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Symmetry and topology of two-dimensional noncentrosymmetric superconductors
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We present a detailed study of the gap symmetry and the quasiparticle wave function topology in two-
dimensional superconductors without inversion center. The strong spin-orbit coupling of electrons with the
crystal lattice makes it necessary to describe superconductivity in terms of one or more nondegenerate bands
characterized by helicity. We develop a topological classification of the superconducting states using the integer-
valued Maurer-Cartan invariants and the Bogoliubov Wilson loops, and also calculate the spectrum of fermionic
boundary modes.
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I. INTRODUCTION

Superconductors without inversion symmetry have become
one of the most studied classes of materials in the past
decade, see Ref. [1] for a review and references. The long list
of noncentrosymmetric superconductors includes compounds
both with and without strong electron correlations, the former
exemplified by the heavy-fermion materials CePt3Si (Ref. [2]),
Ce(Rh,Ir)Si3 (Ref. [3]), and UIr (Ref. [4]), while the latter is
represented by Y2C3 (Ref. [5]), Li2(Pd1−x,Ptx)3B (Ref. [6]),
SrPtSi3 (Ref. [7]), and many others. These materials have
properties that are very different from the predictions of the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductiv-
ity, due to the qualitative changes in the electron band structure
produced by the spin-orbit (SO) coupling of electrons with the
crystal lattice.

The SO coupling in a noncentrosymmetric crystal lifts
the spin degeneracy of the electron states almost everywhere
in the Brillouin zone (BZ), producing nondegenerate Bloch
bands labeled by “helicity” and endowing the quasiparticle
wave functions with a complex spin structure and a nontrivial
momentum-space topology. This is responsible for a number
of novel properties, such as the anomalous de Haas-van Alphen
and Hall effects in the normal state [8], the magnetoelectric
effect [9], novel nonuniform superconducting states in the
presence of a magnetic field [10] or even without any field
[11], the topologically protected gapless boundary modes and
quantum spin Hall effect [12,13], and the unusual impurity
response in the superconducting state [14]. If the SO splitting
of the bands is large compared to all superconducting energy
scales, then the Cooper pairing occurs only between quasipar-
ticles with the same helicity, with profound consequences for
the pairing symmetry [15,16].

Another reason for a recent surge of interest in non-
centrosymmetric superconductors is that they appear to be
promising candidates for topological superconductivity. The
defining property of topological quantum matter is that
the quantum states in the bulk fall into distinct classes
characterized by integer-valued topological invariants, which
remain unchanged under sufficiently small variations of the
system’s parameters [17,18]. One popular example of a
centrosymmetric topological superconductor or superfluid is
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the time reversal (TR) symmetry-breaking chiral p-wave state,
which is realized in Sr2RuO4 (Ref. [19]) and thin films of
superfluid 3He -A (Ref. [20]). Superfluid 3He -B is an example
of a TR-invariant topological state, which is similar to a
three-dimensional (3D) topological insulator [21]. A common
feature of the topological materials is that, while fermionic
excitations in the bulk are gapped, there are gapless states
localized near various inhomogeneities. Archetypal examples
include the current-carrying boundary modes in the quantum
Hall insulators [22] or topological band insulators [23], the
Andreev bound states near the sample surfaces or the domain
walls separating different degenerate ground states [24], and
the Majorana fermions in the vortex cores in chiral p-wave
superconductors [25].

Noncentrosymmetric superconductivity has mostly been
observed in 3D materials, but it can also be realized in
two dimensions (2D). Always a subject of a considerable
interest, both experimental and theoretical, the field of 2D
superconductivity has recently received a big boost, following
the discovery of superconductivity in the 2D electron gas at
the interface LAO/STO between two band insulators, LaAlO3

and SrTiO3 (Ref. [26]). Other similar systems include the
interfaces LSCO/LCO between metallic and insulating copper
oxides, or LTO/STO between a Mott insulator LaTiO3 and
SrTiO3, and also surfaces of doped insulating oxides, such
as STO and possibly WO3, see Ref. [27] for a review and
references. A particularly attractive feature of the interface
superconductors is that their electronic properties, in particu-
lar, the carrier density and the SO coupling strength, can be
controlled by an external electric field. The superconducting
critical temperature Tc in these systems can be as high as 109 K,
for FeSe single layers on doped STO substrates [28]. The
interface superconductors lack inversion symmetry, due to the
different nature of the materials sandwiching the conducting
layer. Furthermore, since the SO coupling is much larger than
Tc (Ref. [29]), the 2D electron bands are well split, suppressing
any interband Cooper pairing.

