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Triplet superconductivity in a model of Li0.9Mo6O17
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Superconductivity in the quasi-one-dimensional material Li0.9Mo6O17 is analyzed based on a multiorbital
extended Hubbard model. We found strong charge fluctuations at two different momenta Q1 and Q2 giving rise
to two different charge-ordered phases. Evaluating the superconducting vertex, we found superconductivity near
strong charge fluctuations at Q1. The order parameter has p-wave symmetry with nodes on the Fermi surface. The
metallic state displays a characteristic charge collective mode Q1 due to nesting and, for on-site Hubbard repulsion
sufficiently large, a charge critical mode Q2 driven by Coulomb repulsion, which softens at the proximity to the
transition. The results are quite robust for different coupling parametrizations. A phase diagram discussing the
relevance of the model to the physics of the material is proposed.
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I. INTRODUCTION

Low-temperature physics of correlated materials is often
characterized by the competition between ordered phases and
unconventional superconductivity. Typically, a static mean-
field description, implying negligible fluctuations beyond the
limits of the ordered phase, is not valid in these systems. Nearly
all dynamical probes show strong order parameter fluctuations,
not only in the neighboring superconducting phases, which
suggests a natural mechanism of pairing, but also in the strange
metal, present at higher temperatures. Lithium purple bronze
(LiPB) adds the ingredient of quasi-one-dimensionality to the
problem and suggests the possibility that charge and spin
fluctuations alone, without the existence of real order, might be
responsible for superconductivity and anomalies of the normal
phase.

The metallic phase of LiPB, with chemical formula
Li0.9Mo6O17, has been characterized as a robust quasi-one-
dimensional material in a series of angle-resolved photoe-
mission spectroscopy (ARPES) experiments ranging through
different temperature regimes, sample growth techniques,
photon energies, and data analysis procedures [1–9]. Scanning
tunneling microscope (STM) spectroscopy shows [10,11]
Luttinger liquid (LL) single-particle density of states and
thermal and electric transport measurements are in complete
disagreement with the Widemann-Franz law [12]. When
temperature is decreased, an upturn of the resistivity occurs at
Tm ∼ 20 K [12–15] and the material becomes superconducting
at lower temperatures around Tc ∼ 1 K [14,16].

Unlike other low-dimensional bronzes, the resistivity up-
turn of LiPB [17] is not associated with a lattice distortion
(see Table 1 in Ref. [18]). Neither thermal expansion [19] nor
neutron-scattering experiments [20] have identified a phase
transition at Tm suggesting the idea of a soft crossover of
electronic nature. No gap has been clearly observed in the spec-
troscopies but optical conductivity measurements [15] suggest
the presence of a weak pseudogap. Recently, thermopower [21]
and NMR [22] experiments have confirmed different aspects
of the quasi-one-dimensionality of this material but the nature
of the upturn remains a mystery.

The most recent study of superconducting properties [16]
confirms quantitatively that the large anisotropies observed in

the upper critical field agree with those expected from the elec-
trical resistivity in the metallic phase. The coherence lengths
perpendicular to the chains are larger than interchain distances
and Hc2 increases monotonically with decreasing temperature
to values five times larger than the estimated paramagnetic
pair-breaking field. Neither spin-orbit scattering nor strong-
coupling superconductivity seem to explain this behavior,
suggesting the possibility of spin-triplet superconductivity.
The specific heat jump ratio is �C

γTc
= 2.07 [16]. From a strict

BCS theory, this value is closer to the nodeless order parameter
δC/γ Tc = 1.43 than to nodal ones, which should give smaller
values. A quantitative comparison with experiments [23]
shows that superconductivity can be destroyed through orbital
effects at fields higher than the Clogston paramagnetic limit
provided that the superconducting pairs are in the triplet state.

