
PHYSICAL REVIEW B 92, 174526 (2015)

Global critical temperature in disordered superconductors with weak multifractality
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There is growing evidence that a key feature of sufficiently disordered superconductors is the spatial
inhomogeneity of the order parameter. However, not much is known analytically about the impact of the
inhomogeneity on the global critical temperature that signals the onset of resistance in the superconductor.
Here we address this problem in the experimentally relevant case of disordered conventional superconductors
characterized by weak multifractality such as quasi-two-dimensional thin films. We compute analytically the
superconducting energy gap, the temperature at which it vanishes, and the energy dependence and spatial
distribution of the order parameter. The latter is found to be log normal. The global critical temperature, computed
by percolation techniques, is much smaller than the temperature at which the energy gap vanishes. We show that
disorder might enhance superconductivity but only for very weakly coupled superconductors, such as Al, and
for relatively weak phase fluctuations. These results are consistent with experiments where enhancement of the
critical temperature is observed in Al thin films but not in more strongly coupled materials.
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For many years the role of disorder in superconductivity
was believed to be well understood. According to the so
called Anderson theorem [1], also stated independently by
Gor’kov and Abrikosov [2], the critical temperature of a
conventional weakly coupled superconductor is not affected
by weak nonmagnetic impurity scattering. These results are
based on the assumption that the local density of states in the
material is unaffected by weak disorder [3,4]. However, with
the development of the Bogoliubov–de Gennes theory of su-
perconductivity [5] it became clear that the order parameter be-
comes increasingly inhomogeneous with increasing disorder.

Experimentally it is well established [6–14], especially
for conventional superconducting thin films, that the critical
temperature decreases monotonically as disorder increases.
Analytic results [15,16], obtained using mesoscopic tech-
niques, confirmed that the interplay between weak disorder
and Coulomb interactions could explain this suppression of the
critical temperature. For stronger disorder around the super-
conductor insulator transition there is strong numerical [17,18]
evidence that, even in the absence of Coulomb interactions,
phase fluctuations are enhanced [19] and the superconducting
order parameter becomes highly inhomogeneous [20,21]
developing an emergent granularity. Close to the Berezinski-
Kosterlitz-Thouless transition phase correlation only persist
along a ramified network, reminiscent of a percolation transi-
tion [22]. This is consistent with experimental observations of a
universal scaling of the order parameter amplitude distribution
function [23], granularity [24,25] induced by disorder and
reports of glassy features [26], with a supercurrent flow
pattern reminiscent of a percolative cluster [27], a pseudogap
phase [28,29], and preformed Cooper pairs [30] for sufficiently
strong disorder.

The upshot of this discussion is that the order parameter
in the presence of strong disorder is highly inhomogeneous
with strong phase fluctuations which makes it unlikely that
superconductivity can be more robust than in the clean limit.
The Anderson theorem does not really apply in this region as
self-averaging, one of its assumptions, is not expected to hold
for sufficiently strong disorder. However, recent theoretical

studies have suggested that enhancement might indeed occur in
the presence of strong disorder [31–33]. In Refs. [31,34] it was
reported that superconductivity was strongly enhanced around
the Anderson metal-insulator transition as a consequence of the
strong correlations [35] of the multifractal [36–38] eigenstates
of the one-body problem around the Fermi energy. The
enhancement still persists [33] even if Coulomb interactions
are taken into account perturbatively. These papers employ a
simple mean-field BCS formalism that includes explicitly the
multifractal correlations of eigenstates. In the region of strong
multifractality, relevant for the three-dimensional Anderson
transition, the critical temperature, defined in [31,34] as the
temperature for which the order parameter at the Fermi energy
vanishes, is computed analytically as a function of multifractal
exponents, the electron-phonon coupling constant and E0 a
cutoff related to the minimum length scale for which the
eigenfunctions are multifractal. For the three-dimensional
Anderson transition E0 is of the order of the Fermi energy
of the material. Since the cutoff induced by the Debye
energy εD is neglected in [31,34] the prediction for the
critical temperature, proportional to E0, is rather unrealistic
(>1000 K) at least for weakly coupled superconductors. In
general this approximation is justified in the context of cold
atoms physics or in the limit of very strong multifractality.
Another limitation of the results of Refs. [31,34] is that, though
the moments of the spatially dependent order parameter were
estimated in [34], there is no a precise prediction for the
spatial distribution of the order parameter and the local critical
temperature.

Despite these shortcomings, the proposal that multifrac-
tality might have a profound impact on superconductivity
is intriguing and deserves further investigation. Moreover,
the recent density matrix renormalization group analysis of
Ref. [32], which includes the effect of phase fluctuations,
showed that phase coherence in a one-dimensional disordered
Hubbard model with attractive interactions at zero temperature
is enhanced for weak coupling and disorder close to but below
the superconductor-insulator threshold. It is therefore feasible
that disorder might, after all, enhance superconductivity but,
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most likely, on much more modest scale than suggested
in [34].

In this paper we revisit the problem in the limit weak
multifractality [38] relevant in a variety of problems: two-
dimensional weakly disordered superconductors for system
sizes much smaller than the localization length [38], weakly
disordered 2 + ε superconductors in the ε � 1 limit [36],
two-dimensional disordered superconductors with spin-orbit
interactions [39], and one-dimensional superconductors with
long-range hopping [40]. We first compute exactly the order
parameter at the Fermi energy, the energy gap, including
explicitly the Debye energy cutoff. In the limit of weak
multifractality we compute analytically the energy dependence
and the spatial distribution of the order parameter and
the local critical temperature. With this information available
we compute the critical temperature of the material, defined as
the maximum temperature at which a supercurrent can flow,
by percolation techniques.

The main conclusions of our work are:
(a) The spatial distribution function of the order parameter,

and the associated local critical temperature, is always log
normal.

(b) The global critical temperature of the sample, defined
as the maximum temperature at which a supercurrent can flow,
resulting from a percolation analysis, is very sensitive to the
strength of the electron-phonon coupling constant. In all cases
the global critical temperature is substantially lower than for a
homogeneous order parameter computed at the Fermi energy.
We only find an enhancement of this critical temperature, with
respect to the bulk nondisordered limit, for very weak electron-
phonon coupling.

(c) A crude estimation of the effect of phase fluctuations,
induced by the Coulomb interaction or other processes, that
suppresses superconductivity shows that in a realistic situation
a substantial enhancement of the global critical temperature
by disorder might be possible only in very weakly coupled
materials such as aluminum. This is in qualitative agreement
with the experimental observations of enhancement of the
critical temperature in Al thin film [7,41], but not in other
more strongly coupled materials, in a region of parameters for
which multifractality might be relevant.

The paper is organized as follows. We first introduced in the
next section the standard formalism to study inhomogeneous
superconductors. In Sec. II we derive exact expressions for
the superconducting gap, the critical temperature at the Fermi
energy, and its leading energy dependence for disordered su-
perconductors characterized by one-body weakly multifractal
eigenstates. Multifractal exponents are directly related to the
conductance of the material. Next we calculate analytically
the full statistical distribution of the order parameter and the
critical temperature in real space. The distribution is always
log normal and shows a highly inhomogeneous pattern with
emergent granularity as disorder increases in line with the
early predictions of Refs. [17,18]. We then compute the global
critical temperature by assuming that the transition is induced
by percolation. A rough estimation of the suppression of the
global critical temperature due to phase fluctuations is then
carried out by slightly increasing the percolation threshold.
Finally, we discuss the limitations of the model and the
relevance of our results for experiments.

I. BCS SUPERCONDUCTIVITY AND INHOMOGENEITIES

The natural framework to study the interplay of supercon-
ductivity and inhomogeneities is that of the Bogouliubov–de
Gennes (BdG) theory of superconductivity [5,42]. In this
formalism the space-dependent mean-field BCS Hamiltonian,

H =
∫

dr

[∑
σ

�†
σ (r)

(
− �

2

2m
∇2 + U (r) − μ

)
�σ (r)

+ �(r)�†
↓(r)�†

↑(r) + H.c.

