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Coupled normal fluid and superfluid profiles of turbulent helium II in channels
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We perform fully coupled two-dimensional numerical simulations of plane channel helium II counterflows
with vortex-line density typical of experiments. The main features of our approach are the inclusion of the back
reaction of the superfluid vortices on the normal fluid and the presence of solid boundaries. Despite the reduced
dimensionality, our model is realistic enough to reproduce vortex density distributions across the channel recently
calculated in three dimensions. We focus on the coarse-grained superfluid and normal fluid velocity profiles,
recovering the normal fluid profile recently observed employing a technique based on laser-induced fluorescence
of metastable helium molecules.

DOI: 10.1103/PhysRevB.92.174530 PACS number(s): 67.25.dk, 47.37.+q, 47.27.nd

I. INTRODUCTION

Three-dimensional homogeneous isotropic turbulence is
the benchmark of turbulence research. Recent papers
[1–3] have compared the properties of homogeneous isotropic
turbulence in ordinary (classical) fluids and in liquid helium
near absolute zero, and found remarkable similarities. In
particular, experiments have revealed that the temporal decay
of vorticity [4] is the same, and that the energy spectrum
(which represents the distribution of kinetic energy over the
length scales) obeys the same classical Kolmogorov scaling
at sufficiently large length scales [5–7], in agreement with
theoretical [8,9] and numerical studies [10–13]. These results
are surprising, because the low-temperature phase of 4He
(hereafter referred to simply as helium II), is quite different
from an ordinary fluid [14]. It is well known, in fact, that
helium II consists of two interpenetrating fluid components:
a viscous normal fluid (whose vorticity is unconstrained) and
an inviscid superfluid (whose vorticity is confined to vortex
line singularities of fixed circulation h/m where h is Planck’s
constant and m is the mass of one helium atom).

Despite its importance, isotropic homogeneous turbulence
is an idealization which neglects the role of boundaries (for
example, vorticity is generated at the walls of a channel). In
this paper we are concerned with superfluid turbulence along
channels or pipes. Such flows are neither homogeneous (be-
cause the boundary conditions are likely to induce nonuniform
profiles) nor isotropic (because of the direction of the flow).
The prototype channel problem of the helium literature is
thermal counterflow [15–21]. The typical experimental setup
consists of a channel which is closed at one end, and is open
to the helium bath at the other end. At the closed end, a
resistor dissipates a known heat flux which is carried away
by the normal fluid; to conserve mass, superfluid flows in the
opposite direction towards the resistor; the resulting velocity
difference between the two fluids is proportional to the applied
heat flux. If this heat flux is larger than a small critical value, the
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superfluid component becomes turbulent, forming a disordered
tangle of quantized vortex lines (superfluid turbulence). The
intensity of the vortex tangle is usually characterized by its
vortex line density L (length of quantized vortex lines per unit
volume), which can be determined by measuring the attenua-
tion of second sound as a function of the applied heat flux.

The questions which we address in this work is simple but
fundamental: what are the profiles of the normal fluid, of the
superfluid, and of the vortex density across the counterflow
channel?

This question motivates current experimental attempts to
directly visualize the flow of helium II. Two new visualization
methods stand out. Particle tracking velocimetry (PTV) of
hydrogen and/or deuterium flakes [22–24] has been used
to image individual quantum vortex reconnections [25] and
to determine the velocity and acceleration statistics of the
turbulent superfluid [26,27]. Laser-induced fluorescence of
metastable helium molecules [28,29] has directly imaged the
profile of the normal component, addressing the issue of
whether, at sufficiently large heat currents, the normal fluid
flow undergoes a laminar-turbulent transition [30].

Until now, the question of the profiles of normal fluid, su-
perfluid, and vortex line density has been unanswered. On first
thoughts, in analogy with a classical viscous fluid (which obeys
the Navier-Stokes equation with no-slip boundary conditions),
the normal fluid component should have a parabolic Poiseuille
profile across the channel; similarly, in analogy with a classical
inviscid fluid (which obeys the Euler equation and, unimpeded
by viscosity, can slip along the channel’s walls), the superfluid
component should have a uniform profile, hence the vortex line
density should be nonpolarized and, eventually, uniform. On
second thoughts, the said profiles cannot be correct: the varying
mismatch between the superfluid and normal fluid velocities
across the channel would induce a large nonuniform mutual
friction [31] which would modify these profiles. To appreciate
the mathematical difficulty of the problem, notice that not
only are the two fluid components coupled (the normal fluid
affects the superfluid and vice versa), but the coupling term
between the two fluids is nonlinear: the mutual friction is
proportional to the velocity difference between normal fluid
and superfluid, times the vortex line density, which is a
nonlinear function of this velocity difference.
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Unfortunately, most numerical simulations of superfluid
turbulence in the literature have determined the superfluid
vortex tangle in the presence of a prescribed normal fluid,
without taking into account the back reaction of the vortex
lines on the normal fluid. Various models of the imposed
normal fluid have been studied: uniform [32–35], parabolic
[36–39], Hagen-Poiseuille and tail-flattened flows [40], vortex
tubes [41], ABC flows [42], frozen normal fluid vortex
tangles [43], random waves [35], time-frozen snapshots of the
turbulent solution of the Navier-Stokes equations [35,37,39],
and time-dependent homogeneous and isotropic turbulent
solutions of linearly forced Navier-Stokes equations [44].
Moreover, most calculations were performed in open or
periodic domains, avoiding the difficulty of the boundary.
Other works have determined the effects of a prescribed
superfluid tangle on the normal fluid, [30] failing again to fully
model the coupling of superfluid and normal fluid. Because of
the computational complexity and cost involved, fully coupled
calculations have been attempted only for simple configura-
tions, such as single, isolated vortex lines [45] or rings [46],
or for decaying tangles in open geometry [47] and periodic
domains [48,49].