In past years there has been a very important theoretical
effort [24–27] to reduce the complexity of the unit cell to
microscopic Hamiltonians reproducing different aspects of
this phenomenology. In this article, we present a microscopic
theory for the unconventional superconducting properties
observed in Li0.9Mo6O17. Based on a minimal extended
Hubbard model introduced in Refs. [24,25], we show that
Li0.9Mo6O17 superconducts in the triplet channel when charge
and spin fluctuations are enhanced, which may be also related
to the upturn in resistivity at Tm [27]. Using the random-phase
approximation (RPA), we identify the charge-density wave
(CDW) pattern characterized by two ordering wave vectors,
Q1 and Q2. In the proximity of those phases we evaluate and
analyze the superconducting vertex, finding dominant p-wave
triplet superconductivity with nodes on the Fermi surface.
Within our methodology we find results compatible with the
one presented in a very recent preprint [28].

II. MICROSCOPIC MODEL

The electronic structure close to the EF and the quasi-one-
dimensionality of the system derives from two parallel zigzag
Mo-O chains per unit cell [29] (Fig. 1). Tight-binding [30]
and density-functional theory (DFT) [31] band-structure cal-
culations agree that the Mo-O orbitals of the chain give rise
to four bands and two of them cross the Fermi level. ARPES
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FIG. 1. (Color online) Schematic crystal structure of
Li0.9Mo6O17 projected onto the b-c plane showing only the
partially filled Mo atoms forming the zigzag ladders relevant to
the low-energy electronic properties. Our choice of unit cell is
highlighted and the orbitals numerated (solid line) according to
the text; the hoppings (dotted line) and the Coulomb interactions
(dashed line) are also represented.

confirms the quasi-one-dimensionality of the Fermi surface.
A Slater-Koster tight-binding parametrization of the system
was proposed in Ref. [24] and the role of long-range Coulomb
couplings in the anomalies of the metallic phase was also
studied [27]. Here, we consider a strongly correlated model,
which can capture the essential physics of Li0.9Mo6O17 [24]
consisting on an extended Hubbard lattice with four Mo atoms
per unit cell, which reads

H = H0 + HU, (1)

where H0 is the noninteracting tight-binding Hamiltonian.
The one-electron Hamiltonian can be expressed in terms of
Bloch waves with the following nonzero matrix elements,
the intraladder: t12(k) = t43(k) = t⊥ = −0.024 eV, and t14 =
t23(k)t = 0.5 eV and the hoppings among chains, t13(k) =
t ′ = 0.036 eV, as is shown in Fig. 1 (dotted cell).

The diagonalized Hamiltonian, H0 = ∑
kμσ εμ(k)

d
†
kμσ dkμσ , leads to four bands denoted by μ; the two lowest

ones cross the EF [24,27,31]. The Fermi surface, close to
one-quarter filling, n = 0.225, is shown in Fig. 2(a). Notice
that the model includes four bands, two of them empty at
energies three times higher than the Fermi level (0.75 eV),
while we do not include two filled bands 0.2 eV below the
Fermi energy [31].

The Coulomb interaction terms in the Hamiltonian includes
on-site Hubbard interaction (U ), intraladder interaction with
the nonzero matrix elements V12 = V32 = V‖ and V12 = V34 =
V⊥ and the interladder W interactions, W13 = W and W12 =
W34 = W⊥, as shown in Fig. 1 (dashed cell):

HU = U
∑

l,i,α

n
(l)
iα↑n

(l)
iα↓ +

∑

l,i,α,j,β

Viα,jβn
(l)†
iα n

(l)
jβ

+
∑

l,i,α,j,β

Wiα,jβn
(l)
iαn

(l+1)
jβ . (2)

FIG. 2. (Color online) (a) Fermi surface with two bands, Q1 a
nesting vector, and Q2 referred to in the text. (b) Real part of the
bare susceptibility in momentum space for ω = 0 and qa = 0. Notice
the maximum reveals the warping of the Fermi surface at the nesting
vector.

