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Resonators coupled to voltage-biased Josephson junctions: From linear response
to strongly driven nonlinear oscillations
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Motivated by recent experiments in which a voltage-biased Josephson junction is placed in series with a
resonator, the classical dynamics of the circuit is studied in various domains of parameter space. This problem
can be mapped onto the dissipative motion of a single degree of freedom in a nonlinear time-dependent potential,
where in contrast to conventional settings the nonlinearity appears in the driving while the static potential is
purely harmonic. For long times the system approaches steady states which are analyzed in the underdamped
regime over the full range of driving parameters including the fundamental resonance as well as higher harmonics
and subharmonics. Observables such as the dc-Josephson current and the radiated microwave power give direct
information about the underlying dynamics covering phenomena such as bifurcations, irregular motion, and up-
and down-conversion. Due to their tunability, present and future setups provide versatile platforms to explore the
changeover from linear response to strongly nonlinear behavior in driven dissipative systems under well defined
conditions.
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I. INTRODUCTION

The nonlinear properties of Josephson junctions (JJs) have
made such devices a key circuit element for classical and quan-
tum electronics. Accordingly, there has been a long tradition
of studying nonlinear phenomena in driven superconducting
circuits, starting as early as the 1960s with the discovery of
Shapiro steps [1]. While Shapiro steps have remained a tool in
exploring new directions in Josephson physics, for instance in
atomic point contacts [2–6], other nonlinear phenomena, such
as synchronization, have been investigated in arrays of JJs: as
a test bed for generic theory models to capture synchronization
phenomena [7,8], but as importantly with the prospect of
applications as sources of more intense coherent radiation [9];
cf. also new developments using intrinsic arrays [10–12].

More recently, the nonlinearity of the JJ was exploited as
the crucial factor in enabling the high sensitivity of Josephson
bifurcation amplifiers, achieving substantial improvements
towards reaching quantum-limited measurement processes
[13–16]. Most of the features of Josephson bifurcation ampli-
fiers, in fact, only rely on (and can consequently be described
by) any type of nonlinearity [17–22], e.g., Duffing-type
models, so that only recently the full nonlinear potential of
the JJ has become of interest in this field [23].

A recent addition to the field of driven nonlinear JJs [24–26]
are experiments on a dc-biased JJ connected to a resonator
[27–29]. In this sort of setup, charge transfer through the
JJ leads to excitations in the resonator, and therefore allows
one to convert energy carried by charge quanta into quantum
microwave photons. In these devices measurement of both
the Josephson current and the emitted microwave radiation is
possible, a distinct advantage in comparison to other recently
proposed transport setups [30,31], which show similar
nonlinear features such as bifurcations, period multiplication,
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and up- and down-conversion [32–34]. Such nonlinear effects
will, in fact, dominate the system’s dynamics and therewith
the characteristics of the Josephson current and the emitted
microwave radiation for driving beyond a linear regime of
weak Josephson coupling.

While quantum properties of the system, in particular of the
emitted microwave radiation, have been investigated widely,
both theoretically [35–45] and within new experiments [46],
due to the complexity and richness of nonlinear effects a deeper
understanding of the purely classical dynamics of the system
is instructive, but also of relevance for current experimental
activities [29], as we will discuss below. This is especially the
case as the nonlinearity enters the system in a peculiar way.
It does not stem from a nonlinear (static) potential, but rather
from the manner of coupling the drive (JJ) to the resonator.
The Josephson phase in this setup is thus not fixed by the
external voltage, but appears as a dynamical degree of freedom
manifest in a time-dependent effective potential determining
the phase dynamics. We note in passing that related nonlinear
phenomena have recently been explored for Josephson phase
slip devices [47].

In this paper we present analytical and numerical investiga-
tions in the regime, where the system’s dynamics is described
by classical Josephson equations. While the features found are
to an extent common to a wide class of nonlinear classical
systems, which specific effects in what distinct manner are
realized and how they are observed in this new type of
nonlinear system is an intriguing open question. To tackle it,
we will first present the system under study in more detail
and introduce the analytical methods used in Sec. II. The
following sections cover the fundamental resonance (Sec. III)
and higher order resonances (Sec. IV). The influence of a
thermal environment at finite temperatures is investigated in
Sec. V, before we conclude in Sec. VI.

II. CIRCUIT DYNAMICS

We consider a circuit (see Fig. 1) in which a Josephson
junction (JJ) is placed in series with a resonator with only a
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FIG. 1. Circuit diagram of a voltage-biased Josephson junction
in series with a resonator with relevant mode frequency ω0 described
by an effective impedance Z(ω) as specified in (1). Using a SQUID
geometry [1] for the JJ allows for tuning the effective Josephson
energy EJ (�x) by an external magnetic flux �x .

single mode of frequency ω0 = 1/
√

LC being relevant. The
total impedance Zt (ω) seen by the tunneling Cooper pairs
consists of the combination of the capacitance CJ of the JJ
and the parallel LC resonance with finite Q factor. Since
experimentally CJ � C, one has Zt (ω) ≈ Z(ω) with

Z(ω) = 1

C

ω

i
(
ω2 − ω2

0

) + ωω0/Q
. (1)

Based on Kirchhoff rules, equations of motion for the circuit,
biased by a dc voltage V , are found,

ϕ̈ + ω2
0ϕ + ω0

ϕ̇

Q
+ (

EJ

/
φ2

0C
)

sin(φ) = 0, φ = ϕ + ωJ t,

(2)

expressed in terms of the resonator’s phase variable
ϕ = −(2e/�)

∫
dtVLC(t), and the Josephson phase φ =

(2e/�)
∫

dtVJ (t) with V = VLC + VJ [1,48]. Here, ωJ =
2eV/� denotes the driving frequency, φ0 = �/2e the reduced
flux quantum, and the time derivative · = d/dt .