The standard theoretical approach, which relies on the sepa-
ration of singlet and triplet pairing channels in spin-degenerate
bands, works for centrosymmetric superconductors, see, e.g.,
Ref. [30], but is not justified in materials with a large SO
splitting of nondegenerate bands. In the latter case, it is
appropriate to do away with the spin representation and
construct the Cooper pairs from the time-reversed helicity band
states. The band representation is essential for any BCS-like
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model of pairing built upon the conceptual foundation of the
Fermi-liquid theory, in which fermionic quasiparticles exist
and experience an attractive interaction only in the vicinity of
the Fermi surface. The Fermi surface itself can only be defined
in the band representation, as a set of points in momentum
space where a helicity band crosses the Fermi level.

The goal of this paper is to develop a detailed theory
of the pairing symmetry and the topological properties of
2D crystalline noncentrosymmetric superconductors in the
helicity band representation, which is introduced in Sec. II.
In contrast to previous studies, our treatment neither uses the
spin representation nor relies on any particular model of the SO
coupling, although the generalized Rashba model is sometimes
used to illustrate our results. In Sec. III, starting with a modified
BCS model of pairing in nondegenerate bands, we analyze
all possible symmetries of the superconducting gap and
derive the proper form of the Bogoliubov-de Gennes (BdG)
Hamiltonian for the fermionic quasiparticles. In Secs. IV
and V, we develop two different schemes of topological
classification of the superconducting states, using the Maurer-
Cartan invariants built from the Green’s functions and the
Wilson loops containing the Berry potential of the Bogoliubov
quasiparticles, and also calculate the spectrum of the fermionic
boundary modes. Throughout the paper, we use the units in
which � = kB = 1, neglecting, in particular, the difference
between the quasiparticle momentum and wave vector.

II. ELECTRON BANDS IN TWO DIMENSIONS

Consider a 2D electron gas confined in the xy plane. We
assume that its environment lacks “upside-down” symmetry
under the reflection z → −z, and therefore the system does
not have a center of inversion. The symmetry group of the
normal state includes operations from the space group of
the 2D crystal lattice as well as the TR operation K . There
are two contributions to the SO coupling of electrons with
the lattice, one originating from the inversion-symmetric part
of the lattice potential, including the atomic cores, which is
particularly important in compounds with heavy elements, and
the other coming from the inversion-antisymmetric part of the
potential, which is sensitive to the spatial arrangement of the
atoms. While the former contribution merely replaces spin with
pseudospin and does not lift the band degeneracy, it is the latter
that plays a crucial role in noncentrosymmetric systems [8].

In the presence of both TR and inversion symmetries, the
electron bands are twofold degenerate at each wave vector k in
the 2D BZ (due to the momentum space periodicity, the BZ is
topologically equivalent to a torus). Indeed, the states |k〉 and
KI |k〉, where I is the inversion, correspond to the same k, are
orthogonal, and have the same energy. In addition, these two
states are degenerate with another pair of orthogonal states,
K|k〉 and I |k〉, which correspond to −k. Starting with some k
in the irreducible part of the BZ, one can construct a basis of
the pseudospin Bloch states at all other wave vectors in the star
of k, which transform under the symmetry operations in the
same way as the pure spin states [31]. Below we use the same
notation α,β = ↑,↓ for the spin or pseudospin direction. The
four degenerate pseudospin states corresponding to k and −k
can be used to introduce the singlet and triplet superconducting

order parameters, with simple transformation properties under
the point group and TR operations [30].