]
,

(1)

where �†
σ (r) creates an electron in position eigenstate r and

spin σ and U (r) is the random potential, is diagonalized by
the generalized Bogoliubov transformation,

�↑(r) =
∑

n

(un(r)γ↑,n − v∗
n(r)γ †

↓,n),

�↓(r) =
∑

n

(un(r)γ↓,n + v∗
n(r)γ †

↑,n),
(2)

where the coherence factors vn(r) and un(r) depend on
the index n that labels some convenient basis set for the
problem. The superconducting state is characterized by the
space dependent order parameter �(r),

�(r) = − λ

ν(0)
〈�↑(r)�↓(r)〉, (3)

where λ is the dimensionless BCS coupling constant and ν(0)
is the bulk density of states at the Fermi energy. One drawback
of this approach is that the resulting BdG equations can
only be solved numerically. However, it has recently [43,44]
been shown numerically that, in the weak coupling limit,
it is a good approximation to assume that un(r),vn(r) are
proportional to the eigenstates of the one-body problem ψn(r).
It is expected that this is only valid in the limit of not very
strong spatial inhomogeneities which in our case translates it
into a large dimensionless conductance. More specifically, the
mean-field approach breaks down when disorder localizes the
superconductor in a spatial region whose mean-level spacing
is of the order of the bulk superconducting gap. Within this
approximation it is straightforward to show that the BdG
equations turn into a modified BCS gap equation [1],

�(ε) = λ

2

∫ εD

−εD

I (ε,ε′)�(ε′)√
ε′2 + �2(ε′)

tanh

(
β
√

ε′2 + �2(ε′)
2

)
dε′,

(4)
where εD is the Debye energy which gives the energetic cutoff
for the electron-phonon coupling, �(ε) is the superconducting
gap as a function of energy, β = (kBT )−1 with T the system
temperature, I (ε,ε′) = V

∫
dr|ψ(ε,r)|2|ψ(ε′,r)|2 are the BCS

interaction matrix elements, and ψ(ε,r) is the eigenstate of the
one-body problem of energy ε. An identical result is obtained
from a generalized BCS variational approach. In both cases
the spatial dependence of the gap [18,45] is given by

�(r) = λV

2

∫
�(ε)√

�(ε)2 + ε2
|ψ(ε,r)|2dε. (5)

We note that the above formalism for inhomogeneous super-
conductors has been employed to describe superconductivity
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not only in the presence of a disordered potential [31,45] but
also in clean confined geometries such as ultrathin films [46],
trapped superfluids [47], nanowires [48], and nanograins [49].

From now on we will focus on the problem of supercon-
ductivity in a disordered system close to a metal-insulator
transition. Several aspects of this problem, including the
solution of the gap equation (4) and critical temperature at
the Fermi energy [31], the spatial dependence of gap (5) [34]
and the role of Coulomb interactions [33] have already
been studied in the literature in the limit of strong disorder
corresponding to the three-dimensional Anderson transition.
The first ingredient necessary to solve the gap equation
analytically is an explicit expression for the matrix elements
I (ε,ε′). By using supersymmetric [38,50], and other nonper-
turbative techniques, it is possible to find explicit analytic
expressions for the matrix elements I (ε,ε′) for a broad range
of disorder strengths [51]. It is also well established that for
disordered systems close to the metal-insulator transition the
eigenfunctions are multifractal [51,52]. A commonly used
measure for multifractality is the anomalous scaling of the
inverse participation ratio (IPR) [36,37],

Pq =
∫

dr|ψ(r)|2q ∼ Ldq (q−1), (6)

where dq < d is a multifractal dimension. These multifractal
exponents also control the slow energy decay of eigenfunc-
tion correlations at different energies, namely the matrix
elements [35,53],

I (ε,ε′) =
(

E0

|ε − ε′|
)γ

, (7)

so long as δL � |ε − ε′| < E0, where γ = 1 − d2
d

and δL =
1/ν(0)L3

loc is the mean-level spacing modified by localization
effects, Lloc is the localization length in the material. The
energy scale E0 = [ν(0)L3

0]−1 is associated with the large
energy cutoff in fractal behavior and L0 is the short length
scale cutoff associated with fractal behavior. Below the metal-
insulator transition it is expected L0 should be of similar size
to the mean-free path �. The Ioffe-Regel criterion kF � ∼ 1
implies that at the mobility edge E0 ∼ EF . In systems with
weaker disorder E0 � EF but typically, at least for weakly
coupled metallic superconductors, it is still much larger
than other energy scales such as the Debye energy or the
superconducting gap.

The parameter 0 � γ � 1 describes the strength of mul-
tifractality in the system. In particular the scaling exponents
dq depend on the specific model chosen and the degree of
disorder. As we mentioned previously, while Refs. [31,34]
focused on the strong disordered regime, the results of these
paper are only valid in the limit of weak coupling and not
very strong spatial inhomogeneities. Weak multifractality,
γ � 1, can still occur in this limit, for instance in weakly
disordered metals in 2 + ε dimensions or in strictly two
dimensions for sizes much smaller than the localization length.
The full set of multifractal dimension in this case is known
analytically [38], dq ≈ d(1 − κq) with κ = α/g, g is the
dimensionless conductance and α = 1/2,(1) for systems with
(broken) time-reversal invariance. We note that for sufficiently
large q deviations from this simple linear behavior are

expected but these corrections are in general negligible for
the observables of interest. The limit γ = 0 corresponds to
zero disorder where the bulk metal behavior is recovered,
I (ε,ε′) = 1 leading to the usual expressions for the BCS gap
�0 ≈ 2εDe− 1

λ , and the critical temperature Tc0 ≈ 2eγE

π
εDe− 1

λ ,
where γE is the Euler-Mascheroni constant.

We have included explicitly in the gap equation the cutoff,
the Debye energy εD , related to the phonon coupling. This
becomes particularly important in the limit γ → 0 as the
BCS gap equation does not converge for εD → ∞. In the
limit of weak multifractality, γ � 1, the gap equation is
well defined for εD → ∞ but we shall see that in order to
get meaningful results it is necessary to keep the physical
cutoff εD finite. For γ ≈ 1 it is plausible that the effective
cutoff induced by the matrix elements will make εD less
important [31]. However, in this limit the approximation
� � δL breaks down and the BCS mean-field theory is no
longer valid. It should also be noted that the matrix element,
Eq. (7), neglects contributions from the region |ε − ε′| ∼ δL,
which will become increasingly important in the case of strong
fractality. We show in Appendix A that neglecting the effect of
δL is valid in the limit of weak multifractality γ � 1, δL � εD

we are interested in.

II. ENERGY DEPENDENCE OF THE ORDER
PARAMETER AT ZERO TEMPERATURE

As a first step to compute analytically, in the limit of weak
multifractality γ � 1, the spatial distribution of the order
parameter we solve the gap equation at zero temperature,

�(ε) = λ

2

∫ εD

−εD

�(ε′)√
ε′2 + �2(ε′)

∣∣∣∣ E0

ε − ε′

∣∣∣∣
γ

dε′ (8)

including its energy dependence. We note that this equation
is exactly the same starting point of Refs. [31,34]. Unlike
Refs. [31,34], we do take into the account the Debye energy
cutoff and compute analytically the full energy dependence of
the gap in the weak-multifractality limit.

First we expand the leftmost parts of the gap equation in
powers of γ using the ansatz

�(ε) = �γ [1 + γf1(ε) + γ 2f2(ε) + · · · ]. (9)

By using standard techniques, detailed in Appendix B, we
obtain results for �γ ,f1(ε),f2(ε). The expansion may be easily
continued to arbitrarily high order, however for weak multi-
fractality this is clearly unnecessary. The explicit, but rather
cumbersome, analytical expressions for f1(ε),f2(ε) Eqs. (B7)
and (B10), to be found in Appendix B, are in very good agree-
ment, Fig. 1, with the numerical solution of Eq. (8). We refer
to Appendix E for more details on the numerical calculation.

Several comments are in order: (a) The energy dependence
of the gap decays smoothly from the Fermi energy with an
exponent that depends only on γ . (b) h1(ε),h2(ε) are such that
hi(0) = 0 and hi(ε) is an even function in ε. This means that
�(0) = �γ (1 + γ c1 + γ 2c2). The leading correction c1 < 0
is negative as the zeroth order (E0/|ε|)γ term of the expansion
is an overestimation of the exact matrix elements Eq. (7).
Increasing E0 results in smaller ci and thus the peak of �(ε)
is closer to �γ . (c) Unsurprisingly, increasing γ results in a
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FIG. 1. (Color online) Energy dependence of the gap �(ε). Com-
parison between the numeric results from Eq. (8) (red) and the
analytical calculation �(ε) = �γ [1 + γf1(ε) + γ 2f2(ε)] (blue) from
Eqs. (B7) and (B10) with λ = 0.3 and γ = 0.1 (upper plot) and
γ = 0.2 (lower plot). In both cases the upper pair of lines correspond
to E0/εD = 100 and the lower pair of lines to E0/εD = 20. We
observe an excellent agreement in the full range of energy. The decay
depends only on the degree of multifractality.

larger error in the analytic results and in a greater difference
between the peak value �(0) and the minima �(±εD).