This set of equations can be cast into an equation of motion
for a fictitious particle with an effective mass, m = φ2

0C,
moving in a harmonic potential and coupled to an external
time-periodic, position-dependent force, i.e.,

mϕ̈ + mω2
0ϕ + m

ω0

Q
ϕ̇ + EJ sin(ϕ + ωJ t) = ξ̄ (t). (3)

To incorporate finite-temperature effects, as discussed below,
thermal noise ξ̄ at temperature T is added [49]. It is related to
the resonator damping via the fluctuation-dissipation theorem
as 〈ξ̄ (t)ξ̄ (t ′)〉β = 2m(ω0/Q)kBT δ(t − t ′) and 〈ξ̄ 〉β = 0.

To explore the dynamics of the above Langevin equation,
it is convenient to work with dimensionless units, where times
are scaled with ω0 and energies with mω2

0. This then leads to

ϕ̈ + γ ϕ̇ + ϕ + λ sin(�t + ϕ) = ξ (t), (4)

where the dimensionless friction coefficient γ is related to
the Q factor of the resonator via γ = 1/Q and we further
introduced the dimensionless driving amplitude λ = EJ /mω2

0
and driving frequency � = ωJ /ω0. Throughout the first part of
the paper we concentrate on the limit T = 0 (ξ ≡ ξ̄ /mω2

0 = 0)
and discuss the impact of thermal noise later.

This form of the equation of motion, (4), is the starting point
for studying the dynamics of the voltage-biased circuit (cf.

Fig. 1) in the rest of this paper. In particular, we are interested in
the long-time limit, where the balance between the dissipative
and the driving part of Eq. (4) has pushed the system into time-
periodic steady-state orbits. Considering the energy balance of
the resonator obtained from Eq. (4),

d

dt

(
ϕ̇2

2
+ ϕ2

2

)
=−γ ϕ̇2 − λϕ̇ sin(ϕ + �t)

= Pdiss + PJJ→HO, (5)

we easily identify the power dissipated from the resonator,
Pdiss, and the power injected into the resonator via the driving,
PJJ→HO ≡ IJ VLC , which will both be considered in detail
below. The dissipated power together with the dimensionless
Josephson current IJ = λ sin(ϕ + �t) constitute the main
observables, which can be accessed experimentally, either
averaged over many oscillation periods, or time or frequency
resolved. Note that the physical current results from the
dimensionless current by multiplying φ0/L.

Due to the nonlinearity present in (4) the structure of
steady-state orbits will depend sensitively on the damping and
amplitude and frequency of the driving, giving rise to the full
wealth of nonlinear phenomena such as bifurcations, up- and
down-conversion etc. What distinguishes the situation under
consideration here from most other driven nonlinear systems
is that the nonlinearity appears not in form of a static potential
energy but rather as part of the driving force. In fact, it turns out
that the effective time-dependent potential giving rise to (4),
namely,

Veff(ϕ) = 1
2ϕ2 − λ cos(ϕ + �t), (6)

can sometimes be illuminating to achieve a better understand-
ing of the fictitious particle dynamics.

Of course, for nonlinear, time-dependent problems such
as (4) explicit solutions can, in general, only be obtained nu-
merically. However, analytical progress, at least for the steady
state, can be made in limiting domains of parameter space.
Physically, one expects a steady-state solution oscillating with
the frequency of the drive, as well as higher harmonics and
possibly subharmonics. Putting such an ansatz into (4), the
nonlinear sine term will again produce higher harmonics with
the coefficients of the various frequency components appearing
in Bessel functions.

Formally, one can write a generic ansatz,

ϕ(t) = ϕ0 + 1

2

∑
k∈M�

′ϕk eik�t+iθk , (7)

where ϕk = ϕ−k and θk = −θ−k so that solutions are real-
valued. The sum runs over a suitable set of rational numbers
M� with the prime indicating that k = 0 is excluded. For
example, below we will study the fundamental resonance
at � = 1 implying M� = Z. Other situations are driving at
� = n (n integer) with M� = {ν/n|ν ∈ Z} and at � = 1/n (n
integer) with M� = Z. Of course, in a perturbative treatment
only a finite number of coefficients is taken into account.
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FIG. 2. (Color online) Tuning the dimensionless Josephson coupling λ the steady-state dynamics at the fundamental resonance, � =
ωJ /ω0 = 1, accesses different ranges discussed in Secs. III A, III B, III C, which are characterized by typical phase-space portraits. Within the
domain III B, the dotted vertical line separates the range of regular dynamics from the range λ2 < λ, where the transition towards irregular
dynamics occurs. The solid line illustrates the corresponding behavior of the dimensionless dc current through the JJ with the shadow indicating
its standard deviation when starting the steady-state dynamics with thermal initial conditions. The specific data shown for γ = 0.01 exemplify
the generic behavior in the underdamped regime. In this regime, the parameters λ1/γ, λ∗

1, and λ2 are not very sensitive to varying the friction
strength.

Now, inserting this ansatz into (4) yields a nonlinear
equation for the steady-state Fourier coefficients, i.e.,

ϕ0 + 1

2

∑
k

′[ϕke
iθk (−�k + iγ�k)]eik�t

+ λ

2i
[ei�teiϕ0F+(t) − e−i�t e−iϕ0F−(t)] = 0, (8)

with �k = k2�2 − 1 and F±(t) = ∏
k>0

F±
k (ϕk,t). These latter

functions

F±
k (ϕk,t) =

∞∑
l=−∞

il(±1)lJl(ϕk)eil(k�t+θk) (9)

contain Bessel functions Jl(·) of the first kind and of integer
order. Equation (8) serves as a starting point for perturbative
treatments in various ranges of the dynamics in order to gain a
deeper understanding of the numerical findings based on (4).