In contrast, in noncentrosymmetric crystals with the SO
coupling only the TR operation is available to connect the
states of the same energy corresponding to k and −k. Therefore
the pseudospin degeneracy of the bands is lifted almost
everywhere in the 2D BZ, except some high-symmetry points.
We shall see below that the band degeneracy points (also called
the Weyl points) play a crucial role in determining the Bloch
states’ topology. In the limit of zero SO coupling but still
without inversion symmetry, double degeneracy of the bands
at all k is preserved by arbitrary spin rotations. We do not
consider this case here, because it is not applicable to real
noncentrosymmetric superconductors.

We will use the index n, called the helicity, see Sec. II A
below, to label the nondegenerate electron bands, which
contain all information about the lattice potential and the SO
coupling, so that |k,n〉 is the lattice-periodic part of the Bloch
wave function belonging to wave vector k in the nth band. The
corresponding band dispersion, ξn(k), includes the chemical
potential (we neglect the difference between the chemical
potential and the Fermi energy εF ) and is even in momentum:

ξn(k) = ξn(−k). (1)

This last property is a consequence of TR symmetry, because
the states |k,n〉 and K|k,n〉 belong to k and −k, respectively,
and have the same energy. Recall that the TR operator for
spin-1/2 particles has the form K = iσ̂2K0, where σ̂2 is the
Pauli matrix and K0 is complex conjugation. Since the bands
are nondegenerate almost everywhere in the BZ, one can write

K|k,n〉 = tn(k)| − k,n〉, (2)

where tn(k) is a phase factor, which is not gauge invariant, in
the sense that it depends on the phases of the Bloch states.
Since K2|k,n〉 = −|k,n〉 and, on the other hand, K2|k,n〉 =
t∗n (k)tn(−k)|k,n〉, we obtain: tn(−k) = −tn(k). The phase
factors tn are not defined at k = 0 or any other TR invariant
point in the BZ. A momentum-space point k = K is called TR
invariant if it satisfies the condition −K = K + G, where G is
a reciprocal lattice vector. The total number of the TR invariant
points in the BZ is always even and denoted by NTRI. At TR
invariant momenta, the nth band is degenerate with another
band, see Sec. II A below.

Since the Cooper pairing takes place between the Bloch
states |k,n〉 and K|k,n〉, corresponding to opposite momenta
near the Fermi surface, and the superconducting order pa-
rameter varies little on the scale of the inverse Fermi wave
vector, one can neglect the lattice translations and focus on
the crystallographic rotations and reflections in the vertical
planes, which form the 2D point group G. There are ten
crystallographic point groups in 2D, also known as the rosette
groups: five cyclic groups Cn and five dihedral groups Dn,
with n = 1,2,3,4, or 6. The cyclic group Cn has n elements
and is generated by the rotation Cnz about the z axis by an
angle 2π/n. The dihedral group Dn has 2n elements and
is generated by Cnz and also by a reflection σ in a vertical
plane. One can associate a “parent” 3D point group Cn or Cnv

with each rosette group, keeping in mind that, when acting on
two-component vectors k = (kx,ky) any reflection in a vertical
plane is equivalent to a rotation by π about a horizontal axis,
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hence the name “dihedral.” For example, the reflection σx in
the yz plane has the same effect as a π rotation about the y

axis: σx(kx,ky) = (−kx,ky) = C2y(kx,ky).
The states |k,n〉 and K|k,n〉 can be combined into a bispinor

|�k,n〉 =
( |k,n〉

K|k,n〉
)

. (3)

To avoid double counting, the wave vectors labeling |�k,n〉
are restricted to a half of the Brillouin zone (HBZ), which
should be chosen in such a way that it does not contain
time-reversed momenta k and −k at the same time. Since
the electron bands are nondegenerate, action by a point group
element g on |k,n〉 produces a state which belongs to the wave
vector gk and differs from |gk,n〉 only by a phase factor:
g|k,n〉 = eiφk,n(g)|gk,n〉. Using the commutation of g and
K , we have gK|k,n〉 = Kg|k,n〉 = e−iφk,n(g)K|gk,n〉, which
leads to the following transformation properties:

g|�k,n〉 =
(

eiφk,n(g) 0
0 e−iφk,n(g)