A. �γ and the associated critical temperature Tcγ

The gap �γ in Eq. (9) is defined as the maximum of the
order parameter �(ε) in a disordered system characterized by
weak multifractality. It corresponds approximately its value
at the Fermi energy. An interesting question to consider in
the later study of spatial inhomogeneities and enhancement of
superconductivity is how �γ differs from the its value in the
clean limit �0.

An exact analytical expression of �γ is available, see
Eq. (B6). However, it is more illuminating to carry out
an expansion of Eq. (B6) about εD/�γ → ∞, a limit that
always holds for weakly coupled superconductors and should
therefore be valid for γ � 1. Expanding to first order and
solving for �γ we find

�γ = D(γ )εD

[
1 + γ

λ

(
εD

E0

)γ]−1/γ

, (10)

where

D(γ ) =
(

γ�
[

1
2 (1 − γ )

]
�
(

γ

2

)
2
√

π

)1/γ

(11)

and �(x) is the usual � function. It should be noted that as
E0 → ∞ the gap �γ is still proportional to εD , not to E0 as
in [31], where �γ ∼ E0λ

1/γ . The reason for this disagreement
is that we have kept the Debye energy εD finite in our
calculation. We believe that this is necessary since typically
εD � E0 so it is not consistent to take the Debye energy
to infinity while keeping E0 finite. This is also necessary to
recover the BCS result in the limit γ → 0, as Eq. (10) does.

In the limit of γ � 1 we can re-express �γ in the more
transparent form

�γ ≈ D(γ )εDe
− 1

λ

(
εD
E0

)γ

, (12)

with D(γ ) ≈ 2(1 + π2

12 γ + · · · ). This result indicates that in
the limit of weak fractality the gap behaves as if it has an
effective coupling constant λeff = λ(E0

εD
)
γ

giving rise to an
exponential increase from �0 with increasing γ , see Fig. 2.
This is the reason why even a small value for γ , corresponding
to weak disorder, can lead to substantial changes in the
superconducting gap with respect to the clean limit provided
that the effect of disorder is computed self-consistently.

Another interesting parameter that describes a disordered
system is the temperature at which �(0) vanishes. This can be
found by solving 1 = λ

∫ εD

0 (E0
ε

)
γ tanh(βcε/2)

ε
dε. This integration

can also be carried out analytically, see Appendix C, to give

kBTcγ = εDC(γ )

[
1 + γ

λ

(
εD

E0

)γ]−1/γ

, (13)

where

C(γ ) = [2γ (2γ+1 − 1) �(−γ ) ζ (−γ )]1/γ (14)

and ζ (x) is the Riemann ζ function. In the limit γ → 0 this
expression recovers the BCS result. It should be noted that
the derivation of this result is independent from the derivation
for �γ .

The ratio of Eqs. (10) and (13), 2�γ /Tcγ , is a useful
indicator of the relevance of disorder,

2�γ

kBTcγ

= 2D(γ )

C(γ )
= 2

(
�
[

1
2 (1 − γ )

]
�
(

γ

2

)
4
√

π (2γ+1 − 1) �(−γ ) ζ (−γ )

)1/γ

.

(15)

As in the nondisordered case this ratio is independent of the
material constants but it is now a function of the strength of
the multifractal exponent γ . Expanding about γ = 0 we find

2�γ

kBTcγ

= 2πe−γE

{
1+ 1

2

[
γ 2

E− π2

12
+2 ln2(2)+2γ

sj

1

]
γ + O(γ 2)

}
,

(16)

where γ
sj
n is the Stieltjes γ function. Note that the BCS

result 2�0/Tc0 = 2πe−γE is recovered in the limit γ → 0.
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FIG. 2. (Color online) Upper: The value of the gap at the Fermi
energy �γ from Eq. (B6) for λ = 0.3 and E0/εD = 10 (blue), 20
(yellow), 50 (red), 100 (green). Lower: E0/εD = 50 and λ = 0.3
(blue), 0.4 (yellow), 0.5 (red). �γ increases exponentially for γ ≈ 0.
The gradient decreases for larger γ . We show later that a large value
of �γ does not lead necessarily to a large enhancement of the critical
temperature of the sample.

The above expression is still valid to relatively large γ as the
corrections from higher order terms in the gap and critical
temperature are expected to cancel to a good approximation.
Indeed Eq. (15) agrees well with recent numerical results
focused on the vicinity of γ = 1 [31], 2D(γ=1)

C(γ=1) = 4. However,
we refrain from extracting physical conclusions from this
limit as the BCS mean-field approach is in principle not
applicable. Even in the three-dimensional case γ ≈ 0.56 it
is well documented [19] that phase fluctuations, not included
in the mean-field approach, play a prominent role. We also note
that deviations from the BCS value for the ratio of the gap and
critical temperature have been observed experimentally [54].
However, the observable measured in experiment are not
defined identically to the theoretical ones above so direct
comparison is not trivial. In summary, these results appear
to indicate that the gap and critical temperature in a disordered
material can be substantially different from that in the clean
limit.

The inherent inhomogeneity induced by disorder will play
an important role so we expect that both quantities vary
substantially in space and therefore we must envisage a

procedure to estimate the critical temperature of the sample
defined as the maximum temperature for which a supercurrent
can flow. To explore these issues we begin by calculating the
statistical distribution of the gap in space.

III. DISTRIBUTION OF THE ORDER
PARAMETER IN REAL SPACE

In a disordered material the gap in real space is intrinsically
inhomogeneous, however for a particular disorder strength
it should have a well defined statistical distribution. As was
mentioned in the introduction, this spatial distribution function
of the order parameter is an outstanding open problem in
the theory of superconductivity. In this section we compute
analytically this distribution function for the case of weak
multifractality of the one-body eigenstates. We leave the
details of the calculation to Appendix D and here only sketch
the main steps. The starting point is the space dependent
gap �(r) Eq. (5), resulting from the generalized trial wave
function method mentioned in the introduction, and the energy
dependence of the order parameter Eq. (9) computed in the
previous section. The moments of �(r) are given by

〈�n(r)〉 =
∫

dr
n∏

j=1

⎛
⎝λV

2

∫
�(εj )√

�(εj )2 + ε2
j

|ψ(εj ,r)|2dεj

⎞
⎠.

(17)
In the limit γ � 1, and keeping only leading terms, it is

possible to evaluate approximately the generalized eigenstate
correlation function above and to compute explicitly the
moments. The final result is

〈�n(r)〉
(�γ )n

= eκ ln(εD/E0)(3n−n2), (18)

where κ is inversely proportional to the dimensionless conduc-
tance γ = 2κ . We note that an explicit expression of 〈�n(r)〉
in the limit of strong multifractality was given in Ref. [34]
(Eq. 171).

From Eq. (18) it is straightforward to show that the
distribution function associated is log normal,

P
(

�(r)

�γ

)
= �γ

�(r)
√

2πσ
exp

⎡
⎣−

[
ln
(

�(r)
�γ

)− μ
]2

2σ 2

⎤
⎦, (19)

with μ = 3κ ln(εD/E0), σ = √
2κ ln(E0/εD). The mean value

for the distribution is〈
�(r)

�γ

〉
=
(

εD

E0

)2κ

(20)

and the variance is given by

Var

(
�(r)

�γ

)
=
(

εD

E0

)2κ
[

1 −
(

εD

E0

)2κ
]
. (21)

As E0 is typically large compared to εD the above results
indicate that the mean value �(r) can be much smaller than
�γ and also that the distribution may be rather broad. These
values also indicate that the distribution of �(r) is strongly
affected by changes to the disorder strength κ , but is rather
weakly dependent on the value of εD/E0, see Fig. 3. This
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FIG. 3. (Color online) Probability distribution of the gap Eq. (19)
for different choices of multifractality strength γ = 2κ and E0.
Upper: E0/εD = 20, κ = 0.001 (blue), 0.01 (yellow), 0.05 (green),
0.1 (red), 0.15 (black). Lower: κ = 0.05, E0/εD = 20 (blue), 50
(yellow), 100 (green), where κ−1 is proportional to the dimensionless
conductance (see introduction). In the metallic limit κ → 0 the
distribution approaches a Dirac δ function centered on the value
of the gap at the Fermi energy. For any finite κ the distribution is
log normal. It becomes broader as κ increases with a maximum that
moves rapidly to smaller values of the gap. The distribution depends
only weakly on E0.

implies that the chosen value of E0 and any dependence of E0

on the disorder strength has little effect on our results provided
that εD/E0 � 1.