The model which we present here is fully coupled (the
normal fluid affects the superfluid and vice versa via a
nonlinear mutual friction term) and includes boundaries. To
cope with the computational difficulty, our model is two
dimensional rather than three dimensional: vortex loops in
a three-dimensional channel are thus replaced by vortex
points in a two-dimensional channel. Despite the simplified
dimensionality, our model captures the nonlinearity of the
problem, which, we think, is the key ingredient to determine
flow profiles in actual channels.

The outline of the paper is the following. In Sec. II we
describe the two-dimensional model which we use and the
details of the numerical algorithm. Section III focuses on the
results and in Sec. IV we critically discuss to what extent
our two-dimensional model is capable of grasping the most
relevant vortex dynamics occurring in helium II counterflows.
Finally, Sec. V summarizes the conclusions.

II. MODEL

A. Counterflow channel

We consider an infinite two-dimensional channel of width
D. Let x and y be respectively the directions along and across
the channel with walls at y = ±D/2 and periodic boundary
conditions imposed at x = 0 and x = Lx . The average normal
fluid and superfluid flows are respectively in the negative and
positive x direction.

The superfluid vortices are modelled as N vortex points
of circulation �j and position rj (t) = (xj (t),yj (t)), where
j = 1, . . . N and t is time. Half the vortices have positive
circulation �j = κ and half have negative circulation
�j = −κ , where κ = 10−3 cm2/s is the quantum of
circulation in superfluid 4He.

To make connection with experiments we interpret n =
N/(DLx) (average number of vortex points per unit area) as the
two-dimensional analog of the three-dimensional vortex-line
density L, and relate L to the channel-averaged normal fluid

longitudinal velocity 〈un〉 via the relation [19]

L1/2D = 1.03γ0
ρ

ρs

〈un〉hD − 1.48β, (1)

where 〈un〉 is related to the applied heat flux q via

〈un〉 = q

TρS
, (2)

where T is the absolute temperature, S is the specific entropy,
and ρn, ρs , and ρ are the normal fluid, superfluid, and
total helium II densities, respectively, where ρ = ρn + ρs .
The coefficients γ0 and β in Eq. (1) have been determined
experimentally by Tough and collaborators [19–21], while hD

represents the channel’s hydraulic diameter.
In the absence of vortices, the counterflow condition of zero

net mass flow,

ρn〈un〉 + ρsv
ext
s = 0, (3)

determines the uniform superflow vext
s in the opposite direction

with respect to the normal fluid. Notice that Eq. (1) coincides
with Vinen’s equation [16] describing the evolution of the
vortex-line density L modified in order to take into account the
presence of solid boundaries and that the average intervortex
distance � is defined by the relation � = L−1/2.

B. Superfluid vortices

The vortex points move according to [32]

drj

dt
= vs(rj ,t) + α s′

j × [vn(rj ,t) − vs(rj ,t)]

+α′[vn(rj ,t) − vs(rj ,t)], (4)

where s′
j is the unit vector along vortex j (in the positive

or negative z direction depending on whether �j is positive
or negative), α and α′ are temperature-dependent mutual
friction coefficients [31], vn(rj ,t) is the normal fluid velocity
at position rj ; the superfluid velocity at position rj is
decomposed as

vs(rj ,t) = vext
s (t) + vsi(rj ,t), (5)

where vext
s (t) is the uniform (potential) superfluid flow which

enforces the counterflow condition of no net mass flow and
vsi(rj ,t) is the superfluid velocity field induced by all the N

vortex points at rj :

vsi(rj ,t) =
∑

k=1...N

vsi,k(rj ,t). (6)

The integration in time of Eq. (4) is performed employing the
second-order Adams-Bashfort temporal advancement scheme.