)
|�gk,n〉,

K|�k,n〉 =
(

0 1
−1 0

)
|�k,n〉. (4)

Note that, since the Bloch states |k,n〉 are spin-1/2 spinors,
any rotation by 2π changes their sign. For instance, for
the fourfold rotation C4z we have C4

4z|k,n〉 = −|k,n〉. This
double-valuedness can be dealt with in the standard fashion
[32], by adding a fictitious new symmetry element Ē to the
point group, which commutes with all other elements and
satisfies the conditions C4

4z = Ē, K2 = Ē, and Ē2 = E, where
E is the identity element. Its action on the bispinors (3) is given
by Ē|�k,n〉 = −|�k,n〉.

The transformation rules for the electron creation and
annihilation operators are obtained from Eq. (4), if one views
the Bloch states as vectors in the Fock space, i.e., |k,n〉 =
ĉ
†
k,n|0〉, where |0〉 is the vacuum state, which is assumed to

be invariant under all symmetry operations. Using Eq. (2), we
arrive at the following expression for the creation operator in
the time-reversed state:

ˆ̃c†k,n ≡ Kĉ
†
k,nK

−1 = tn(k)ĉ†−k,n, (5)

where K−1 = K†. Then,

gĉ
†
k,ng

−1 = eiφk,n(g)ĉ
†
gk,n, g ˆ̃c†k,ng

−1 = e−iφk,n(g) ˆ̃c†gk,n, (6)

K(f ĉ
†
k,n)K−1 = f ∗ ˆ̃c†k,n, K(f ˆ̃c†k,n)K−1 = −f ∗ĉ†k,n, (7)

and also Ēĉ
†
k,nĒ

−1 = K ˆ̃c†k,nK
−1 = −ĉ

†
k,n. We included a

c-number factor f in Eq. (7) to emphasize the antiunitarity of
the TR operator. The transformation rules for the annihilation
operators are given by Hermitian conjugates of Eqs. (5), (6),
and (7).

A. Two-band model

To illustrate the points made above, we start with the general
Hamiltonian of noninteracting electrons in a TR invariant

noncentrosymmetric crystal lattice with the SO coupling [8]:

Ĥ0 =
∑
k,μν

∑
α,β=↑,↓

[εμ(k)δμνδαβ + iAμν(k)δαβ

+ Bμν(k)σ αβ]â†
kμαâkνβ, (8)

where â† and â are the electron creation and annihilation
operators in the pseudospin Bloch states, σ̂ are the Pauli
matrices, and the wave-vector summation is performed over
the BZ. The first term, with εμ(k) = εμ(−k), describes
the twofold degenerate bands obtained from the inversion-
symmetric lattice potential, including the intra-atomic SO
coupling, which are labeled by the indices μ and ν. All
effects of the inversion-antisymmetric lattice potential and the
corresponding SO coupling are contained in the last two terms.

It follows from the requirements of lattice periodicity,
Hermiticity, and TR invariance that Aμν and Bμν are
real, odd in k, periodic in reciprocal space, and satisfy
Aμν(k) = −Aνμ(k) and Bμν(k) = Bνμ(k). The point group
imposes additional constraints, see Ref. [8] for details.
The pseudospin degeneracy of the bands is lifted if the
B term is nonzero. However, the bands always remain
twofold degenerate at the TR invariant points k = K , where
Bμν(K ) = 0, because Bμν(K ) = −Bμν(−K ) = −Bμν(K +
G) = −Bμν(K ). For the same reason, Aμν(K ) = 0. Therefore
the diagonalization of Eq. (8) produces electronic bands that
come in pairs connected at the TR invariant points.