In the limit κ → 0,

P
(

�(r)

�γ

)
= δ

(
�(r)

�γ

− 1

)
, (22)

this corresponds to the nondisordered case where the gap
is uniform in space. Interestingly, as disorder increases, the
distribution of the gap broadens and the maximum of the
distribution, related to the typical value of the gap, moves
to lower values with an extended tail up to �(r) > �γ , see
Fig. 3. The decrease in this typical gap value follows physically
from the confinement of the electrons to small regions when
disorder is added. The gap is enhanced at some points of the
material as the single electron wave functions are confined
and overlap more strongly. However, the reverse situation
also occurs, resulting in many regions where the electron
density and gap is reduced compared to the bulk. As disorder

strength is increased and the degree of overlap in enhanced
regions increases, the area of the suppressed regions also
increases resulting in a decrease of the mean value of the
distribution. It should be noted that the expansion to higher
orders will modify and slightly broaden the distribution of
Eq. (19). However, our analytical result still provides a good
approximation for the spatial distribution of the gap in the limit
of weak multifractality. Indeed it is, see Fig. 3, qualitatively
similar to that found in previous numerical and experiment
studies [18,23,30].

IV. DISTRIBUTION OF Tc(r)

The inverse transformation of Eq. (5) is given by

�(ε) =
∫

dr�(r)|ψ(ε,r)|2. (23)

In the case of finite temperature this should recover the gap
equation Eq. (4). This follows from the generalization of the
gap equation at finite temperature,

�(r) = λV

2

∫
�(ε)√

�(ε)2 + ε2
|ψ(ε,r)|2

× tanh

(√
ε2 + �2(ε)

2kBT

)
dε. (24)

It is clear solving for the critical temperature in equation
�(r) = 0 for all r will require that Tc varies in space.
We further know kBTc(ε) = C(γ )

D(γ )�(ε,T = 0) solves the gap
equation Eq. (4) at �(ε) → 0 for all ε. It follows that the
transformations which apply to the gap must also apply to the
critical temperature,

Tc(ε) =
∫

drTc(r)|ψ(ε,r)|2. (25)

By comparison with Eq. (23),

kBTc(r) = C(γ )

D(γ )
�(r,T = 0) (26)

as one might have expected. Where the distribution function
calculated for the gap in space will also hold for the critical
temperature,

P
(

Tc(r)

Tcγ

)
= P

(
�(r)

�γ

)
. (27)

Next we employ this expression as the starting point to estimate
the global critical temperature of the material by percolation
techniques.

V. CALCULATION OF THE GLOBAL CRITICAL
TEMPERATURE OF THE SAMPLE USING A

PERCOLATION MODEL

The results from the previous section indicates that weak
multifractality is responsible for the broad spatial distribution
of the order parameter and the local critical temperature Tc(r0).
This local critical temperature, or the associated local gap,
is the natural outcome of a scanning tunneling microscope
(STM) experiment. By contrast the temperature at which the
order parameter at the Fermi energy, Eq. (10), vanishes is the
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spectroscopic gap which can be probed by specific heat or
other thermodynamic measurements.

A natural question to ask is: what is the global critical
temperature T mat

c of the material defined as the maximum
temperature at which a supercurrent can flow? One thing
is clear from the previous analysis, T mat

c will be in general
much smaller than the temperature at which the spectroscopic
gap vanishes. Recent work on inhomogeneous superconduc-
tors [22,55] suggest that a percolation transition can be the
driving force for the breakdown of phase coherence in an
inhomogeneous system. Indeed, many numerical studies have
found that at strong disorder and finite temperature phase
correlations become in general weakened due to the emergent
granularity of the system [17,56,57]. More specifically long-
range order is expected to be sustained by the persistence of
phase correlations on a ramified network that permeates the
system [22].

The global critical temperature T mat
c predicted by perco-

lation of the amplitude of the order parameter neglects two
effects: phase fluctuations that can break long-range order even
if there exists a percolating cluster for the supercurrent to flow
and tunneling between disconnected regions that can induce
global long order even if there is no percolating cluster. Both
effects have an opposite impact on T mat

c and are relatively
small in the limit of weak disorder we are interested in.
Therefore, we expect a percolation calculation still provides
a good estimation of the temperature at which the loss of
long-range order occurs.

Since multifractal eigenstates are scale invariant we find
it more natural to employ a continuum percolation model.
Therefore, we do not model the sample as a grid of super-
conducting spots each with a different critical temperature.
In a continuum model, disks, or other geometries, are placed
randomly in the system. Overlap is of course allowed but the
overlapping areas only count towards the critical area fraction
once. Thus at the percolation threshold we have a number of
areas of the superconducting material which have been built
up from a large number of overlapping disks and a number
of irregularly shaped nonsuperconducting regions where no
disks have been placed. The size of the disks is not important
provided that it is much larger than the system size.

The percolation transition occurs when there is sufficient
superconducting area φ = φc so that there exists a supercon-
ducting region which completely traverses the surface. The
critical temperature of the material T mat

c is thus defined as

∫ T mat
c

0
P[Tc(r)]dTc(r) = 1 − φc. (28)

The value of φc depends weakly on the details of the
percolation process. For a two-dimensional surface [58] where
the percolation process is induced by placing disks at random
positions is φ → φc = 0.676. Small perturbations to this
geometry will not alter substantially φc. Even for randomly
orientated ellipses with aspect ratio two [59] the critical area
is still similar φc = 0.63. We shall see that T mat

c is robust
to small modifications of φc with respect to φc = 0.676. On
physical grounds we expect that geometries with just a single
typical length must provide a more accurate description of
the disordered superconductor. For that reason we employ
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FIG. 4. (Color online) The global critical temperature T mat
c , from

Eqs. (19) and (28), obtained as the temperature at which the
percolation transition occurs, φc = 0.676, in units of the BCS
nondisordered critical temperature as a function of the degree of
multifractality γ for E0/εD = 100 and λ = 0.25 (blue), 0.3 (yellow),
0.4 (green), 0.5 (red). Except in the case of small λ, no or very
modest enhancement of T mat

c is observed as γ increases. In all cases
T mat

c moves well below Tcγ [Eq. (13)] due to the distribution of critical
temperature becoming increasingly skewed towards smaller values.

φ = φc = 0.676 in the next section for explicit calculations
of T mat

c .
Finally, we note the decrease in the mean value of P( Tc(r)

Tcγ
)

with increasing disorder suppresses the large exponential
enhancement of �γ . The enhancement of the material bulk
critical temperature is always much smaller than that of �γ ,
see Fig. 4. It is only substantially higher than for nondisordered
samples in the limit of very small electron-phonon coupling
constant that might still describe materials like aluminum. In
all other cases we predict a very modest or no enhancement at
all is observed.

VI. ESTIMATION OF THE REDUCTION OF THE
CRITICAL TEMPERATURE DUE TO PHASE

FLUCTUATIONS

An obvious shortcoming of our model is the omission of
Coulomb interactions and other sources of phase fluctuations
that will reduce significantly the critical temperature of the
sample as phase coherence can be lost even above the
percolation threshold. Unfortunately a quantitative analytical
estimation of these effects is in general quite hard. Even the
standard perturbative prediction [15] δTc

Tc
∼ λeffec

g
ln2(εD/Tc) for

the decrease of Tc leaves the final result in terms of the effective
strength of the interaction λeffec, which is in general difficult
to estimate especially in a disordered system. The recently
developed formalism [55] to address arrays of superconducting
nanograins, which includes charging effects, could, at least
qualitatively, be adapted to this case. However, it is difficult to
estimate rigorously the capacitance in this context. Moreover,
we also neglect recombination processes of the order param-
eter and interactions with single quasiparticles. This is likely
a good approximation for low temperatures but for higher
temperatures closer to the critical one [60] it is plausible that
these processes will effectively broaden the Ginzburg region of
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the superconductor and further lower its critical temperature.
Again for metallic superconductors it is difficult to make a fully
quantitative estimation of the importance of these corrections.
Despite these limitations it is clear that phase correlations
persist only on an intricate network [22] above the percolation
threshold for the amplitude of the order parameter [55]. At
least qualitatively it seems therefore plausible that the true
global critical temperature of the system T mat

c , which includes
the effect of phase fluctuations, can still be estimated by
percolation techniques by increasing the percolation threshold.
This method we apply here to estimate T mat

c . For no phase
fluctuations the global critical temperature is obtained by
setting the fraction φ of the superconductor which is above
the local critical temperature to the percolation threshold
φ ≈ φc = 0.675. Therefore, the global critical temperature
associated with larger values φ > φc corresponds to situations
where the superconducting fraction is sufficient to support a
supercurrent but phase fluctuations prevent phase coherence.
We expect the critical area φQ

c in realistic situations to be higher
than the percolation prediction φc = 0.676. In Fig. 5 we com-
pare the global critical temperature for different values of φQ

c ,
which roughly speaking model the effect of phase fluctuations,
and the electron-phonon coupling λ. For sufficiently large λ

any enhancement at φc is rapidly suppressed with increasing
disorder. By contrast for sufficiently small λ the enhancement
persists even for relatively large values of φQ

c . We expect
the trend of decreasing critical temperature to continue up
to stronger disorder, which would agree with the experimental
results [6,7]. It is important to stress that this method to mimic
the effect of phase fluctuations does not take into account
the fact that Coulomb interactions not only induce phase
fluctuation but also decrease the superconducting gap and
the local critical temperature. Therefore, even the observed
substantial enhancement for very weak coupling is only an
upper bound of the one that could be observed experimentally.