To determine the superfluid velocity field induced by the
kth vortex vsi,k(x,t) we employ a complex-potential-based
formulation enforcing the boundary condition that, at each
wall, the superfluid has zero velocity component in the
wall-normal direction.

The complex potential can be derived using conformal map-
ping [50] or, equivalently, using (for each vortex) an infinite
number of images with respect to the channel walls [51],
leading to the following expression:

Fk(z,t) = ∓i
h

2πm
ln

sinh
{

π
2D

[z − zk(t)]
}

sinh
{

π
2D

[z − zk(t)]
} , (7)
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where zk(t) = xk(t) + iyk(t) is the complex number associated
to rk(t). The corresponding superfluid velocity vsi,k(z,t) =
(vx

si,k,v
y

si,k) is obtained from the complex potential in the usual
way as

vx
si,k − iv

y

si,k = dFk(z,t)

dz
. (8)

The uniform superfluid velocity vext
s (t) = (vext

s (t),0) in
Eq. (5) is instead obtained by enforcing at each time step the
counterflow condition of no net mass flow taking into account
the presence of vortices, i.e.,

ρn〈un〉 + ρs

[〈usi〉(t) + vext
s (t)

] = 0, (9)

where vsi = (usi,vsi) to ease notation.
To model the creation and the destruction of vortices

(mechanisms intrinsically three dimensional) within our two-
dimensional model, we proceed as follows. When the distance
between two vortex points of opposite circulation becomes
smaller than a critical value ε1, we perform a “numerical vortex
reconnection” and remove these vortex points; similarly, when
the distance between a vortex point and a boundary is less
than ε2 = 0.5ε1, we remove this vortex point (the vortex of
opposite circulation being the nearest image vortex beyond
the wall). To maintain a steady state, when a vortex point
is removed, a new vortex point of the same circulation is
re-inserted into the channel in a random position. In order to
assess the dependence of the numerical results on the value
of ε1, we have performed numerical simulations varying the
value of ε1 by two orders of magnitude: we find that the results
are identical. This reconnection model, corresponding three
dimensionally to the vortex filament method of Schwarz [32],
correctly describes the fate of two very near antiparallel
vortices (as confirmed by past Gross-Pitaevskii numerical
studies [52]) and avoids the generation of infinitesimal length
scales which would trigger numerical instabilities. In order
to estimate the impact of this re-insertion procedure on
the numerical results, another two-dimensional renucleation
model has also been explored in the present study: the vortices
are re-inserted with the same wall-normal coordinate y with
which they have been removed and a random streamwise x

coordinate. The results obtained are quasi-identical to the ones
obtained with the random re-insertion model, concluding that
the numerical results presented in Sec. III B, referring to the
random re-insertion model, are not an artificial outcome of the
reconnection procedure.

C. Normal fluid

Typical experimental values of pressure and temper-
ature variations along counterflow channels allow us to
assume that both superfluid and normal fluid flows are
incompressible and isoentropic, i.e., ρ ,ρn ,ρs ,S are con-
stant. Furthermore, assuming negligible the variations of
the normal fluid dynamic viscosity ηn and of the thermal
conductivity λ across the channel and neglecting quadratic
or higher-order terms in spatial gradients of velocity and
thermodynamics variables, the resulting incompressible and
isoentropic equations of motion of the normal fluid are the

following [53,54]:

∂vn

∂t
+ (vn · ∇)vn = − 1

ρ
∇p − ρs

ρn

S∇T + νn∇2vn

− ρs

2ρ
∇(vn − vs)

2 + 1

ρn

F̃ns, (10)

∇ · vn = 0, (11)

where νn = ηn/ρn is the normal fluid kinematic viscosity, and
the mutual friction force F̃ns is determined by the averaging
procedure described in Sec. II D.

The normal fluid velocity field vn is decomposed in two
solenoidal fields:

vn = vp
n + v′

n. (12)

The first field vp
n = (up

n ,v
p
n ) = ( − Vn0[1 − (2y/D)2],0) is the

Poiseuille flow which would exist in absence of superfluid
vorticity at constant heat flux q supplied by the heater. The
second velocity field v′

n = (u′
n,v

′
n) accounts for the back

reaction of the superfluid vortex lines on the normal fluid.
To calculate v′

n we employ the vorticity-stream function
formulation, according to which we define the stream function
� ′ and vorticity field ω′

n as follows:

v′
n =

(
∂� ′

∂y
, − ∂� ′

∂x

)
, (13)

ω′
n = (∇ × v′

n) · ẑ, (14)

where ẑ is the unit vector in the z direction. The definition of
� ′, Eq. (13), directly ensures that v′

n is solenoidal, Eq. (11),
while the Navier-Stokes equations (10) are equivalent to the
following two scalar equations:

∇2� ′ = −ω′
n, (15)

∂ω′
n

∂t
+

(
up

n + ∂� ′

∂y

)
∂ω′

n

∂x
− ∂� ′

∂x

(
∂ω′

n

∂y
− d2u

p
n

dy2

)

= νn∇2ω′
n + 1

ρn

(
∂F̃ y

∂x
− ∂F̃ x

∂y

)
, (16)

where F̃ns = (F̃ x,F̃ y).
The evolution equation (16) for the normal vorticity ω′

n is
discretized in space employing second-order finite differences
and its temporal integration is accomplished using the second-
order Adams-Bashfort numerical scheme. The Poisson equa-
tion (15) is instead solved in a mixed (kx,y) space, employing a
Fourier-spectral discretization in the periodic x direction and
second-order finite differences in the wall-normal direction
y. The boundary conditions on � ′ and ω′

n are deduced by
imposing no-slip boundary conditions on the viscous normal
fluid velocity field.

D. Mutual friction

The mutual friction force Fns accounts for the momentum
exchange between the normal fluid and the superfluid in
presence of the quantized vortex lines which act as scattering
centers for the elementary excitations constituting the normal
component [55]. This exchange takes place at very small length
scales, less than the average intervortex distance �, beyond
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the practical numerical resolution and, at some temperatures,
the hydrodynamical description of the normal fluid. To make
progress, we employ the coarse-grained theoretical framework
elaborated by Hall and Vinen [55] according to which, at length
scales larger than �, the mutual friction forcing assumes the
following expression:

F̃ns = αρs
̂̃ωs × [ω̃s × (̃vn − ṽs)] + α′ρsω̃s × (̃vn − ṽs),

(17)

where ·̃ symbols indicate coarse-grained averaged
quantities.

We distinguish between the (�x,�y) grid on which the
normal fluid velocity vn is numerically determined and the
coarser (�X,�Y ) grid on which we define the mutual friction
F̃ns . In principle, we would like to have �X and �Y � �

corresponding to the Hall-Vinen limit; in practice, we use �X

and �Y > � due to computational constraints. To prevent rapid
fluctuations of the friction at small length scales, we smooth the
vortex distribution using the Gaussian kernel �j (r) associated
to each vortex j according to the following expression:

�j (r) = 1

Vj

e
− |r−rj |2

2�2 , (18)

where

Vj =
∫ Lx

0

∫ D/2

−D/2
e−|r−rj |2/2�2

dxdy.

Hence, on the basis of Eq. (17), the mutual friction force F̃p,q
ns

averaged on the coarse grid cell (p,q) is given by the following
expression:

F̃p,q
ns = −αρs κLp,q

(̃
vp,q

n − ṽp,q
s

)
+α′ρs �p,q ẑ × (̃

vp,q
n − ṽp,q

s

)
, (19)

where

Lp,q =
∑

j=1...N

1

�X�Y

∫∫
(p,q)

�j (r)dr, (20)

�p,q =
∑

j=1...N

�j

�X�Y

∫∫
(p,q)

�j (r)dr, (21)

�j = ±κ and the symbol ∫∫
(p,q)

denotes the integral over the coarse grid cell (p,q). Physically,
Lp,q corresponds to the coarse-grained vortex-line density
while �p,q coincides with the coarse-grained superfluid
vorticity. Finally, we average F̃p,q

ns over the short-time interval
Tns = �X/vext

s , the average time interval during which a
vortex point moves from a coarse grid cell to the neighboring
cell [cf. Eq. (4)].

The interpolation of F̃ns on the finer grid (�x,�y) is per-
formed via a two-dimensional bicubic convolution kernel [56]
whose order of accuracy is between linear interpolation and
cubic splines orders of accuracy. The structure of the fine
and coarse grids on a particular portion of the computational
domain is illustrated in Fig. 1, while in Fig. 2 we report a
two-dimensional color plot of the longitudinal component of

 1

 1.5

 2

 2.5

-0.25  0  0.25

y

x

FIG. 1. (Color online) The structure of the fine (blue solid lines)
and coarse grids (green solid lines) are illustrated on a particular
portion of the computational domain, together with positive and
negative vortices indicated with empty red and filled black circles,
respectively.

the mutual friction force F̃ x interpolated on the fine grid,
on the same domain as Fig. 1: the smoothing effect of
the Gaussian kernel combined with the interpolating scheme
emerges clearly, if compared to the ideally δ-shaped nature
of Fns centered on the vortex points displayed in Fig. 1.
Furthermore, it is worth emphasizing that the employment
of Eq. (19) for the computation of the mutual friction force
F̃ns ensures a smooth transition when the vortex points cross
coarse grid-cell boundaries.
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-0.25  0  0.25
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FIG. 2. (Color online) Two-dimensional color plot of the longi-
tudinal component of the mutual friction force F̃ x/ρn [see Eq. (16)],
interpolated on the fine grid on the same domain as Fig. 1. The axes of
the plot are rescaled employing the scaling units defined in Sec. III A.
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III. NUMERICAL SIMULATIONS