The interacting Hamiltonian only includes density-density
Coulomb interaction contributions. Within this work, we have
considered several combinations of parameters, all of them
leading to essentially the same results presented here where
we reduce the parameter space to two variables (U and V ).
We take the Coulomb interaction among different sites with
1/|r| dependence, where |r| is the distance among orbitals.
Therefore, we parametrize the interactions by weighting
the V ’s with the interatomic distances: V = V‖r‖ = V⊥r⊥ =
WrW = W⊥rW⊥. And r‖ = 3.727 Å, r⊥ = 3.718 Å, rW =
5.767 Å, and rW⊥ = 6.865 Å.

III. MULTIORBITAL RPA APPROACH

In this section we explain the multiorbital RPA approach
for this model; we study spin and charge ordering based
on spin and charge susceptibility, respectively, and the su-
perconducting vertex based on projections of different order
parameters.

A. Spin susceptibility

The RPA spin susceptibility reads [32]

(χs)α,β(q) = (χ0)α,β(q) +
∑

α′β ′
(χs)α′β ′(q)(Us)

α′β ′
(χ0)αβ(q),

(3)

where the indices α,β refer to the four Mo dxy orbitals
present in the unit cell. This is the more general case for
density-density interactions. In our case the spin interaction is a
diagonal matrix (Us)αβ = Uδα,β and momentum independent.
The noninteracting susceptibility, χ0, reads

(χ0)α,β(q,iω) = − 1

N

∑

k,μ,ν

aα
μ(k)aβ∗

μ (k)aβ
ν (k + q)aα∗

ν (k + q)

iω + εν(k + q) − εμ(k)

× [f (εν(k + q)) − f (εμ(k))], (4)

where N is the number of lattice sites, and ν,μ are band indices.
The matrix elements aα

μ(k) = 〈α|μk〉 are the coefficients of the
eigenvectors diagonalizing H0.
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B. Charge susceptibility

The RPA charge susceptibility reads [32]

(χc)α,β(q) = (χ0)α,β(q) −
∑

α′β ′
(χc)α′β ′(q)(Uc)α

′β ′
(q)(χ0)αβ(q),

(5)

where Uc(q) is the Coulomb matrix appearing in Eq. (2) ex-
pressed in momentum space, (Uc)αβ(q) = Uδα,β + 2V̂ (q)α,β ,
where V̂ (q) is the Fourier transform of Viα,jβ and Wiα,jβ

interactions in real space.

C. Superconducting vertex

Assuming that the pairing interaction arises from the
exchange of spin and charge fluctuations, we can calculate
the pairing vertex using the RPA. (For a detailed description
of the method, see, for instance, Ref. [32].) The strength of
the interaction is weighted by ω−1 and by making use of the
Kramers-Kronig relation we only need the real zero-frequency
vertex [32]. For the multiorbital case [33,34], singlet and triplet
pairing vertices at zero frequency are given by

�
singlet
αβ (k,k′) = (

U + 3
2Usχs(k − k′)Us + V̂ (k − k′)

− 1
2Uc(k − k′)χc(k − k′)Uc(k − k′)

)
αβ

, (6)

�
triplet
αβ (k,k′) = (− 1

2Usχs(k − k′)Us + V̂ (k − k′)

− 1
2Uc(k − k′)χc(k − k′)Uc(k − k′)

)
αβ

. (7)

We transform the vertex in real space αβ into momentum
space μν with the band-structure eigenvalues aα

μ(k). The
Cooper pairs have an incoming momentum of (k,−k) and
an outgoing momentum of (k′,−k′). We take the symmetric
and antisymmetric parts for singlet and triplet channels,
respectively:

�singlet
μν (k,k′) =

∑

αβ

aα∗
μ (−k)aα∗

μ (k)Re
[
�

singlet
αβ (k,k′)

]

× aβ
ν (k′)aβ

ν (−k′) + (k′ ↔ −k′), (8)

�triplet
μν (k,k′) =

∑

αβ

aα∗
μ (−k)aα∗

μ (k)Real
[
�

triplet
αβ (k,k′)

]

× aβ
ν (k′)aβ

ν (−k′) − (k′ ↔ −k′). (9)

We solve the gap equation by projecting out s, p, d, and f

waves [35]:

λγ = −
∑

μν

∫
FS

d2k′
μ

|vF (k′
μ)|

∫
FS

d2kν

|vF (kν )|gγ (k′
μ)�P

μν(k,k′)gγ (kν)
∑

μ

∫
FS

d2kμ

|vF (kμ)|g
2
γ (kμ)

(10)

where γ numerates the different waves projected (s, p, d, or f )
and P depends on the γ symmetry. P could be singlet or triplet.
The gap equation has a solution when λγ is 1. We increase
the interaction parameters until the dominant wave solves the
equation; for stronger interactions the gap is already opened
in that channel.