Clearly a more refined model, beyond the scope of the
paper, would be highly desirable to account quantitatively for
the effect of phase fluctuations. However, our results suggest
that enhancement of the global critical temperature might be
possible but only in very weakly coupled superconductors.

VII. RELEVANCE TO EXPERIMENTS

Currently it is feasible to test some of the above theoretical
predictions in disordered thin films. Scanning tunneling
microscope techniques could be used to measure �(r0) and
Tc(r0), where the latter is experimentally defined as the
temperature for which the gap in the differential conductance
vanishes. Indeed the statistical distribution function of the
gap, recently measured experimentally in strongly disordered
Nb thin films [23] close to the transition, seem qualitatively
similar to the log-normal distribution that we have obtained
analytically. However, for a quantitative comparison a higher
resolution in the experimental results is necessary. Our results
could also be employed to measure the multifractal dimensions
and the strength of disorder. For instance, according to Eq. (27),
the ratio between �(r0) and Tc(r0) only depends on the
multifractal exponent γ and not on the coupling constant.
Experimentally it could be possible to average over r0 to
measure this ratio with better accuracy.
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FIG. 5. (Color online) The global critical temperature T mat
c from

Eqs. (19) and (28), in units of the clean critical temperature, as a
function of the multifractal exponent γ for E0/εD = 100, λ = 0.4
(upper plot) and λ = 0.25 (lower plot) at the percolation threshold
φc = 0.676 (blue), and above it, 0.7 (yellow), 0.75 (green), 0.8
(red). An area φQ

c , greater than the percolation threshold φc, crudely
mimics the effect of phase fluctuations that can break phase coherence
even above percolation threshold. The behavior of T mat

c is strongly
dependent on the choice of the critical area φQ

c . We observe that the
critical temperature decreases as φQ

c increases, which for λ = 0.4
rapidly suppresses any enhancement of the critical temperature with
respect to the clean limit. By contrast for λ = 0.25 a substantial
enhancement still occurs even for comparatively large values of
φQ

c . However, this is still an upper bound of the enhancement that
can be observed experimentally as we do not take into account the
suppression of the order parameter amplitude induced by Coulomb
interactions and other processes. Therefore, we expect small or no
enhancement except, possibly, for materials such as aluminum that
are good metals and have very weak electron-phonon coupling.

Transport measurement like the resistivity could highlight
the difference between the local critical temperature Tc(r0)
and the global critical temperature defined as the highest
temperature for which a supercurrent can flow. The latter
should correspond with our prediction for the global critical
temperature T mat

c resulting from the percolation analysis
above. Indeed the sharpness of the transition as a function
of the temperature could provide important clues on the role
of phase fluctuations and percolation of the amplitude in the
determination of the global critical temperature.

Specific heat measurements would be a straightforward
approach to studying the nature and properties of the phase
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transition. In particular the width and height of the peak would
supply important information about the superconducting area
fraction at the transition and about the distribution function
P[T (r)].

Finally, we stress that one of the main results of the
paper, that enhancement of T mat

c by disorder can only be
observed in materials with a very weak electron-phonon
coupling, is fully consistent with experimental results. It is
well known [7,41] that the critical temperature of Al thin films
start to increase as the thickness enters in the nanoscale region.
By contrast in more strongly coupled superconductors like Pb
no enhancement is observed [6,7] and the critical temperature
decreases monotonically as the thickness decreases or the
disorder strength increases. We note that as the thickness is
decreased the material becomes quasi-two-dimensional where
multifractality is generic for sufficiently weak disorder. This
is the case for metallic superconductors such as Al which are
good conductors above the critical temperature.

VIII. CONCLUSIONS

We have studied the interplay between superconductiviy
and disorder in a system characterized by weakly multifractal
one-body eigenstates. This setting is especially appealing
as multifractality enhances pairing correlations and induces
strong spatial inhomogeneities in the superconducting order
parameter but at the same time it is possible to obtain
analytical results. Moreover, weak multifractality is relevant
for experiments as it is typical of weakly disordered thin films
close to the two-dimensional limit.

First, we have computed exactly the superconducting gap at
the Fermi energy, as a function of the multifractal dimensions,
and the temperature at which it vanishes. We have found
an enhancement of the gap with respect to the clean limit,
but much smaller than in recent claims of the literature.
Then we have shown that the order parameter is strongly
inhomogeneous in space with a distribution function that
follows a log-normal distribution. Interestingly the maximum
of the distribution deviates strongly from the value of the
gap at the Fermi energy as multifractality increases. By
using percolation techniques we have found the global critical
temperature of the superconductor, defined as the maximum
temperature at which a supercurrent can flow, is much lower
than the one found by considering the temperature at which the
gap at the Fermi energy vanishes. To the best of our knowledge,
this is the first time that fully quantitative analytical predictions
are derived for the difference between these two temperatures.
We note that this is also of direct relevance for experiments
as it has recently been observed [30] a finite gap above the
global critical temperature in a conventional superconductor.
Our formalism does not include directly phase fluctuations,
induced by Coulomb interactions or other mechanisms, that
further reduce the critical temperature. As a crude method to
simulate these effects we have also computed the global critical
temperature when the condition for percolation is slightly
increased. The outcome of this analysis is that a substantial
enhancement of the global critical temperature might be
possible only for very weak electron-phonon coupling. This
could explain the well known experimental result [7,41] that
in aluminum, a material with very weak electron-phonon

coupling, the critical temperature is substantially enhanced
with respect to the clean limit when the thickness of the sample
is sufficiently small. In this limit the material is disordered
and quasi-two-dimensional so multifractality plays a role and
our formalism is applicable. In addition to disordered thin
films close to the two-dimensional limit our results are also
relevant for strictly two-dimensional films of size much smaller
than the localization length, bulk two-dimensional disordered
systems with spin-orbit interactions for which a metal insulator
transition occurs in the weak disorder region.
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APPENDIX A: THE IMPORTANCE OF THE MEAN LEVEL
SPACING δL ON THE MATRIX ELEMENT

In the work above it is assumed that the matrix element
always follows Eq. (7), however the matrix element is known
to saturate for states sufficiently close in energy. To see the
effect of this saturation we can propose a matrix element which
interpolates smoothly between these two behaviors,

I (ε,ε′) =
⎛
⎝ E0√

(ε − ε′)2 + δ2
L

⎞
⎠

γ

(A1)

evaluating about the Fermi energy to zeroth order in γ ,

1 = λ

2

∫ εD

−εD

1√
ε′2 + �2

γ

⎛
⎝ E0√

ε2 + δ2
L

⎞
⎠

γ

dε′, (A2)

1

λ
= εDE

γ

0

�γ δ
γ

L

F1

(
1

2
;

1

2
,
γ

2
;

3

2
; − ε2

D

�2
γ

, − ε2
D

δ2
L

)
, (A3)

where F1 is the Appell hypergeometric function. To compare
the results of Eq. (B6) to the results of Eq. (A3) we define

R(δL) =
(

εD

δL

)γ (1 − γ )F1
(

1
2 ; 1

2 ,
γ

2 ; 3
2 ; − ε2

D

�2
γ
,− ε2

D

δ2
L

)
2F1

(
1
2 ,

1−γ

2 ; 3−γ

2 ; − ε2
D

�2
γ

) . (A4)

Such that R(δL) ∼ 1 implies good agreement between the
two forms of the matrix element and the role of δL may be
neglected. We plot this function for different values of δL

corresponding to δL ∼ �γ=0 the point at which mean-field
BCS treatment breaks down and δL � �γ=0, which is the case
for a bulk metal. The later case will hold for γ � 1. We see that
in both cases good agreement exists between the two forms of
the matrix element up to moderate values of γ . see Fig. 6.
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FIG. 6. (Color online) Comparison of R(δL) for εD/δL = 100
(blue) and εD/δL = 1000 (red). Corresponding to the limit where
BCS mean-field theory breaks down δL ∼ �γ=0, and the case for
a clean metal δL � �γ=0, respectively. R(δL) is independent of
εD/E0 and λ. We note there will be good agreement between results
calculated using the simple matrix [Eq. (7)] and results calculated
with a careful treatment of the region around δL [Eq. (A1)] when
γ � 1 and δL � �0.