III. FUNDAMENTAL RESONANCE

We will start in this section with the dynamics near and at the
fundamental resonance where the driving frequency matches
the Josephson frequency so that � = 1. According to (4),
in the absence of noise only two dimensionless parameters
are left which determine the nature of steady-state orbits,
namely, the friction γ and the driving amplitude λ. Current
experimental realizations are operated in the underdamped
regime with a fixed γ � 1 (Q factors vary from 10 to
about 1000) and varying driving strengths. In the classical
domain that we consider here, this leads from simple linear to
strongly nonlinear phase-space patterns, the structure of which
is reflected in specific observables such as charge current and
photon flux.

Before we study the details, let us give a brief qualitative
account of the different dynamical ranges when λ is varied (cf.
Fig. 2).

(i) In the regime of weak driving (Sec. III A), the dynamics
changes from linear to nonlinear towards a threshold λ1, where
a first bifurcation occurs. Perturbative treatments capture this
transition fairly accurately. While the oscillation amplitude
already reflects nonlinearities of the system, phase-space orbits
in this regime are basically ellipses with only small deviations
from the harmonic limit. Physically, the initial quadratic rise
of the dc current through the JJ flattens with increasing λ until
it saturates at λ = λ1.

(ii) For an intermediate range λ1 < λ < λ2 (Sec. III B)
the dynamics is dominated by the full nonlinearity of the
driving force but remains still regular. Within this domain
further bifurcations occur, however, without affecting the
dc current through the JJ which stays basically at its value
somewhat above λ1. Phase-space orbits increasingly lose their
harmonic-like ellipsoidal structure and become potato-shaped
with deformations in form of “dips”, thus reflecting the fact
that the effective time-dependent potential Veff(ϕ) (6) turns
from monostable to multistable.

(iii) With even further increasing λ > λ2 (also Sec. III B),
the system displays strong sensitivity to initial conditions
(multiple steady-state orbits) and eventually irregular phase-
space patterns. When this domain is approached, the dc current
through the JJ grows substantially in parallel with larger
current variations depending on the driving amplitude.

(iv) For extremely strong driving λ > λ3  1 and finite
friction (Sec. III C), the dynamics turns into a regular motion
again with a large time scale separation between the motion
happening within one of the local wells in Veff(t,ϕ) and global
dynamics exploring Veff over a wide range of ϕ.
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A. Weak-driving regime

As argued above, phase-space orbits in the weak-driving
regime remain basically ellipses, while the amplitude becomes
nonlinear until a bifurcation occurs. Thus, the steady-state
orbit (7) is dominated by Fourier coefficients ϕ0,ϕ±1. The
corresponding equations are easily obtained by projecting
Eq. (8) on the respective Fourier modes as

ϕ0 + λJ1(ϕ1) cos(ϕ0 − θ1) = 0 (10a)

and with �1 = �2 − 1

ϕ1[cos(θ1)�1 + γ� sin(θ1)]

− λ[J0(ϕ1) sin(ϕ0) − J2(ϕ1) sin(ϕ0 − 2θ1)] = 0, (10b)

ϕ1[− sin(θ1)�1 + γ� cos(θ1)]

− λ[J0(ϕ1) cos(ϕ0) + J2(ϕ1) cos(ϕ0 − 2θ1)] = 0. (10c)

This set of equations for {ϕ0,ϕ1,θ1} can be solved approx-
imately for small ϕ0,ϕ1 by exploiting that for the Bessel
functions one has Jk(x) ∼ O(xk) for |x| � 1. One first
gains from (10a) in leading order ϕ0 ≈ −λJ1(ϕ1) cos(θ1) ≈
−λϕ1 cos(θ1) so that driving-dependent terms in (10b) are of
higher order in the small parameter λ. This yields the phase of
oscillations,

tan(θ1) = − �1

�γ
(11)

with θ1 = 0 at resonance. Inserting this result into (10c) leads
close to resonance and in leading order in ϕ0 to

ϕ1 = λ√
�2

1 + �2γ 2
[J0(ϕ1) + J2(ϕ1)]. (12)

The known result for a driven harmonic oscillator is regained
for |ϕ1| � 1 while for somewhat larger driving nonlinearities
in the Bessel functions tend to play a role. This type of
orbit, with amplitude named ϕI

1 henceforth, which continually
evolves from the harmonic-oscillator type of solution, is the
only stable orbit until at a critical driving strength λ1 a second
solution appears with amplitude ϕII

1 .
In contrast to the harmonic-oscillator type orbit ϕI

1 , the new
orbit ϕII

1 exists even in absence of dissipation, and it is in this
limit that it can easily be found analytically: putting γ = 0
in (10b), (10c) taken at resonance �1 = 0, we assume ϕ0 = 0
to find the phase θII

1 = π/2 from (10a). Its amplitude then
follows via (10c) from

J0(ϕ1) − J2(ϕ1) = 2
d

dϕ1
J1(ϕ1) = 0 (13)

as ϕ1,I I � 1.841 independent of the driving amplitude. For
finite friction and away from resonance orbits are obtained
numerically from (4).

It turns out that in a range beyond the threshold λ1 the type-
II orbit is the only stable one, while the harmonic-oscillator
type-I orbits become unstable at this bifurcation point. The
threshold λ1 is determined by the condition that the amplitudes
of both solutions match, ϕI

1 (λ1) = ϕII
1 , i.e., according to (12)

λ1/γ = ϕII
1 /[2J0(ϕII

1 )] ≈ 2.912. In phase space both types of
solutions display ellipsoidal orbits. The transition from type-I

B

(b)

A

(a)

(c)

C D

(d)

FIG. 3. (Color online) Left: Mean dc current 〈IJ 〉 through the JJ
in steady state and on resonance � = 1 as a function of the scaled
driving amplitude λ/γ for (from bottom to top) γ = 0.005 (blue),
0.01 (black, cf. Fig. 2), 0.02 (red). Right: Power transfer PJJ→HO

from the JJ to the resonator during one period of the oscillations
in the steady state at t∞ = n 2π , n  1, n ∈ N. The power transfer
is shown for γ = 0.01 and at four different driving strengths (also
marked in the left panel): λ/γ = 0.1 (A), 2 (B), 3 (C), and 3.5 (D).
While the harmonic-oscillator type-I solutions gain energy from the
drive nearly during the whole oscillation cycle (A and B), for type-II
oscillations the energy gained during part of the cycle is partly flowing
back to the drive in other parts (C and D). In consequence, increasing
the driving strength beyond λ1/γ ≈ 2.9 does not further increase
oscillation amplitude and current.

to type-II solutions at the bifurcation point λ1 has also been
found in the classical limit of a quantum description within
rotating-wave approximation in [36,37].