FIG. 3. (Color online) (a) Phase diagram U -V . Extended region
of py superconductivity with nodes in the Fermi surface (inset) close
to the CO region. In the inset we show dx2−y2 and py wave functions.

IV. PHASE DIAGRAM

Using the parametrization described in Sec. II we can study
the complete parameter space, reduced to two variables U and
V . The RPA spin susceptibility [Eq. (3)] breaks at U = 0.47
indicating a spin-density wave (SDW) phase.

The RPA charge susceptibility [Eq. (5)] diverges for
different momenta for different U on-site Hubbard interaction,
leading to different charge-order regions in the phase diagram
(see Fig. 3). The charge-order susceptibility divergence con-
sists in an interplay between the bare susceptibility strongly
peaked at qb ≈ π [Fig. 2(b)] and the charge interaction Uc(q).
The analysis involves 4 × 4 terms but in essence can be
understood with the sum of the 16 contributions. We observe
that Uc(q) [Fig. 4(c)] is a minimum at the (2π,2π ) edge of
the Brillouin zone. Notice that the periodicity is not required
since we are dealing with the sum of the elements of a matrix.
For U = 0, red means positive and blue negative; for that
reason, among all nesting vectors (qb ≈ π ), Q1 diverges first.
The divergence at this momentum stems from nesting.

As long as we increase U , Uc(q) remains negative in a
smaller region, leading to the displacement of the divergence
to Q2. The reason why Q2 does not change with U can be
understood from the bare susceptibility structure, χ0. χ0 in the
entire Brillouin zone (only qb matters, Fig. 2) can be divided

FIG. 4. (Color online) Left: Momentum space distribution of the
interaction, showing the sum of all components. Right: The same as
in Fig. 5 (bottom right), in those momenta relevant to the pairing
vertex.
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FIG. 5. (Color online) Top: Imaginary part of the larger eigen-
value of the charge susceptibility near the critical value (see Fig. 3)
for (left) U = 0.2 and (right) U = 0.4. Bottom: Real part of the
larger eigenvalue in momentum space and zero frequency close to
the critical value for (left) U = 0.2 and (right) U = 0.4.

into three zones: 0 < qb � 0.1π/b, 0.1π/b � qb � 0.6π/b,
and 0.6π/b � qb < π/b (and symmetric regions with respect
to qb = pi/b). In the first zone the susceptibility increases
sharply due to the warping. By increasing qb we can connect
more points of the Fermi surface. In the second region the
system only has access to the Fermi sheets at one side,
increasing weakly the value of the particle-hole susceptibility.
In the third region connections among the two pairs of sheets
gives also a strong enhancement with momentum. In our
case, the range of U below the SDW ordered phase makes
the negative Uc(q) to be in the second region of the bare
susceptibility. Since this region of χ0 is weakly q dependent,
we observe a minimal change of Q2 with increasing U . The
divergence of the charge susceptibility at this momentum is
due to interactions, and the softening can be described as a
critical mode similar to the one found in Ref. [27]. In Fig. 6
we see a critical exponent of 1

2 .
The transition from Q1 to Q2 ordering phases is also

shown in Fig. 5. The upper panels show the frequency against
momentum of the charge susceptibility (maximum eigenvalue,
which is significantly larger than the other three). Notice that
above ω > 0.2 contributions from completely filled bands,
ignored by the model, are expected. The lower panels show the
charge susceptibility (maximum eigenvalue) at zero frequency.
On the left-hand hand panels U = 0.2 while on the right-hand
panels U = 0.4. We observe a change in the spectral weight
of the collective mode from Q1 to Q2 when U is increased.
Moreover, while the weight at Q1 exists at any value of V , at Q2
the mode softens, signaling at the proximity to the transition.