A. Parameters

We chose the parameters of the numerical simulations in
order to be able to make at least qualitative comparisons
with experiments. As a reference, we select the experimental
counterflow studies performed by Tough and collaborators
on both high aspect-ratio rectangular cross-section chan-
nels [19], which represent the closest real experimental settings
to our idealized plane channel, and cylindrical capillary
tubes [18,20]. More in detail, we set the width of the channel
D = 9.1 × 10−3 cm, corresponding to tube R4 in Ref. [19],
and n1/2D = 25. The consequent Reynolds number of the
normal fluid flow calculated via Eq. (1) is Re = 206, far below
the critical Reynolds number for the onset of classical turbulent
channel flows Rec ≈ 5772 [57]. As a consequence, on the basis
also of past experimental investigations [18–20], we reckon
that in our numerical experiment the flow of the normal fluid
is still laminar.

The complete list of parameters employed in our simulation
and the subsequent physical relevant quantities are reported
in Table I, expressed in terms of the following units of
length, velocity, and time, respectively: δc = D/2 = 4.55 ×
10−3 cm, uc = κ/(2πδc) = 3.49 × 10−2 cm/s, tc = δc/uc =
0.13 s. Hereafter all the quantities mentioned are dimension-
less, unless otherwise stated. The constant Vn0 determining u

p
n

is computed imposing, without any loss of generality, that the
whole normal fluid flow rate is supplied by the Poiseuille field
vp

n , i.e., 〈un〉 = 〈up
n 〉, implying 〈u′

n〉 = 0. In the spirit of the
coarse-grained description illustrated in Sec. II D, we define
a coarse and a fine grid characterized by numbers of grid
points and spacings listed in Table II, satisfying the condition
�X,�Y > � > �x,�y.

The coupled calculation of vortex motions and vn entails
the simultaneous existence of two different time-step stability
criteria, one for each motion. Concerning the evolution
equation (16) for ω′

n, the constraint is set by the normal
fluid viscosity [58], leading to the restriction �tn � (�x)2/ν.
Regarding the motion of the superfluid vortices, consistent
with the numerical reconnection procedure illustrated in
Sec. II B, the integration time step �tv for Eq. (4) must
satisfy the condition �tv � ε1/(2Vε1 ), where Vε1 is the velocity
of a pair of antivortices along their separation vector when
separated by a distance equal to ε1. This constraint on �tv
prevents the generation of unphysical small-scale periodic
motions (e.g., vortex-pair multiple crossings). The value of
�tv employed in our simulation is reported in Table I and the
viscous constraint allows us to set �tn = 2�tv , implying that
vortex motions alternately take place with frozen normal fluid.

TABLE I. Numerical parameters employed in the simulations and
subsequent physical relevant quantities in dimensionless units.

D 2 Vn0 553.6
Lx 6 T 1.7 K
N 1876 ρs/ρn 3.373
n 156.3 ε1 2.5 × 10−3

� 0.08 �tv 7.5 × 10−6

TABLE II. Number of grid points and spacings in dimensionless
units of the grids employed in the numerical simulations.

Fine grid Coarse grid

nx 192 Nx 48
ny 64 Ny 16
�x 3.125 × 10−2 �X 0.125
�y 3.125 × 10−2 �Y 0.125

B. Results

1. Steady-state regime

The aim of our numerical simulations is to determine the
spatial distributions of positive and negative vortices and the
normal fluid and superfluid velocity profiles across the channel
in the steady-state regime. To stress that these distributions
and profiles are meant to be coarse grained over channel
stripes of size �Y , we use the · symbols. Figure 3 illustrates
the initial conditions of a typical simulation. Figure 3 (top)
shows the initial random spatial distribution of the vortices,
corresponding to the coarse-grained vortex density profiles
n(y) shown in Fig. 3 (middle). In Fig. 3 (bottom) the initial
parabolic Poiseuille profile for un and the flat profile for us are
reported. After a transient interval whose characteristics will
be addressed in Sec. III B 2, the system reaches the statistically
steady state described in Fig. 4. As expected, the steady-state
regime is achieved after a time interval Tf ≈ D2/ν. The
most important feature is the shape of the coarse-grained
profile of the normal fluid velocity un reported in Fig. 4
(bottom), which is slightly flattened in the near-wall region and
sharpened in the central region with respect to the Poiseuille
profile. These characteristics have recently been observed
experimentally by means of laser-induced fluorescence [29]
in the same counterflow regime (turbulent superfluid, laminar
normal fluid). In the experiment, the flattening of the profile is
more pronounced, but we reckon that this difference is due, at
least partially, to a larger superfluid turbulent intensity in the
experimental setting (40 � L1/2D � 70 against L1/2D 	 25
in our simulation).