An intuitive understanding of the saturation of the
oscillation amplitude, when the driving strength is increased
beyond λ1, and, indeed, of the nature of the type-II orbit
is offered by the numerical results in Fig. 3. How the
resonator acts back onto the charge transfer in the JJ
below/above the threshold is monitored by the energy
transferred from the JJ to the resonator [cf. (5)], i.e., the
power PJJ→HO(t) = −λϕ̇(t) sin[ϕ(t) + �t] in the right panel
of Fig. 3. Sufficiently below the threshold λ1/γ ≈ 2.9, energy
is nearly unidirectionally injected into the resonator, i.e., the
drive pushes energy into the oscillator at each time of the
oscillation cycle. The phase shift of the type-II oscillations,
however, results in an oscillation which extracts energy
from the drive during one part of the oscillation cycle,
and pushes energy back during another part. Increasing
the driving strength beyond λ1 will thus increase energy
inflow and backflow, but will not further increase the net
gain over a full cycle; hence, the saturation of the oscillation
amplitude at ϕ1,I I � 1.841. Experimentally, the transition
from type-I to type-II orbits is seen as a saturation in the
dc current through the JJ, i.e., 〈IJ 〉 = λ〈sin[ϕ(t) + �t]〉�,
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FIG. 4. (Color online) Top: Dissipated power Pdiss from the
driven JJ+resonator system for γ = 0.01, � = 1, and various driving
strengths λ1 < λ < λ2 around the second bifurcation λ∗

1. Bottom:
Snapshots of the effective time-dependent potential Veff (ϕ) (6) for
various driving strengths (see top for the color code) beyond the first
threshold λ > λ1 and at times �t = (2n + 1)π , n ∈ N.

where the time average 〈·〉� is taken in steady state and
over several oscillation periods; see left panel of Fig. 3. The
dc current resulting from this averaging is (approximately)
proportional 〈ϕ2

1〉 [analytically found from Eq. (12) and (13)].
Physically, this proportionality originates from balancing
dissipation (proportional to the stored energy) and power
input. Accordingly, the quadratic dependence 〈IJ 〉 ∝ λ2 ∝ E2

J

in the regime of very weak driving passes over to a linear
dependence for somewhat stronger driving but still before the
threshold. This changeover is reminiscent of the changeover
from the perturbative domain of sequential (Coulomb
blockade) to the regime of coherent charge transfer (phase
coherent regime). Note that the various numerically found
current curves in Fig. 3 approximately just scale with γ , but
for stronger damping the bifurcation threshold is shifted below
the result λ1/γ ≈ 2.9 calculated for the γ → 0 limit above.

B. Beyond the first threshold

Beyond the first threshold λ > λ1, type-II orbits dictate
the dynamics until a second bifurcation occurs at λ∗

1 ≈ 0.8
with only a very weak dependence on the friction strength
in this underdamped regime. The emergence of this class of
orbits is characterized by a substantial deformation of the
ellipsoidal phase-space structure (see Fig. 2), which is related
to a changeover of the effective potential Veff(ϕ) (6) from being
essentially monostable to dominantly multistable (see Fig. 4).

A particle moving (rather weakly damped) in the time-
dependent effective potential will encounter a deep well during
its passage through ϕ = 0 in one direction, while on the way
back in the second part of its oscillation cycle (see lower panel
of Fig. 4), the well is less pronounced (corresponding to the

situation below λ∗
1) or even turns into a barrier around ϕ = 0

(situation well above λ∗
1). Indeed, in the power dissipated

from the driven system into the reservoir Pdiss(t) = −γ ϕ̇2(t)
(upper panel of Fig. 4), the maximal amplitude at �t =
2nπ (n integer) shows a local maximum right around the
bifurcation value λ∗

1, whereas the speed of the fictitious particle
(and concurrently Pdiss) at �t = (2n + 1)π is more and more
reduced and even develops a local minimum when passing
through ϕ = 0. While this second bifurcation has almost no
effect on the dc current (cf. Fig. 2), its appearance is detectable
in the discussed features of the dissipated power.

With further increasing the driving λ > λ∗
1 and initial condi-

tions close to the phase-space origin, further bifurcations occur
that we do not need to discuss in detail here. It is important to
note though that each bifurcation is associated with a change
in stability meaning that only the newly emerging orbits
determine the dynamics beyond each bifurcation threshold.
Independently of the appearance of new orbits, the dc current
IJ,dc stays basically constant over a wide range of driving
amplitudes λ1 < λ < λ2 ≈ 1.6 (see Fig. 2). Similarly to λ∗

1
the numerical value of λ2 depends only very weakly on the
friction strength in the underdamped regime.

For the driving strengths considered so far, it has been
sufficient to consider initial conditions {ϕ(0),ϕ̇(0)} close to
the phase-space origin only. Now, given that steady-state orbits
tend to explore larger domains in phase space, one may wonder
about the impact of initial conditions located in these regions.
This is illustrated in Fig. 5 (left), where classes of steady-state
orbits are studied depending on their initial conditions for
moderately strong driving λ = 1, i.e., λ1 < λ < λ2.