Near the SDW region we found superconductivity in dx2−y2

channel. This behavior is consistent with that expected for a
quasi-one-dimensional square lattice at quarter filling [36]. A
very recent preprint [28] proposes an order parameter with
different sign in each band and a total of three node planes in

FIG. 6. (Color online) Gap squared of the Q2 critical mode scaled
with the critical interaction V = Vc. We observe a 1

2 exponent near
the critical value.

the b direction (and two more in the c direction) at V = 0. We
skip the bracketed description and project the wave (here we
call it fx) with our methodology. The results (Fig. 3) show that
both d and f channels are very close, with the fx dominating.

As long as experiments do not show signatures of SDW
gap opening or magnetic response [37], we can work with
lower U values to avoid strong spin fluctuations. The Coulomb
interactions are comparable with Ref. [26].

Near the CDW or CO regions of the phase diagram we found
triplet superconductivity in the py channel, with nodes at the
Fermi surface. Near the Q1 CDW region, we found a narrow
stripe [38] of superconductivity due to charge fluctuations at
Q1. We observe that Q1 is a nesting vector connecting all the
Fermi surface with different phases of the order parameter. See
the inset in Fig. 3. We have included a dashed line indicating
where the extended Hubbard interaction V⊥ equals U . The
parameters are meaningful above this line, but since this is an
effective model, we can expect the study to be physical even
slightly below the V⊥ = U line.

From this study, apparently we can design the interactions
in Fig. 4(c) to be a minimum in a given momentum, in
such a way that favors superconductivity with a certain order
parameter. Nevertheless, we need to take into account the
bare susceptibility structure and the orbital distribution in real
space. In the present model, the bare susceptibility is peaked at
qb ≈ π , and the divergence at Q1 is favored by perpendicular
Coulomb interactions V⊥ and W⊥, whereas interactions along
the chains do not distinguish momenta in the b direction.

The Q2 momentum is not involved in the vertex calculation
[Eq. (10)], so we are still able to work with the superconducting
vertex since it has not diverged. In that region, strong
charge fluctuations still persist at Q1 due to nesting, and
superconductivity would be found if another charge-ordered
phase were not present.

Coexistence in the model

If the order parameter of the CO is small, and assuming that
the Q2 modulation does not open a gap at EF , we consider now
the possibility of coexistence with superconductivity (SC) in
this model, even though it may not have relevance for the
material.
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FIG. 7. (Color online) The background represents the charge
fluctuations near Q1 and on top of that are the CO transition line
(green) and superconducting transition line (solid black) for (left)
U = 0.2 and (right) U = 0.4. The dashed black line is the CO
transition due to Q1 if the other order is not present. The blue line is
the superconducting transition.

We study the coexisting region with temperature (see
Fig. 7). The charge fluctuations have a reentrant behavior in the
RPA approach [39], due to the fact that the bare susceptibility
χ0(q,ω) is maximum in energy (ω  t) when q connects
different points of the band structure approximately ω away
from Fermi level. In that case Q1 is a nesting vector and
the maximum is close in energy, ω = 0.01 ≈ T . However,
Q2 exhibits its peak of reentrant behavior at a larger energy,
and we only see the decrease of critical V with temperature.
In Fig. 7(a) the critical momentum changes from Q1 at low
temperatures to Q2. We observed that change from charge
susceptibility and it is represented by the change of behavior
of the CO line. The temperature makes the bare susceptibility
softer, lowering the value of χ0(Q1) and shifting the critical
momentum to Q2.