The other key feature which emerges from the numerical
simulation is the polarization of the superfluid vortex distribu-
tion, which can be qualitatively observed in the snapshot of the
steady-state vortex configuration; Fig. 4 (top). To investigate
quantitatively this aspect, we introduce the coarse-grained
polarization vector p(y) defined by [59]

p(y) = ωs(y)

κn(y)
= n+(y) − n−(y)

n+(y) + n−(y)
ẑ. (22)

Note that p(y) = 0 when quantum turbulence is uniformly
distributed all over the channel [as, for instance, at t = 0 in
our numerical simulations; see Fig. 3 (top) and (middle)].
The steady-state profile of the polarization magnitude p(y)
is reported in Fig. 4 (middle) together with the positive and
negative vortex density profiles, n+(y) and n−(y) respectively.
This polarized pattern directly arises from the vortex-point
equations of motion (4), where the friction term containing α

depends on the polarity of vortex.
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ūs

ūn
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FIG. 3. (Color online) Top: vortex distribution at t = 0, red
empty (black filled) circles indicate positive (negative) vortices;
middle: coarse-grained profiles of positive vortex density n+ (solid
red line), negative vortex density n− (dashed black line), and total
vortex density n (dot-dashed green line) at t = 0. In the inset, the
corresponding coarse-grained profile of the polarization magnitude
p(y) is reported (solid magenta line); bottom: coarse-grained profiles
of superfluid velocity us (solid red line), normal fluid velocity un

(solid blue line), and counterflow velocity uns = un − us (solid green
line) at t = 0.
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FIG. 4. (Color online) Top: vortex distribution at t = Tf , red
empty (black filled) circles indicate positive (negative) vortices;
middle: coarse-grained profiles of positive vortex density n+ (solid
red line), negative vortex density n− (dashed black line), and total
vortex density n (dot-dashed green line) at t = Tf . In the inset, the
corresponding coarse-grained profile of the polarization magnitude
p(y) is reported (solid magenta line); bottom: coarse-grained profiles
of superfluid velocity us (solid red line), normal fluid velocity un

(solid blue line), and counterflow velocity uns = un − us (solid green
line) at t = Tf . Red and blue dot-dashed lines indicate the initial
laminar profiles of the superfluid and the normal fluid, respectively.
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This polarization of the vortex configuration, which,
we stress, is not complete, i.e., |p(y)| < 1, generates a
parabolic coarse-grained superfluid velocity profile us(y) ∼
y2 which is reported in Fig. 4 (bottom). This process, i.e.,
the superfluid polarization induced by a normal fluid shear
generating a superfluid velocity pattern which mimics the
normal fluid one, confirms past analytical results obtained
via simple models [60] and backs numerically observed
normal fluid–superfluid velocity matching and vorticity lock-
ing [41,42,44,60].

It is interesting to notice that our model, although being
two dimensional, recovers the total vortex density profile
n(y) computed very recently via three-dimensional numerical
simulations of helium II channel counterflows with prescribed
Poiseuille normal flow [37–39]. On the contrary, the vortex
density profile n(y) calculated in this work is significantly
different from the ones computed in past two-dimensional
simulations with prescribed Poiseuille normal flow, where the
density is approximately uniform across the channel [61,62].

2. Transient interval

The main results of our investigations have been outlined
in the previous section. Before we finish, it is instructive to
describe how the vortices and the normal fluid adjust to each
other reaching a steady state, starting from our arbitrary initial
condition: this exercise helps us to understand the physics of
the coupling of vortices and normal fluid.

The evolution to the steady state can be understood using
the coarse-grained profile of the longitudinal component of the
mutual friction force F

x
, reported in Fig. 6. The expression of

F
x

at a first order of accuracy according to Eq. (19) is

F
x
(y) 	 −αρsκn(y)[un(y) − us(y)]. (23)

At t = 0, F
x

is stronger in the central region of the channel,
flattening the profile of the normal fluid at time t1 	 6.8 ×
10−3Tf very close to the initial configuration, as illustrated in
Fig. 5 (bottom). At times t 	 t1, the superfluid polarization
is only partial, see Fig. 5 (top), generating a less pronounced
superfluid velocity profile us(y), Fig. 5 (bottom). The resulting
longitudinal component of the mutual friction force at t 	 t1
is therefore more uniform across the channel with respect
to t = 0, as illustrated in Fig. 6. This allows the normal
fluid to regain a quasiparabolic profile in the subsequent
time interval (un is approximately parabolic at t 	 0.25Tf ).
Finally, at t = Tf , the flow reaches a self-consistent dynamical
equilibrium determined by (a) the vortex density and velocity
profiles reported in Fig. 4 (middle and bottom) and (b) the
longitudinal component of the mutual friction force illustrated
in Fig. 6, characterized by peak values in the near-wall region.