Indeed, for different sets of initial conditions {ϕ(0),ϕ̇(0)},
one now asymptotically finds three different classes of steady-
state orbits in phase space. This dynamical multistability
reflects the multistability of the effective potential Veff(ϕ)
due to a strong nonlinearity. However, in this regime of
driving strengths, λ1 < λ < λ2, the existence of multiple types
of steady-state orbits will usually not be of experimental
relevance. This is due to the fact that multistability only
occurs if the fictitious particle leaves local wells in Veff which
requires at least an energy of 2λ. This could, in principle,
be done by preparing the system initially (a difficult task
though) such that EHO(ϕ̇(0),ϕ(0)) > 2λ: See the dark blue
area in the left panel of Fig. 5, indicating initial conditions
around the phase-space center which lead to one and the
same steady-state orbit. Starting from an equilibrated circuit,
however, domains of initial conditions leading to additional
steady-state orbits do play a role only at highly elevated
temperatures, kBT/mω2

0 > 2λ. For the current experimental
situation, this regime is not relevant.

For λ > λ2 ≈ 1.6, one enters again a qualitatively new
regime. It is characterized by a sharp rise of the dc current
through the JJ by almost an order of magnitude (see Fig. 2).
Now, even for initial conditions close to the phase-space origin,
multiple types of stable steady-state orbits exist, both exploring
large domains in phase space; see Fig. 5 (right). Some of these
orbits are covered only after multiples of the fundamental
period 2π/�, in contrast to the regime λ < λ2 [cf. single
(multiple or single) Poincaré-plot points in the orbits of the
left (right) panel of Fig. 5]. Hence, the sensitivity with respect
to initial conditions grows substantially, thus marking the onset
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FIG. 5. (Color online) Various classes of steady-state orbits (outer panels) depending on the initial conditions (inner panels) for γ = 0.01
and strong λ = 1 (left) and very strong driving λ = 2.455 (right). The color code for the initial conditions in phase space corresponds to a
particular type of steady-state orbit in phase space. Red dots result from Poincaré plots and indicate points of return for steady-state orbits after
one period 2π/�.

of irregular, chaotic-like behavior for sufficiently large driving
amplitudes λ > λ2. A detailed analysis of properties and
characteristics of possible chaotic dynamics in this domain is
beyond the scope of this paper and will be presented elsewhere.

C. From multiwell to elevator dynamics

Interestingly, in the regime of extremely strong driving, λ >

λ3  1 (and for finite friction), regular dynamics dominates
again (see Fig. 6). At this driving strength the periodic part
of Veff is pronounced enough to create a multitude of local
minima in the superimposed quadratic potential; see Fig. 6(b).
We mention in passing that this multiwell pattern of Veff has
some analogy to the potential profile of superconducting quan-
tum interference devices (SQUIDs). In contrast to SQUIDs,
however, the potential Veff(ϕ), cf. Eq. (6), combines a static
quadratic with a time-dependent sinusoidal potential.

The dynamics is then easily understood—most simply in
the completely underdamped and the strongly overdamped
cases. In the completely underdamped case [upper left of
Fig. 6(a)] the particle essentially undergoes a simple oscillation
in the quadratic potential over a wide ϕ region, running with
high energy over the potential wells, which then causes slight
wiggles in the phase-space orbit.

For somewhat stronger friction [upper right of Fig. 6(a)], a
fictitious particle runs periodically through a cycle of localized
and delocalized motion: Starting somewhere in the low-energy
sector, it gets trapped quickly in one of the local minima
of the potential close to the global minimum of Veff(ϕ)
(6). It is then transferred up in energy by the driving term
∝ cos(ϕ + �t) while being trapped in this local well. During
this process the potential barrier of the respective local well
shrinks until the particle can escape to run towards the global
minimum while losing substantial energy so that it gets trapped
close to the global energy minimum again. This type of

“elevator” dynamics leads to increasingly simpler phase-space
patterns towards the overdamped regime. Physically, during
the trapping period |ϕ| grows almost linearly with |ϕ̇| ∼ 1/�,
whereas the motion towards the global minimum is associated
with an almost instantaneous drop in amplitude accompanied
by a large increase in momentum. As a consequence, based
on the second Josephson relation V (t) ∝ ϕ̇(t), one expects to

FIG. 6. (Color online) (a) Phase-space portraits of steady-state
orbits with Poincaré points (red) in the regime of extremely strong
driving with λ = 30 � λ3 and γ = 0.01 (top left), 0.025 (top right),
2.5 (bottom right), 5 (bottom left). Sketched in (b) is the particle
dynamics in the effective potential Veff (ϕ), see Eq. (6), corresponding
to phase-space orbits in the right panels of (a). For moderate damping
the particle is trapped in one of the local wells, “elevated” upwards
in Veff (ϕ) [the motion towards large negative ϕ values with small ϕ̇

in (a)] until its escape and consequent retrapping.
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(b)

(c)
k

1/3 1/2

FIG. 7. (Color online) (a) Power spectrum, ln{|ϕ̃(ω)|2}, of
steady-state orbits ϕ(t) for a range of driving frequencies � in the
underdamped regime γ = 0.1 and at moderate driving amplitude
λ = 0.2. For the sake of presentation the spectrum is numerically
broadened by taking the Fourier transform of a finite-time signal.
(b) Dominant components |ϕk|2 of ϕ(t) [see (7)], corresponding to
lines ω = k� in (a). Panel (c) shows a cut of the power spectrum
at the (shifted) subharmonic resonance � = 0.365 ≈ � 1

3
at a larger

driving amplitude λ = 0.7, where the system dominantly responds
with ω = 3� ≈ 1.

observe strong voltage pulses with frequencies much lower
than the driving frequency �.