V. ELIASHBERG EQUATION WITH A REDUCED VERTEX

In the previous section we showed that the superconducting
vertex is dominated by the charge susceptibility near Q1 [see
Eq. (10)]. The result is that by using just a few vertex momenta
we reproduce the λpy value. However, we cannot reduce easily
the four-orbital model for a simpler tight binding, since near
Q1 the bands have a similar weight in the four orbitals. For
that reason, we select the larger values of the pairing vertex
[calculated with the four-orbital model, Eqs. (8) and (9)] and
as a result, we see that less than 10% of the vertex is enough
to get more than 90% of the λpy value. In order to reproduce
λpy from momenta near Q1 we need to multiply the value of
the vertex by 4; otherwise we need to include momenta near
q = 0 because it is significantly large and connects many pairs
of Fermi surface momenta.

Moreover, we see that the value of the pairing vertex is
almost independent of qy . All those simplifications allow us
to work with a simpler model and solve the linear Eliashberg
equation in Matsubara frequencies, given by

λpy�(k,iωn) = −1

N

∑

k′iω′
n

G0(k′,iω′
n)�triplet(k,k′,iωn − iω′

n)

×G0(−k′,−iω′
n)�(k′,iω′

n), (11)

FIG. 8. (Color online) Left: Gap in the Matsubara frequency
(iωn) at T = 0.01, U = 0.2, and V = 0.676, green line; Lorentzian
fit, blue line. Right: Conductance against energy for different
superconducting order parameters. We can distinguish the py wave;
α is the angle of the order parameter with the junction, and Z is the
height of the tunnel barrier, in this case the insulating phase [40].

where

G0(k′,iω′
n)sp =

∑

ν

as
ν(k)ap

ν (k)

iωn − εν(k)
(12)

are 4 × 4 matrices, and �triplet is also a matrix defined in Eq. (9)
but with iωn dependence coming from the bare susceptibility
[Eq. (4) in Eq. (7)]. We calculate the momentum dependence of
the gap by projecting on the py order parameter: �(k,iωn) =
f (iωn) sin(kcc). The result (shown in Fig. 8) can be fitted by
a Lorentzian plus a constant; analytic continuation or Padé
approximants gives the same result: a real constant for the
relevant frequencies. Provided the gap value is small, only low
frequencies are relevant for experiments, as normal-insulator
superconducting junctions [40] [see Fig. 8(b)].

VI. DISCUSSION AND CONCLUSIONS

As was previously mentioned, Li0.9Mo6O17 exhibits sig-
natures of Luttinger liquid behavior for a wide range of
temperatures. Thus, it is important to discuss its relation with
the physics described above.

In Fig. 9, we present a schematic phase diagram for the
model and consider its relevance for the physics of LiPB.
Merging the renormalization-group estimation of the crossover
temperature and the RPA calculations for the CDW, and

FIG. 9. (Color online) Schematic phase diagram for LiPB. The
present study comprises the green horizontal arrow; we believe
the temperature dependence of the real material is represented by
the vertical orange arrow.
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considering the fluctuation exchange in the superconducting
vertex, we compose a schematic diagram (Fig. 9). At high tem-
peratures, the metallic phase is a LL. As the temperature goes
down, the perpendicular hopping drives the system through
a crossover to a Fermi liquid and the interchain Coulomb
interactions through a thermodynamic phase transition to a
CDW. Our analysis of the SC vertex comprises the dashed
horizontal line. Since we are working at temperatures well
below TLL, the use of RPA, as a perturbation theory of
the essentially free electron system, is well justified as a
starting point. In other words, we are able to describe the
superconductivity as an instability of a Fermi liquid, in spite
of the normal phase of the material being a LL. On the other
hand, the behavior of the material as the temperature goes
down seems to be represented by the solid vertical line. This
statement is based on the spectroscopies [9,10] at temperatures
right above Tc. The density of states show power-law behavior
very similar to that observed at much higher temperatures and
similar values of α. Placing the material slightly on the left
of that vertical line would imply an interesting crossover from
one non-Fermi liquid (NFL) (the LL) to another NFL (FL
+ strong charge fluctuations). At a purely qualitative level,
no evidence of a Fermi edge developing at low temperatures
has been observed and the experimental values of α seem to
increase (instead of decrease). However, both alternatives rely
on details of the model and should be quantitatively contrasted
with the spectroscopies.