One can considerably simplify the problem and yet capture
its essential physics by keeping just one such pair of bands,
corresponding to μ = 0 (see Appendix A for a model with
two pairs of bands). Observing that A00(k) = 0 and introduc-
ing the notation B00(k) = γ (k), we arrive at the following
Hamiltonian:

Ĥ0 =
∑
k,αβ

[ε0(k)δαβ + γ (k)σ αβ]â†
kαâkβ. (9)

The antisymmetric SO coupling is described by the 3D
pseudovector γ (k), which is real, odd in k due to TR
symmetry, and invariant under the point group operations,
i.e., gγ (g−1k) = γ (k) for any element g of the 2D point
group G. Recall that proper rotations act in the same way on
the components of the polar vector k and the pseudovector
γ , for instance, Cnzk± = e±2πi/nk±, where k± = kx ± iky .
In contrast, reflections act differently: σx(kx,ky) = (−kx,ky),
but σx(γx,γy,γz) = (γx,−γy,−γz). Barring accidental degen-
eracies, all three components of γ vanish simultaneously
only at the TR invariant points, where γ (K ) = −γ (−K ) =
−γ (K + G) = −γ (K ) = 0. The Hamiltonian of the form
(9) is sometimes called the generalized Rashba model. In
the original Rashba model, see Ref. [33] and the references
therein, the antisymmetric SO coupling of a particular form,
γ (k) = a(kyx̂ − kxŷ), was used.

Diagonalization of Eq. (9) yields two bands of the form
ξλ(k) = ε(k) + λ|γ (k)|, where the band index λ = ± is called
the helicity. We will use the same term broadly to label
the nondegenerate Bloch bands in the general case, i.e.,
beyond the generalized Rashba model. Using the spherical
angle parametrization of the SO coupling, γ̂ = γ /|γ | =
(sin α cos β, sin α sin β, cos α), we obtain the following
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TABLE I. Lowest-order polynomial expressions for the antisym-
metric SO coupling near the center of the BZ (ai and a are real
constants, b is a complex constant, and k± = kx ± iky). The “parent”
3D point groups are listed in the right column.

G2D γ (k) G3D

C1 (a1kx + a2ky)x̂ + (a3kx + a4ky)ŷ + (a5kx + a6ky)ẑ C1

C2 (a1kx + a2ky)x̂ + (a3kx + a4ky)ŷ C2

C3 (a1kx + a2ky)x̂ + (−a2kx + a1ky)ŷ + (bk3
+ + b∗k3

−)ẑ C3

C4 (a1kx + a2ky)x̂ + (−a2kx + a1ky)ŷ C4

C6 (a1kx + a2ky)x̂ + (−a2kx + a1ky)ŷ C6

D1 a1kyx̂ + a2kxŷ + a3kx ẑ C1v ≡ Cs

D2 a1kyx̂ + a2kxŷ C2v

D3 a1(kyx̂ − kxŷ) + a2(k3
+ + k3

−)ẑ C3v

D4 a(kyx̂ − kxŷ) C4v

D6 a(kyx̂ − kxŷ) C6v

eigenstates:

|k,+〉 =
(

cos(α/2)
eiβ sin(α/2)

)
, |k,−〉 =

(
sin(α/2)

−eiβ cos(α/2)

)
.

(10)
Physically, the helicity corresponds to the pseudospin pro-
jection on the direction of the SO coupling, because
〈k,λ|σ̂ |k,λ〉 = λγ̂ (k). It follows from Eq. (2) that in the
generalized Rashba model the phase factor connecting the
time-reversed helicity states is given by

tλ(k) = λe−iβ(k). (11)

The expressions (10) and (11) are smooth and single valued
everywhere in the BZ, except the TR invariant points, where
the bands are degenerate and the angles α and β are not defined.

