effect, which is dominantly responsible
for the austenite → NM transitions [20,37], and thus, may
act as a mechanism stabilizing the NM martensite unit
cells as the building blocks. Hence, the exact finer structure
of the multiplier presumably originates from an interplay
of these three phenomena. However, without detailed free
energy calculations for the modulated phases, involving also
the lattice and magnetic entropy contribution as done for
austenite and NM martensite by Buchelnikov et al. [38], the
multiwell σ (ξ ) multiplier introduced in this paper has no fully
justified physical interpretation so far and must be understood
phenomenologically.
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