The dashed line in Fig. 9 shows the dimensional crossover
from Luttinger liquid to Fermi liquid [41,42]. The small value
of the perpendicular hopping suggests considering it as a per-
turbation. Based on the renormalization-group approach, we

can estimate the crossover temperature to be TLL ∼ t( t⊥
t

)
1

1−α ,
where α is the exponent for the single-particle density of states.
In Fig. 10 we show the estimated dimensional crossover for
Luttinger chains coupled with Hubbard and V interactions.
The value of α is computed using interaction parameters U

and V following the CO border shown in Fig. 3. W is set
to zero. Note that the same Coulomb interactions driving the
charge ordering allow for large values of α. Therefore, we

FIG. 10. (Color online) Dashed line, renormalization group esti-
mation of the crossover temperature for the critical V values found
for each U ; solid line, the exponent in the Luttinger density of
states, α.

expect TLL to be very small when the CDW is approached.
This fact opens the possibility for a direct transition from the
LL to the superconducting phase. It would be interesting to
study this possibility with techniques similar to those used in
Ref. [43].

The charge-ordering transition for the RPA apparently
occurs at arbitrarily large temperatures as V increases, but
we expect the slight modifications presented in Ref. [44],
which considers how the fluctuation effects modify the Green’s
function self-consistently, evaluating also vertex corrections.
Other details like the reentrant behavior for the charge-ordering
transition, typical of RPA calculations, are unessential for the
physics of the system.

Since our results imply a nodal wave function, a discussion
of the experimentally measured specific heat jump is necessary.
From a strict BCS approach, the value of the normalized
specific heat jump should be smaller than the BCS result,
�C/γTc = 1.43. However, in strong coupling or when the
pairing mechanism is due to either spin or charge fluctuations
the argument may be different. From a detailed study on
the spin-fluctuation effect, Williams et al. [45] observed
that both ratios Tc/�(0) and �C/γTc are not universal
numbers but depend strongly on the functional form of the
pairing-fluctuation spectrum. Actually, the influence of the
low-frequency fluctuations increases the jump and overcomes
the effect of the nodes in the order parameter. Based on this
study, we can argue that a nodal order parameter can give rise
to a normalized specific heat jump of 2.07 as measured [16].
This study requires a comment on the filled bands close to the
Fermi level and not taken into account in the model.

Due to the use of the Kramers-Kronig relation, the real
part of the vertex at zero frequency [Eqs. (8) and (9)] includes
information about the model band structure at any frequency
weighted by ω−1 through the function Im(χc(Q1,ω)/ω). We
expect the charge divergence to dominate at Q1 even in the
presence of those bands, because Q1 is a nesting vector. The
top of the bands are 0.2 eV away from Fermi level [31] (a
slightly larger difference according to experiments [7]), but
the RPA particle-hole excitation constructed with a particle
of these filled bands at Q1 requires a hole in another band;
an energy of at least 0.3 eV is needed (estimation made
from DFT band structure [31]). The validity of the model
concerning superconductivity and charge order is guaranteed

FIG. 11. (Color online) Normalized imaginary part of the charge
susceptibility at Q1 weighted by ω−1 against frequency for different
interaction parameters. U = 0.2 (left) and U = 0.4 (right) and V at
the superconducting transition and CDW or CO transition. Dashed
lines show the energy at which bands not taken into account in the
model would contribute at such internal momentum.
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since the energy of relevant phenomena is considerably below
the influence of nonconsidered bands, as we can observe in
Fig. 11. We expect a contribution to the vertex at energy
ω ≈ 0.3 eV (dashed line in Fig. 11), which is considerably
away from the relevant energy scale of the physics described
here.

To summarize, we have studied a microscopic extended
Hubbard model for LiPB. We have characterized the couplings
promoting SC close to different charge- ordering patterns. A
detailed analysis within the RPA of the vertex shows triplet

superconductivity with nodes on the Fermi surface close
to those ordered phases. The relevance of these results is
discussed in terms of the general experimental perspective
of the material.
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