APPENDIX B: ENERGY DEPENDENCE OF THE ORDER
PARAMETER AT ZERO TEMPERATURE

The energy dependence of the order parameter is obtained
from the following generalized gap equation:

�(ε) = λ

2

∫ εD

−εD

�(ε′)√
ε′2 + �2(ε′)

∣∣∣∣ E0

ε − ε′

∣∣∣∣
γ

dε′, (B1)

where we assume that we are in the limit of weak multifractal-
ity such that γ � 1. It is not in general acceptable to assume
(E0

|ε| )
γ

is small as E0 may be very large compared to ε as
discussed in the introduction. For this reason we expand the
matrix elements as

I (ε,ε′) =
∣∣∣∣E0

ε′

∣∣∣∣
γ

e−γ ln |1− ε

ε′ |

=
∣∣∣∣E0

ε′

∣∣∣∣
γ(

1 − γ ln
∣∣∣1 − ε

ε′

∣∣∣+ O(γ 2)

)
, (B2)

the logarithmic terms resulting from this expansion are
acceptable as under integration they result in small corrections
and so the series is convergent in γ . We can also expand the
leftmost parts of the gap equation in powers of γ using the
ansatz

�(ε) = �γ [1 + γf1(ε) + γ 2f2(ε) + · · · ]. (B3)

For example, to first order in γ ,

1 + γf1(ε) + O(γ 2)

= λ

2

∫ εD

−εD

(
1(

ε′2 + �2
γ

)1/2 + γ
ε′2f1(ε′)(

ε′2 + �2
γ

)3/2 + O(γ 2)

)

×
∣∣∣∣E0

ε′

∣∣∣∣
γ(

1 − γ ln
∣∣∣1 − ε

ε′

∣∣∣+ O(γ 2)

)
dε′. (B4)

The gap equation can now be solved for �γ ,f1,f2, and higher
terms if necessary, by collecting terms according to their γ

dependence.

1. Zeroth order approximation

Collecting the terms of order |E0
ε′ |γ we find

1 = λ

2

∫ εD

−εD

1√
ε′2 + �2

γ

∣∣∣∣E0

ε′

∣∣∣∣
γ

dε′. (B5)

Carrying out the integral,

1

λ
= E

γ

0 ε
1−γ

D

�γ (1 − γ )
2F1

(
1

2
,
1 − γ

2
;

3 − γ

2
; − ε2

D

�2
γ

)
, (B6)

where 2F1(a,b; c; d) is the hypergeometric function. We
define �γ as the solution to this equation which corresponds
approximately to the spectroscopic gap, namely, the minimum
energy excitation at the Fermi energy. In Sec. II A we will carry
out a full analysis of �γ . For now we focus on determining
the energy dependence of the gap �(ε).

2. First order approximation

Collecting the terms of order γ |E0
ε′ |γ from Eq. (B4),

f1(ε) = λ

2

∫ εD

−εD

⎡
⎣ ε′2f1(ε′)(

ε′2 + �2
γ

)3/2

∣∣∣∣E0

ε′

∣∣∣∣
γ

− ln
∣∣1 − ε

ε′
∣∣√

ε′2 + �2
γ

∣∣∣∣E0

ε′

∣∣∣∣
γ

⎤
⎦dε′. (B7)

We solve Eq. (B7) using the ansatz f1(ε) = h1(ε) + c1, where
c1 is a constant and we define h1(ε) as the closed function,

h1(ε) = −λ

2

∫ εD

−εD

ln
∣∣1 − ε

ε′
∣∣√

ε′2 + �2
γ

∣∣∣∣E0

ε′

∣∣∣∣
γ

dε′. (B8)

After solving for c1 we find that the leading correction to
�γ is given by

f1(ε) = h1(ε) +
λ
2

∫ εD

−εD

ε′2h1(ε′)
(ε′2+�2

γ )3/2

∣∣E0
ε′
∣∣γ dε′

1 − λ
2

∫ εD

−εD

ε′2
(ε′2+�2

γ )3/2

∣∣E0
ε′
∣∣γ dε′ . (B9)

3. Second order approximation

The treatment for the second order correction γ 2|E0
ε′ |γ is

identical to the first order case. Using a similar ansatz we find

f2(ε) = h2(ε) +
λ
2

∫ εD

−εD

ε′2h2(ε′)
(ε′2+�2

γ )3/2

∣∣E0
ε′
∣∣γ dε′

1 − λ
2

∫ εD

−εD

ε′2
(ε′2+�2

γ )3/2

∣∣E0
ε′
∣∣γ dε′

− 3λ�2
γ

4

∫ εD

−εD

f1(ε′)2ε′2(
ε′2 + �2

γ

)5/2

∣∣∣∣E0

ε′

∣∣∣∣
γ

dε′, (B10)
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where

h2(ε) = λ

2

∫ εD

−εD

⎡
⎣ ln2

∣∣1 − ε
ε′
∣∣

2
√

ε′2 + �2
γ

∣∣∣∣E0

ε′

∣∣∣∣
γ

− ε′2 ln
∣∣1 − ε

ε′
∣∣f1(ε′)(

ε′2 + �2
γ

)3/2

∣∣∣∣E0

ε′

∣∣∣∣
γ
]
dε′. (B11)

APPENDIX C: DERIVATION OF Tcγ

Starting with

1 = λ

∫ εD

0

(
E0

ε

)γ tanh(βcε/2)

ε
dε, (C1)

let x = βε/2,

1 = λ

(
E0βc

2

)γ ∫ βcεD
2

0

tanh(x)

x1+γ
dx. (C2)

We can carry out the integration by rewriting it as∫ βcεD
2

0

tanh(x)

x1+γ
dx =

∫ 1

0

tanh(x)

x1+γ
dx

+
∫ βcεD

2

1

(
1

x1+γ
− 2

x1+γ (e2x + 1)

)
dx

= 1

γ

[
1 −

(
βcεD

2

)−γ
]

+
∫ 1

0

tanh(x)

x1+γ
dx

−
∫ βcεD

2

1

2

x1+γ (e2x + 1)
dx. (C3)

Note the last line is only true if γ �= 0. We examine each of
the remaining integrals in turn:∫ 1

0

tanh(x)

x1+γ
dx =2

∫ 1

0

sinh(x)

x1+γ
(e−x −e−2x +e−5x −· · · )dx,

(C4)

where we have used sech(x) = 2(e−x − e−3x + e−5x − · · · ).
Integrating term by term and combining the results we find∫ 1

0

tanh(x)

x1+γ
dx

= − 1

γ
+ 2γ+1�(−γ )(1γ − 2γ + 3γ − · · · )

+ 2[E1+γ (2) − E1+γ (4) + E1+γ (6) − · · · ], (C5)

where En(x) is the exponential integral function

En(x) =
∫ ∞

1

e−xt

tn
dt. (C6)

Note the series (1γ − 2γ + 3γ − · · · ) is apparently not con-
vergent. We know the integral is convergent and evaluate by
taking the analytic continuation,

(1γ − 2γ + 3γ − · · · ) = (1 − 2γ+1)ζ (−γ ), (C7)

where ζ (x) is the Riemann ζ function.

Now consider the integral∫ βcεD
2

1

2

x1+γ (e2x + 1)
dx. (C8)

This function is well approximated (kBTc � εD) by∫ ∞

1

2

x1+γ (e2x + 1)
dx

=
∫ ∞

1

sech(x)e−x

x1+γ
dx

= 2[E1+γ (2) − E1+γ (4) + E1+γ (6) − · · · ]. (C9)

Combining Eqs. (C3), (C5), (C7), and (C9), and rearranging,
gives the result

kBTc = εDC(γ )

[
1

λ

(
ED

E0

)γ

+ 1

γ

]−1/γ

, (C10)

C(γ ) = [2(2γ+1 − 1) �(−γ ) ζ (−γ )]1/γ (C11)

as required.