IV. DISCUSSION

The aim of the present section is to (a) describe the idealized
three-dimensional dynamics which we reckon corresponds
to the two-dimensional vortex-points motion illustrated in
Sec. III B and (b) critically discuss to what extent this idealized
three-dimensional motion is capable of grasping the most
relevant vortex-tangle dynamics occurring in helium II T-I
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FIG. 5. (Color online) Top) coarse-grained profiles of positive
vortex density n+ (solid red line), negative vortex density n− (dashed
black line), and total vortex density n (dot-dashed green line) at
t = 6.8 × 10−3Tf . In the inset, the corresponding coarse-grained
profile of the polarization magnitude p(y) is reported (solid magenta
line); bottom: coarse-grained profiles of superfluid velocity us (solid
red line), normal fluid velocity un (solid blue line), and counterflow
velocity uns = un − us (solid green line) at t = 6.8 × 10−3Tf . Red
and blue dot-dashed lines indicate the initial laminar profiles of the
superfluid and the normal fluid, respectively.

counterflows. These two issues will be addressed in Secs. IV A
and IV B, respectively.

A. Streamwise flow of expanding vortex rings

The two-dimensional vortex-points motion described in
Sec. III B can be physically interpreted in three dimensions
as an idealized streamwise flow of expanding vortex rings
lying on planes perpendicular to vp

n and drifting in the
opposite direction with respect to vp

n . This vortex-ring three-
dimensional analog of the vortex-points motion stems from
the vortex-points equations of motion (4) and can be clearly
discerned if we consider the motion of an antivortex pair
whose initial configuration is symmetrical with respect to the
midplane of the channel and very close to the latter; see Fig. 7.
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FIG. 6. (Color online) Coarse-grained profile of the longitudinal
component of the mutual friction force F

x
at different selected times:

t = 0 (dot-dashed green line); t = 6.8 × 10−3Tf (dashed green line);
t = Tf (solid green line).

Let r±(t) = (x±(t),y±(t)) be the trajectories of the positive
and negative vortices which consititute the antivortex pair,
with initial condition (x0

±,y0
±). The axisymmetric hypothesis

imposes |y0
−| = |y0

+| = y0, while the proximity to the chan-
nel’s midplane implies y0 � 1. According to the proposed
parallel, the dynamics of this antivortex pair corresponds to
the three-dimensional motion of a very small circular vortex
ring centered on the channel’s midplane and initial radius
R0 = y0. To obtain the typical motion of the pair of antivortices
(corresponding to the intersections of the vortex ring with
the two-dimensional channel), we average the vortex-points
equation of motion (4) in the streamwise direction and over

-0.5

 0

 0.5

 1
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 2
-1 -0.5  0  0.5  1

y

x

ẋ = uRẋ = uR

ẏ = Ṙẏ = Ṙ

r+(t)r+(t) r−(t)r−(t)

FIG. 7. (Color online) Trajectories r+(t) and r−(t) of an antivor-
tex pair, whose initial configuration is symmetric with respect to
the midplane of the channel (in dashed blue line). The time interval
between consecutive positions is constant, indicating an increasing
streamwise velocity as the vortex points approach the walls. In an
axisymmetric interpretation, the three-dimensional analog of this
two-dimensional motion is a streamwise flow of an expanding vortex
ring.

time deducing the following equation:

dr±
dt

= ṙ± =
(

ẋ±(y)

ẏ±(y)

)
=

(
(1 − α′)us(y) + α′un(y)

±α[un(y) − us(y)]

)

	
(

us(y)
±αuns(y)

)
, (24)

where the dot operator indicates the time derivative and
uns = un − us , to ease notation. In this simple axisymmetric
antivortex pair model, ẋ± = uR and ẏ± = Ṙ, where uR and
Ṙ are the averaged vortex-ring streamwise drifting velocity
and its expansion rate, respectively. We therefore have the
following relations:

uR(y) = (1 − α′)us(y) + α′un(y), (25)

Ṙ(y) = ±αuns(y). (26)

From Eq. (26), given the plot of uns(y) reported in Fig. 4, i.e.,
uns(y) < 0 ∀y, it clearly emerges that the positive (negative)
vortex moves towards the y = −1 (y = 1). Hence, only the
three-dimensional corresponding vortex rings whose circula-
tion is oriented in the same direction of vp

n expand, while vortex
rings of opposite circulation always shrink. The trajectory of
an expanding antivortex pair is reported in Fig. 7.