IV. HIGHER ORDER RESONANCES

So far we have considered driving the system at (or close to)
the eigenfrequency, ω0 ≡ 1, of the resonator. At sufficiently
strong driving, the system’s response then contains higher
harmonics. It is, thus, also interesting to drive at frequencies
� �≈ 1, where higher harmonics or subharmonics of the drive
can become resonant with the eigenfrequency. Physically, the
drive is detuned, of course, simply by changing the applied
dc-voltage bias.

Figure 7 shows the steady-state power spectrum, |ϕ̃(ω)|2,
i.e., the response of the system at frequency ω if driven at �.
Such spectra have been recently investigated experimentally in
Ref. [29]. Resonances [i.e., stable steady-state solutions of (4)
or (8) with large amplitudes] are found for driving frequencies
�n = n for integer n �= 0, where the system responds at
ω = 1,2,3, . . ., and for driving frequencies � 1

n
= 1/n with

response frequencies ω = 1/n,2/n,3/n, . . .. The situation
in which the system is driven with � and responds with
ω < � is called down-conversion, the situation in which it
responds with ω > � up-conversion. Apparently, for a driving
frequency �2 the system dominantly responds with ω = 1
while contributions of higher harmonics are weak. In contrast,
driving with � 1

2
one observes a response in which dominantly

frequencies with ω = 1/2 but also the first few higher harmon-
ics ω = 1, 3/2, . . . are present. While the power spectrum,
|ϕ̃(ω)|2, shown here gives a direct intuitive link to the system

FIG. 8. (Color online) The dc current through the JJ vs driving
frequency � and driving amplitude λ for γ = 0.1. For weak driving
the system is nearly linear and dominated by the fundamental
resonance, � = ω0 = 1, while for stronger driving the subharmonic
resonances at � = � 1

n
= ω0/n and the multiphoton resonances at

� = �n = nω0 become apparent. Note the sharp onset of two-
photon processes at λc ≈ γ� = 0.2 described in Sec. IV A, while
subharmonic resonances increase smoothly and shift with increasing
λ as discussed in Sec. IV B (cf. also Fig. 9).

dynamics, comparable information can also be extracted from
the directly measurable spectrum of light emission. Before we
turn to details of its resonant features below, let us address
the consequences of varying the dc bias (and thus the driving
frequency) for the dc current through the JJ. As depicted in
Fig. 8, current peaks appear indeed at driving frequencies �n

and � ≈ � 1
n

with n � 1 integer with a characteristic shift
towards � > � 1

n
in the subharmonic domain. These features

may remind one of Shapiro steps [1] known from JJs subject
to dc and ac voltages of the form V (t) = vdc + vac cos(�act),
an interpretation which for the present situation is somewhat
confusing though: The conventional argument for the existence
of Shapiro steps is that resonances appear whenever the energy
gap induced by the dc voltage 2evdc matches multiples of
ac-photon quanta ��ac, i.e., 2evdc/� = n�ac, n � 1 being
integer. For the present situation, however, one could argue
in two ways (we temporarily return to physical dimensions):
(i) The dc voltage which determines the driving frequency
� = 2eV/� must be multiples of the resonator frequency ω0

implying � = nω0, n � 1 integer, or (ii) the excitation of the
resonator by one energy quantum �ω0 requires multiples of
ac-photon quanta n��, n � 1 integer, i.e., � = ω0/n. Along
these lines, one could interpret either the subharmonic � 1

n

or the higher harmonic �n resonances as Shapiro steps. The
fundamental difference from the conventional setup to observe
Shapiro steps is that there the dynamics of the Josephson phase
φ is fixed by the external voltage according to 2eV (t) = φ̇/�,
while here the Josephson phase appears as a dynamical degree
of freedom fixed by the dynamics of the resonator phase ϕ [see
Eq. (2)].

A. Integer multiphoton processes

Now, we start with multiphoton resonances �n = n, where
the system asymptotically responds mostly with frequency
ω = 1 (down-conversion). In particular, we focus on the
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FIG. 9. (Color online) Time-averaged steady-state energy in the
resonator for γ = 0.1 and at different driving strengths: λ = 0.1
(black), 0.15 (blue), 0.2 (green), 0.5 (red). For the two-photon
resonance, � = 2, there is a rather sharp threshold at λ � λc = 2γ ,
while subharmonic resonances, � ≈ 1/n, gradually increase and shift
with increased driving strength.

generic case � = 2 (see Fig. 7) which can be interpreted as a
parametric resonance.

The general argument for the appearance of this type of
resonance can be directly read off from the equation for the
Fourier mode amplitudes (8): For � = n we seek orbits with a
time dependence dominated by cos(t) implying that Fourier
coefficients ϕ 1

n
with kn = 1 dominate the expansion (7).

Accordingly, in (8) F± ≈ F±
1
n

(ϕ 1
n
) and upon projecting onto

orbits with e±it , one arrives at time-independent equations for
the coefficients ϕ 1

n
which include Bessel functions Jn−1(ϕ 1

n
)

and Jn+1(ϕ 1
n
) [see (9)].

In the particular case of � = 2, we may write for small
amplitudes λ sin[ϕ(t) + 2t] ≈ λ[sin(2t) + ϕ(t) cos(2t)], thus
giving in the equation of motion (4) effectively rise to a
parametrically driven harmonic oscillator scenario. For this
system steady-state solutions only exist below a critical,
damping-dependent value λc = 2γ , while above that thresh-
old oscillation amplitudes will grow infinitely in time. Of
course, here the nonlinearity of the full problem prevents
this divergence from occurring. Then, the simplest ansatz,
ϕ(t) ≈ ϕ 1

2
cos(t + θ 1

2
), taking only oscillations at the os-

cillator’s resonance frequency into account, yields for the
amplitudes

[J1(ϕ 1
2
) + J3(ϕ 1

2
)]/ϕ 1

2
= γ /λ. (14)

Solutions of this equation only exist above the parametric-
resonance threshold, λ > λc = 2γ , with a phase θ 1

2
≈ −π/4

(cf. also [36]). The full solution with an additional contribution
|ϕ1| � |ϕ 1

2
| and θ1 ≈ π/2 shows similar threshold behavior

with some quantitative corrections (cf. the threshold in Fig. 8
and Fig. 9).