APPENDIX D: ANALYTICAL CALCULATION OF THE
SPATIAL DISTRIBUTION OF THE ORDER PARAMETER

We begin the calculation of the spatial distribution of the
order parameter by computing the moments of �(r) [Eq. (5)],

〈�n(r)〉 =
∫

dr
n∏

j=1

⎛
⎝λV

2

∫
�(εj )√

�(εj )2 + ε2
j

|ψ(εj ,r)|2dεj

⎞
⎠,

(D1)

where �(εj ) is given by Eq. (9).
It is clear that in order to proceed it is necessary to evaluate

the following correlation function:

P̃q = V n

∫
dr|ψ(εi1,r)|2|ψ(εi2,r)|2 · · · |ψ(εin ,r)|2. (D2)

An exact analytical solution of Eq. (D1) is not possible,
however we shall see that by expanding in γ � 1 and keeping
only the leading terms it is possible to find compact analytical
solutions.

We assume without loss of generality that εi1 > εi2 > · · · >

εin and further always work in the case where |εi1 − εi2 | ≈
|εi2 − εi3 | ≈ · · · ≈ |εin−1 − εin |. When the energy separation
between the neighboring eigenfunctions is small |εik−1 − εik | ∼
δL we recover the results for the IPR,

P̃q ∼ Ldq (q−1), (D3)

whereas in the opposite limit |εik−1 − εik | ∼ E0 the eigenfunc-
tions become statistically independent and therefore,

P̃q ≈ V 2n

∫
dr1 · · ·

∫
drn|ψ(εi1,r1)|2 · · · |ψ(εin ,rn)|2 ∼ 1.

(D4)
Analogously to the derivation of Eq. (7), the scaling between
these two limits can be approximated by

P̃q ∼
n−1∏
j=1

(
E0

|εj − εj+1|
)γn

, (D5)
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where γn = 1 − dn

d
. The moments of the gap in real space can

then be calculated from

〈�n(r)〉 = λ

2

∫
dεn

�(εn)√
�(εn)2 + ε2

n

×
⎡
⎣n−1∏

j=1

λ

2

∫
dεj

�(εj )√
�(εj )2 + ε2

j

(
E0

|εj − εj+1|
)γn

⎤
⎦.

(D6)

As when we solved the gap equation we expand in γ . We
consider the lowest order in γ using �(ε) = �γ ,

〈�n(r)〉 =
(

λ

2

)n

⎡
⎣n−1∏

j=1

∫
dεj

�γ√
�2

γ + ε2
j

(
E0

|εj |
)γn

⎤
⎦

×
∫

dεn

�(εn)√
�(εn)2 + ε2

n

. (D7)

Carrying out the integrals, and applying Eq. (12), we find

〈�n(r)〉 = (�γ )n
(

εD

E0

)(γ−γn)(n−1)+γ

. (D8)

As was discussed in the introduction for a wide range of
different systems, for example disorder in d = 2 + ε dimen-
sions, it has been shown that the fractal dimension behaves
like dn = d(1 − κn) [38,51,61], where κ−1 is proportional to
the dimensionless conductance in the material. This depen-
dence on n applies for all n less than some critical value
nc. For the systems we are interested in, this critical value
is sufficiently large that the shape of the distribution will be
well described by considering dn = d(1 − κn) for all n, as
modifications to this value only affect very high order moments
of the distribution.

Applying this result we can write our moments in the
normalized form

〈�n(r)〉
(�γ )n

= eκ ln(εD/E0)(3n−n2) (D9)

from which it is trivial to write down the characteristic function
associated with the distribution of �(r)/�γ ,

φ(t) =
∞∑

n=0

(it)n

n!
eκ ln(εD/E0)(3n−n2). (D10)

By inspection, this is the characteristic function for a log-
normal distribution,

P
(

�(r)

�γ

)
= �γ

�(r)
√

2πσ
exp

⎡
⎣−

[
ln
(

�(r)
�γ

)− μ
]2

2σ 2

⎤
⎦,

(D11)

with μ = 3κ ln(εD/E0), σ = √
2κ ln(E0/εD). The mean value

for the distribution is〈
�(r)

�γ

〉
=
(

εD

E0

)2κ

(D12)

and the variance is given by

Var

(
�(r)

�γ

)
=
(

εD

E0

)2κ
[

1 −
(

εD

E0

)2κ
]
. (D13)

APPENDIX E: SOLVING THE GAP
EQUATION NUMERICALLY

In principle, solving the integral equation (8) is a difficult
computational problem. We have developed a simple inexpen-
sive algorithm to do this.

We first define an array of n = 200 points εj equally
spaced between −εD and εD . We also define the gap at
each of these points �i=0(εj ) initialized it with a constant
value �0. We then define a function which makes the array
of the gap into a continuous function �i=0(ε) using a high
order polynomial interpolation. The integration can then be
carried out using a standard numerical integration algorithm.
We calculate �i=1(εj ) using

�i+1(εj ) = λ

2

∫ ∞

−∞

�i(ε′)√
ε′2 + �2

i (ε′)

(
E0

|εj − ε′|
)γ

dε′. (E1)

Now we iterate using �i=1(εj ) as the input to the interpolation
step. After several iterations the results converge to the correct
value of the gap. We test convergence by defining the relative
error,

erri =
∑

j |�i(εj ) − �i−1(εj )|
n�0

(E2)

and take convergence to have been reached when erri < 10−6.
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[54] B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R.

Baklanov, and M. Sanquer, Phys. Rev. Lett. 101, 157006
(2008).

[55] J. Mayoh and A. M. Garcı́a-Garcı́a, Phys. Rev. B 90, 134513
(2014).

[56] Y. Dubi, Y. Meir, and Y. Avishai, Nature (London) 449, 876
(2007).

[57] S. Ghosh and S. S. Mandal, Phys. Rev. Lett. 111, 207004 (2013).
[58] J. A. Quintanilla and R. M. Ziff, Phys. Rev. E 76, 051115 (2007).
[59] W. Xia and M. F. Thorpe, Phys. Rev. A 38, 2650 (1988).
[60] A. Kapitulnik and G. Kotliar, Phys. Rev. Lett. 54, 473 (1985).
[61] F. Evers and A. D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000).