We would like to stress, however, that our numerical
simulations grasp a more general and complex dynamics,
not enforcing an axisymmetric vortex-points motion, but
moving each vortex individually. Therefore, the idealized
three-dimensional vortex-ring motion described in the present
paragraph is a physical interpretation of the average vortex-
points motion only. We reckon, nevertheless, that it describes
three dimensionally the most relevant characteristics of the
two-dimensional flow analyzed in the present model. In
Fig. 8 several three-dimensional physical interpretations of the
vortex-points motion are illustrated, with Fig. 8(c) describing
the vortex ring analog of the comprehensive two-dimensional
motion described in Sec. III B.

y

x

z

(a) (b) (c)

FIG. 8. (Color online) Distinct three-dimensional interpretations
of vortex-points motion: (a) straight vortices model; (b) idealized
axisymmetric vortex-ring interpretation described in Sec. IV A; (c)
vortex-ring analog of the comprehensive two-dimensional motion.
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B. Congruity with vortex-tangle dynamics

Helium II counterflows are well known to exhibit
anisotropic characteristics: the vortex lines tend to lie on
planes perpendicular to vp

n . This can be easily deduced, for
instance, by the plot of the projection of the vortex-line length
in the streamwise direction 〈�x〉 in [39] and the plots of
the anisotropic parameter I ′ in [40]. As a consequence, we
reckon that our idealized vortex-rings flow model is able to
capture the dynamics of the most relevant fraction of the vortex
tangle. In addition, it is worth emphasizing that the vortex lines
aligned in the streamwise direction (which we neglect in our
simplified three-dimensional interpretation) are only affected
very slightly by the mutual friction interaction which governs
the vortex-tangle dynamics. On the other hand, our model is
less reliable in the near-wall region where the vortex tangle
assumes a more isotropic character.

Furthermore, from Eqs. (25) and (26) and the plots of us ,
un, and uns reported in Fig. 4 it is possible to deduce that in
the proposed three-dimensional physical interpretation of our
two-dimensional model, the vortex-rings drifting velocity in
the streamwise direction increases as the radius of the vortex
rings grows (i.e., as the vortex rings approach the channel
walls). This vortex dynamics also emerges from past numerical
three-dimensional studies [39,40] which describe the vortex
lines moving towards the solid boundaries with increasing
streamwise velocity in the opposite direction with respect to
the normal fluid flow.

To conclude this section, it is important to underline that
the orientation of the expanding vortex rings (circulation
in the same direction of the normal fluid mean flow) is
responsible for the nonuniform profile of us illustrated in
Fig. 4: the superfluid velocity field induced by such vortex
rings slows down the superflow in the central region of
the channel while the image vortices increase the superfluid
velocity near the boundaries. This nonuniform superfluid
velocity profile is qualitatively recovered in past numerical
simulations [40].

Having described what we propose is the three-dimensional
physical interpretation of the vortex-points motion numerically
investigated in our simulations and having discussed its
consistency with the vortex-tangle dynamics observed in
past three-dimensional numerical studies, we reckon that our
model, although being two dimensional, is capable of grasping
the most essential and relevant dynamics taking place in helium
II T-I channel counterflows.

V. CONCLUSIONS

In this work we have performed two-dimensional self-
consistent, coupled numerical simulations of helium II channel
counterflows with corresponding vortex-line density typical of
counterflow experiments [19,20].

The main features of our model are the presence of solid
boundaries and the dynamical coupling of vortices and normal
fluid. These features make our model more realistic than previ-
ous investigations, although, due to computational constraints
we had to use a two-dimensional geometry rather than a
three-dimensional one. We reckon, however, that our model,
despite its reduced dimensionality, is capable of grasping, at
least qualitatively, the most relevant features of the vortex-
tangle dynamics occurring in helium II T-I counterflows. For
instance, the proposed physical three-dimensional interpreta-
tion of the vortex-points motion (i.e., a streamwise flow of
expanding vortex rings) is qualitatively in agreement with
the three-dimensional vortex-lines motion computed under
prescribed normal fluid flow [39,40]. In addition, the vortex
density profiles computed three dimensionally with imposed
Poiseuille normal fluid flow [37–39] are consistent with
the profiles calculated in our two-dimensional simulations.
Experimentally, these profiles could be estimated by suitable
second sound attentuation measurements, employing high
harmonics waves.

In conclusion, the numerical results achieved in our work
confirm the already observed velocity matching [60] and
vorticity locking [41,42,44,60] between the two helium II
components. Above all, our numerical model predicts the
shape of the profile of the normal fluid which has been just
observed experimentally in channels using laser-induced flu-
orescence of metastable helium molecules [29]. Furthermore,
our results are useful for the interpretation of actual and future
experiments, including pure superflow [63] and the motion of
tracer particles [23,27].
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