B. Subharmonic resonances

In the driving-frequency range � < 1 below the funda-
mental resonance, the system will dominantly respond with a
few higher harmonics ω = �, 2�, . . . ; see Fig. 7. Resonances

appear approximately at driving frequencies � 1
n
, where one

of these harmonics matches the eigenfrequency ω0 = 1. This
resonant response results, in particular, in a strong contribution
to the dc current close to � 1

n
, where a shift of the resonance

with increasing driving strength can be observed; see Fig. 8.
As a specific example, we consider the shift of the resonance

close to � = 1/2 for γ → 0. Taking then an ansatz for the
steady-state orbits (7) of the form ϕ(t) ∼ ϕ1 cos(�t + θ1) +
ϕ2 cos(2�t + θ2) with � ≈ � 1

2
and considering (8), we find

that the Fourier coefficients for this type of steady-state orbit
have to be gained from nonlinear equations including products
of Bessel functions J0(ϕ2)J1(ϕ1), J2(ϕ2)J1(ϕ1). Assuming for
sufficiently strong driving a dominant response with 2� ≈ 1
and thus ϕ1 � 1, ϕ2, we take into account only the lowest order
of the Bessel functions for ϕ1 and find the resonance condition
�2 = −λ cos θ1ϕ1J1(ϕ2)/ϕ2 > 0 from the 2� projection of
Eq. (8). That this shift is indeed positive, as seen in Fig. 8,
can be analytically confirmed for this limit by analyzing the
� projection. Increasing the driving strength, the shift that
depends on the mixing between the driving frequency and
the first higher harmonics grows further. Remarkably, at least
for moderate driving similar shifts do not occur for the �n

resonances (including the fundamental one), as apparent from
the numerical data in Fig. 8 and analytically following Eq. (10)
and Sec. IV A.

Note that the multiphoton processes and subharmonic reso-
nances discussed here and shown in Figs. 7 and 8 all occur for
comparatively weak driving; for strong driving similarly rich
behavior for driving at sub- and higher-harmonic resonance
frequencies may be expected, as found in Secs. III B, III C for
the fundamental resonance.

C. Energy transfer

As already discussed for the fundamental resonance in
Sec. III A, the energy transfer from the driving source to the
resonator is another tool to reveal details of the nonlinear
dynamics. Experimentally, it is accessible as (mean) photon
emission from the resonator. Here, we depict resonance
curves of the time-averaged resonator energy EHO = 〈ϕ̇2/2 +
ϕ2/2〉�; see Fig. 9. As expected, the resonances discussed in
the previous sections appear in form of pronounced peaks at
frequencies �n and � 1

n
. In the subharmonic regime the shift

in the resonances towards � > � 1
n

for larger λ is seen as well.
We note also the threshold λ > λc for the occurrence of the
parametric resonance at �2.

V. THERMAL NOISE

In actual experimental realizations, noise stemming from
various sources is always present and may sensitively influence
the dynamics of the JJ+resonator device. In the Langevin
equation (4) we restricted ourselves to thermal noise related to
the finite photon lifetime in the resonator via the fluctuation-
dissipation theorem. Another major source of noise may be
local voltage fluctuations at the JJ that may induce charge
localization (Coulomb blockade). However, for the present
situation the impact of these fluctuations is of minor relevance.
Although assuming a purely classical regime implies that
temperatures are high as compared to quantum fluctuations,
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the circuit is nonetheless operated at temperatures sufficiently
low compared to other energy scales of the system, i.e., in
dimensional units kBT < mω2

0,EJ .
The simplest way to include finite-temperature effects is

to perform a thermal averaging over initial conditions; i.e.,
we start initially with a thermal distribution of phase-space
variables but then follow a deterministic time evolution
according to (4) for ξ = 0. While somewhat inconsistent, this
scenario accounts for the fact that precise initial conditions
are experimentally not feasible. From a purely theoretical
perspective, it allows us to analyze the sensitivity of steady-
state orbits onto initial conditions.

The full description of thermal noise works with the
Langevin equation (4) and seeks phase-space orbits averaged
over many noise realizations 〈ϕ(t)〉ξ ,〈ϕ̇(t)〉ξ . In this latter
situation, asymptotically thermal fluctuations may induce
transitions between various steady-state orbits even when
their respective initial conditions are well separated in phase
space.

The main effect of an initial thermal distribution is apparent
in the regime λ > λ2 (see Fig. 2), where bare steady states
tend to depend sensitively on the initial conditions. Accord-
ingly, when averaged over an initial thermal distribution,
phase-space structures in steady state are washed out. This
in turn gives rise to relatively large current fluctuations
〈(Idc − 〈Idc〉0)2〉0, where 〈· · · 〉0 denotes the average over
initial conditions according to a thermal distribution. In fact,
the size of current fluctuations directly indicates ranges in
parameter space, where the underlying asymptotic dynam-
ics displays either bifurcations or irregular behavior; cf.
Fig. 2.

Thermal noise according to the full Langevin dynamics has
a similar impact. Here, we focus on two domains, namely,
the domain around the first bifurcation λ ≈ λ1 for � = 1 (see
Sec. III A) and the domain around the parametric resonance
λ ≈ λc ≈ 2γ for � = 2 (see Sec. IV A).