174526-13

http://dx.doi.org/10.1103/PhysRevB.78.014509
http://dx.doi.org/10.1103/PhysRevB.78.014509
http://dx.doi.org/10.1103/PhysRevB.78.014509
http://dx.doi.org/10.1103/PhysRevB.78.014509
http://dx.doi.org/10.1143/JPSJ.51.1380
http://dx.doi.org/10.1143/JPSJ.51.1380
http://dx.doi.org/10.1143/JPSJ.51.1380
http://dx.doi.org/10.1143/JPSJ.51.1380
http://dx.doi.org/10.1143/JPSJ.53.2681
http://dx.doi.org/10.1143/JPSJ.53.2681
http://dx.doi.org/10.1143/JPSJ.53.2681
http://dx.doi.org/10.1143/JPSJ.53.2681
http://dx.doi.org/10.1103/PhysRevLett.81.3940
http://dx.doi.org/10.1103/PhysRevLett.81.3940
http://dx.doi.org/10.1103/PhysRevLett.81.3940
http://dx.doi.org/10.1103/PhysRevLett.81.3940
http://dx.doi.org/10.1103/PhysRevB.65.014501
http://dx.doi.org/10.1103/PhysRevB.65.014501
http://dx.doi.org/10.1103/PhysRevB.65.014501
http://dx.doi.org/10.1103/PhysRevB.65.014501
http://dx.doi.org/10.1103/PhysRevLett.106.047001
http://dx.doi.org/10.1103/PhysRevLett.106.047001
http://dx.doi.org/10.1103/PhysRevLett.106.047001
http://dx.doi.org/10.1103/PhysRevLett.106.047001
http://dx.doi.org/10.1088/1742-6596/376/1/012001
http://dx.doi.org/10.1088/1742-6596/376/1/012001
http://dx.doi.org/10.1088/1742-6596/376/1/012001
http://dx.doi.org/10.1088/1742-6596/376/1/012001
http://dx.doi.org/10.1103/PhysRevB.89.035149
http://dx.doi.org/10.1103/PhysRevB.89.035149
http://dx.doi.org/10.1103/PhysRevB.89.035149
http://dx.doi.org/10.1103/PhysRevB.89.035149
http://dx.doi.org/10.1103/PhysRevLett.111.187002
http://dx.doi.org/10.1103/PhysRevLett.111.187002
http://dx.doi.org/10.1103/PhysRevLett.111.187002
http://dx.doi.org/10.1103/PhysRevLett.111.187002
http://dx.doi.org/10.1103/PhysRevB.87.184509
http://dx.doi.org/10.1103/PhysRevB.87.184509
http://dx.doi.org/10.1103/PhysRevB.87.184509
http://dx.doi.org/10.1103/PhysRevB.87.184509
http://dx.doi.org/10.1038/nphys2937
http://dx.doi.org/10.1038/nphys2937
http://dx.doi.org/10.1038/nphys2937
http://dx.doi.org/10.1038/nphys2937
http://dx.doi.org/10.1103/PhysRevB.88.014503
http://dx.doi.org/10.1103/PhysRevB.88.014503
http://dx.doi.org/10.1103/PhysRevB.88.014503
http://dx.doi.org/10.1103/PhysRevB.88.014503
http://dx.doi.org/10.1103/PhysRevLett.105.037001
http://dx.doi.org/10.1103/PhysRevLett.105.037001
http://dx.doi.org/10.1103/PhysRevLett.105.037001
http://dx.doi.org/10.1103/PhysRevLett.105.037001
http://dx.doi.org/10.1103/PhysRevLett.108.207004
http://dx.doi.org/10.1103/PhysRevLett.108.207004
http://dx.doi.org/10.1103/PhysRevLett.108.207004
http://dx.doi.org/10.1103/PhysRevLett.108.207004
http://dx.doi.org/10.1038/nphys2037
http://dx.doi.org/10.1038/nphys2037
http://dx.doi.org/10.1038/nphys2037
http://dx.doi.org/10.1038/nphys2037
http://dx.doi.org/10.1038/srep01357
http://dx.doi.org/10.1038/srep01357
http://dx.doi.org/10.1038/srep01357
http://dx.doi.org/10.1038/srep01357
http://dx.doi.org/10.1038/nphys1892
http://dx.doi.org/10.1038/nphys1892
http://dx.doi.org/10.1038/nphys1892
http://dx.doi.org/10.1038/nphys1892
http://dx.doi.org/10.1103/PhysRevLett.98.027001
http://dx.doi.org/10.1103/PhysRevLett.98.027001
http://dx.doi.org/10.1103/PhysRevLett.98.027001
http://dx.doi.org/10.1103/PhysRevLett.98.027001
http://dx.doi.org/10.1103/PhysRevA.82.043613
http://dx.doi.org/10.1103/PhysRevA.82.043613
http://dx.doi.org/10.1103/PhysRevA.82.043613
http://dx.doi.org/10.1103/PhysRevA.82.043613
http://dx.doi.org/10.1103/PhysRevLett.108.017002
http://dx.doi.org/10.1103/PhysRevLett.108.017002
http://dx.doi.org/10.1103/PhysRevLett.108.017002
http://dx.doi.org/10.1103/PhysRevLett.108.017002
http://dx.doi.org/10.1016/j.aop.2010.04.001
http://dx.doi.org/10.1016/j.aop.2010.04.001
http://dx.doi.org/10.1016/j.aop.2010.04.001
http://dx.doi.org/10.1016/j.aop.2010.04.001
http://dx.doi.org/10.1103/PhysRevB.55.R16001
http://dx.doi.org/10.1103/PhysRevB.55.R16001
http://dx.doi.org/10.1103/PhysRevB.55.R16001
http://dx.doi.org/10.1103/PhysRevB.55.R16001
http://dx.doi.org/10.1007/BF01325284
http://dx.doi.org/10.1007/BF01325284
http://dx.doi.org/10.1007/BF01325284
http://dx.doi.org/10.1007/BF01325284
http://dx.doi.org/10.1088/0305-4470/19/8/004
http://dx.doi.org/10.1088/0305-4470/19/8/004
http://dx.doi.org/10.1088/0305-4470/19/8/004
http://dx.doi.org/10.1088/0305-4470/19/8/004
http://dx.doi.org/10.1209/0295-5075/32/8/002
http://dx.doi.org/10.1209/0295-5075/32/8/002
http://dx.doi.org/10.1209/0295-5075/32/8/002
http://dx.doi.org/10.1209/0295-5075/32/8/002
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1143/PTP.63.707
http://dx.doi.org/10.1103/PhysRevB.88.134506
http://dx.doi.org/10.1103/PhysRevB.88.134506
http://dx.doi.org/10.1103/PhysRevB.88.134506
http://dx.doi.org/10.1103/PhysRevB.88.134506
http://dx.doi.org/10.1103/PhysRevLett.17.632
http://dx.doi.org/10.1103/PhysRevLett.17.632
http://dx.doi.org/10.1103/PhysRevLett.17.632
http://dx.doi.org/10.1103/PhysRevLett.17.632
http://dx.doi.org/10.1103/PhysRevB.78.024505
http://dx.doi.org/10.1103/PhysRevB.78.024505
http://dx.doi.org/10.1103/PhysRevB.78.024505
http://dx.doi.org/10.1103/PhysRevB.78.024505
http://dx.doi.org/10.1088/0953-8984/21/43/435701
http://dx.doi.org/10.1088/0953-8984/21/43/435701
http://dx.doi.org/10.1088/0953-8984/21/43/435701
http://dx.doi.org/10.1088/0953-8984/21/43/435701
http://dx.doi.org/10.1103/PhysRevB.32.5658
http://dx.doi.org/10.1103/PhysRevB.32.5658
http://dx.doi.org/10.1103/PhysRevB.32.5658
http://dx.doi.org/10.1103/PhysRevB.32.5658
http://dx.doi.org/10.1103/PhysRevLett.10.332
http://dx.doi.org/10.1103/PhysRevLett.10.332
http://dx.doi.org/10.1103/PhysRevLett.10.332
http://dx.doi.org/10.1103/PhysRevLett.10.332
http://dx.doi.org/10.1103/PhysRevA.68.053616
http://dx.doi.org/10.1103/PhysRevA.68.053616
http://dx.doi.org/10.1103/PhysRevA.68.053616
http://dx.doi.org/10.1103/PhysRevA.68.053616
http://dx.doi.org/10.1103/PhysRevB.74.052502
http://dx.doi.org/10.1103/PhysRevB.74.052502
http://dx.doi.org/10.1103/PhysRevB.74.052502
http://dx.doi.org/10.1103/PhysRevB.74.052502
http://dx.doi.org/10.1103/PhysRevLett.100.187001
http://dx.doi.org/10.1103/PhysRevLett.100.187001
http://dx.doi.org/10.1103/PhysRevLett.100.187001
http://dx.doi.org/10.1103/PhysRevLett.100.187001
http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1016/S0370-1573(99)00091-5
http://dx.doi.org/10.1016/S0370-1573(99)00091-5
http://dx.doi.org/10.1016/S0370-1573(99)00091-5
http://dx.doi.org/10.1016/S0370-1573(99)00091-5
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1016/0378-4371(90)90056-X
http://dx.doi.org/10.1016/0378-4371(90)90056-X
http://dx.doi.org/10.1016/0378-4371(90)90056-X
http://dx.doi.org/10.1016/0378-4371(90)90056-X
http://dx.doi.org/10.1103/PhysRevLett.101.157006
http://dx.doi.org/10.1103/PhysRevLett.101.157006
http://dx.doi.org/10.1103/PhysRevLett.101.157006
http://dx.doi.org/10.1103/PhysRevLett.101.157006
http://dx.doi.org/10.1103/PhysRevB.90.134513
http://dx.doi.org/10.1103/PhysRevB.90.134513
http://dx.doi.org/10.1103/PhysRevB.90.134513
http://dx.doi.org/10.1103/PhysRevB.90.134513
http://dx.doi.org/10.1038/nature06180
http://dx.doi.org/10.1038/nature06180
http://dx.doi.org/10.1038/nature06180
http://dx.doi.org/10.1038/nature06180
http://dx.doi.org/10.1103/PhysRevLett.111.207004
http://dx.doi.org/10.1103/PhysRevLett.111.207004
http://dx.doi.org/10.1103/PhysRevLett.111.207004
http://dx.doi.org/10.1103/PhysRevLett.111.207004
http://dx.doi.org/10.1103/PhysRevE.76.051115
http://dx.doi.org/10.1103/PhysRevE.76.051115
http://dx.doi.org/10.1103/PhysRevE.76.051115
http://dx.doi.org/10.1103/PhysRevE.76.051115
http://dx.doi.org/10.1103/PhysRevA.38.2650
http://dx.doi.org/10.1103/PhysRevA.38.2650
http://dx.doi.org/10.1103/PhysRevA.38.2650
http://dx.doi.org/10.1103/PhysRevA.38.2650
http://dx.doi.org/10.1103/PhysRevLett.54.473
http://dx.doi.org/10.1103/PhysRevLett.54.473
http://dx.doi.org/10.1103/PhysRevLett.54.473
http://dx.doi.org/10.1103/PhysRevLett.54.473
http://dx.doi.org/10.1103/PhysRevLett.84.3690
http://dx.doi.org/10.1103/PhysRevLett.84.3690
http://dx.doi.org/10.1103/PhysRevLett.84.3690
http://dx.doi.org/10.1103/PhysRevLett.84.3690