For the first case, in Fig. 10 the mean steady-state amplitude
max[〈ϕ(t → ∞)〉ξ ] is shown. Even in the weak-driving regime
the linear response of the system gets influenced by temper-

λ
0 0.01 0.02 0.03

ϕ
m

ax

0

0.5

1

1.5

2

FIG. 10. (Color online) Mean steady-state oscillation amplitude,
ϕmax = max[〈ϕ(t → ∞)〉ξ ], vs driving strength averaged over 10 000
realizations of thermal noise at temperatures kBT = 0 (black), 0.01
(green dashed), 0.1 (blue), 0.25 (red) for friction parameter γ = 0.01.

FIG. 11. (Color online) Mean dissipated power at temperature
kBT = 0 (top two panels) and kBT = 0.1 (bottom) with γ = 0.1 and
� = 2 for various driving strengths λ = 0.15 (black), 0.2 (blue), 0.5
(green). The threshold for the parametric amplification in the absence
of noise is λc ≈ 2γ = 0.2.

ature as thermal fluctuations become larger and increasingly
explore the nonlinearity of the effective potential. More sub-
stantial deviations occur for λ → λ1, where the bifurcation is
increasingly smeared out and the overall oscillation amplitude
decreases at elevated temperatures.

In the second case, the parametric-resonance threshold, the
situation is a bit more intricate. Here, thermal noise may
mix higher harmonics in the Fourier expansion (7) with the
consequence that down-conversion already occurs prior to the
threshold λc; see Fig. 11. Accordingly, already for driving
strengths below the zero-temperature threshold, thermal noise
excites oscillations with the resonant frequency ω = �2/2 =
1 with a drastically increased amplitude compared to the
response at the driving frequency ω = �2 in the absence of
noise (e.g., an increase by about two orders of magnitude for
the black lines in Fig. 11). Above-threshold oscillations are
somewhat reduced by temperature. Nonetheless, a transition
remains clearly visible, for example, in the mean dissipated
power 〈Pdiss(t)〉ξ . Furthermore, an offset emerges such that
〈Pdiss(t)〉ξ > 0 for all times, which can be related to the thermal
energy continuously injected into the system.

VI. CONCLUSION AND DISCUSSION

In this paper we analyzed the classical dynamics of a
circuit, where a single relevant resonator mode interacts with
a dc-voltage-biased JJ. This problem can be mapped onto
the dissipative dynamics of a fictitious particle moving in
a nonlinear, time-dependent potential, where in contrast to
conventional settings the nonlinearity appears as part of the
driving, while the static part of the potential is purely harmonic.
In the regime of moderate to large Q factors (underdamped
regime) and weak thermal noise, steady-state orbits and
corresponding observables are determined by basically only
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two parameters, namely, the dimensionless driving strength
(Josephson coupling) λ = EJ /mω2

0 and the dimensionless
driving frequency � (in units of ω0).

At the fundamental resonance � = ωJ /ω0 = 1 this system
displays a changeover from a linear response regime for
weak driving towards a strongly nonlinear behavior for
strong driving. The various dynamical domains leave their
signatures in the dc current flowing through the JJ and in
the microwave power emitted from the resonator and are thus
directly accessible experimentally. Resonances are also found
when driving with either higher harmonics (� = n, n integer)
or subharmonics (� ≈ 1/n, n integer), while the system
responds with the fundamental frequency thus corresponding
to processes of down- and up-conversion. These features can
also be detected by either monitoring the dc-Josephson current
or the radiated microwaves. Due to its high degree of tunability
the resonator+JJ circuit thus allows one to study the full wealth
of classical nonlinear dynamics in one-dimensional driven,
dissipative systems. The impact of weak thermal noise is most
prominent close to bifurcations of steady-state orbits.

At this point let us discuss a typical set of parameters for
circuit designs that allows us to access the physics discussed
above: The classical regime with weak thermal noise requires
that mω2

0  kBT  �ω0. For a resonance frequency of ω0 ∼
5 GHz, this can be realized with an LC circuit with C ∼ 5 pF
operated at temperatures T ∼ 150 mK. One then has mω2

0 ∼
0.08 meV, kBT ∼ 0.015 meV, and �ω0 ∼ 0.003 meV. In the
phase regime of the JJ, one further needs EJ  EC which
applies for a typical EJ ∼ 1 meV. An external magnetic
flux allows one to tune this maximal Josephson coupling
down to a factor of about 100, i.e., within the range EJ ∼
0.01 . . . 1 meV. Present resonator designs have typical photon

lifetimes over a wide range of Q factors Q ≈ 10 . . . 104 which
coincides with the (strongly) underdamped regime.

Theoretically, at the fundamental resonance new dynamical
domains are associated with driving parameters λ1,λ

∗
1,λ2,

and λ3 as depicted in Fig. 2 which, given the above
parameters, translates into the following coupling ener-
gies: EJ,1 ≈ 0.02 meV, E∗

J,1 ≈ 0.05 meV, EJ,2 ≈ 0.1 meV,
EJ,3(λ ≈ 20) ≈ 1.3 meV. Apparently, the first three coupling
energies are easily accessible experimentally with only EJ,3

lying at the edge of the range. The challenge here is that to
cover the full range of driving amplitudes within one setup
from the linear response regime EJ � EJ,1 to EJ,3 requires
varying EJ by a factor of somewhat more than 100.

Note that the superconducting gap 2� defines an upper
limit on the applied voltage 2eV < 2� which for Al junctions
corresponds to ωJ � 500 GHz, thus allowing also for driving
at higher harmonics �n. Following this discussion, we are
confident that the classical, nonlinear dynamics analyzed in
this work is indeed accessible in realistic circuits similar to
those in Ref. [29] and opens the door to studying the interplay
of driving, dissipation, and resonances under well controlled
conditions.
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[45] J. Leppäkangas, M. Fogelström, A. Grimm, M. Hofheinz, M.

Marthaler, and G. Johansson, Phys. Rev. Lett. 115, 027004
(2015).

[46] O. Parlavecchio, M. Westing, M. Trif, P. Simon, J. Ankerhold,
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