Representative expressions for γ (k) near k = 0 for all 2D
point groups are given in Table I (for the noncentrosymmetric
3D point groups, see Ref. [8]). The reflection generator of
the dihedral groups is assumed to be σx . Note that for G =
C2,C4,C6,D2,D4, and D6 the SO coupling is “planar” in the
sense that γ (k) lies in the xy plane. This symmetry-imposed
constraint is due to the presence of the rotation C2z in the point
group. Indeed, we have

γ (k) = C2zγ
(
C−1

2z k
) =

⎛
⎝−γx(−k)

−γy(−k)
γz(−k)

⎞
⎠ =

⎛
⎝ γx(k)

γy(k)
−γz(k)

⎞
⎠,

therefore γz(k) = 0 at all k. Note that, although the anti-
symmetric SO coupling is not linear in k in general, its
planar component γ ‖ = (γx,γy,0) is, which has important
implications for the Bloch wave function topology, as we shall
see in Sec. V A.

To extend the expressions from Table I to the whole BZ
and take into account the momentum space periodicity, γ (k +
G) = γ (k), the SO coupling can be represented as the lattice
Fourier series:

γ (k) =
∑

n

γ n sin(kRn), (12)

where γ n are real pseudovectors and the summation goes
over the sites Rn of a 2D Bravais lattice, which cannot be
transformed one into another by inversion. As examples we
consider two simple 2D lattices, square and hexagonal, with
the point groups D4 and D6, respectively. The former case
describes, for instance, the crystalline symmetry of the 2D
electron gas at the interface between two nonsuperconducting
oxides [27]. In both cases, the lattice constant is equal to d and
we limit the summation in Eq. (12) to the nearest-neighbor
sites.

For the square lattice, we obtain

γ (k) = γ0(x̂ sin kyd − ŷ sin kxd). (13)

The SO coupling vanishes at four TR invariant points given by

{K i} =
{

0,
G1

2
,

G2

2
,

G1 + G2

2

}
, (14)

where G1 = (2π/d)x̂ and G2 = (2π/d)ŷ are the primitive
vectors of the reciprocal square lattice. For the hexagonal
lattice, we obtain

γ (k) =
√

3γ0 cos

(
kxd

2

)
sin

(√
3

2
kyd

)
x̂

− γ0

[
sin(kxd) + sin

(
kxd

2

)
cos

(√
3

2
kyd

)]
ŷ.

(15)

This expression has six zeros in the BZ, which are located at
the following TR invariant points:

{K i} =
{

0,
G1

2
,

G2

2
,

G1 − G2

2
,

2G1 − G2

3
,

G1 + G2

3

}
,

(16)

where

G1 = 2π

d

(
x̂ + 1√

3
ŷ

)
, G2 = 2π

d

2√
3
ŷ

are the primitive vectors of the reciprocal hexagonal lattice. It
is easy to see that the expressions from Table I are recovered
at small momenta in the vicinity of the � point.

III. SUPERCONDUCTIVITY IN
NONDEGENERATE BANDS

We assume a BCS-like mechanism of superconductivity, in
which the pairing interaction is only effective below a certain
energy cutoff εc near the 2D Fermi surface. The latter is
represented by closed lines on the BZ torus. Below we use
the notation FSn for the Fermi surface in the nth band, which
is a set of points satisfying the equation ξn(k) = 0. In real
noncentrosymmetric superconductors, one has the following
hierarchy of the energy scales: Tc � εc � ESO,εF , where ESO

characterizes the SO band splitting near the Fermi energy. This
means that the bands are sufficiently well separated to suppress
the pairing of electrons with different helicities.

We construct the Hamiltonian using the basis of the exact
band states |k,n〉, which include all effects of the lattice
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potential and the SO coupling. We have Ĥ = Ĥ0 + Ĥint, where

Ĥ0 =
∑
k,n

ξn(k)ĉ†k,nĉk,n, (17)

describes noninteracting quasiparticles in the Bloch band and

Ĥint = 1

2V
∑
kk′q

∑
nn′

Vnn′ (k,k′)ĉ†k+q,n
ˆ̃c†k,n

ˆ̃ck′,n′ ĉk′+q,n′ , (18)

is the pairing interaction between quasiparticles in the time-
reversed states |k,n〉 and K|k,n〉 of the same helicity, see
Eq. (5), and V is the system volume. It is legitimate to neglect
the dependence of the interaction strength on the center-of-
mass momentum of the pairs, since |q| is small compared
to the Fermi momenta. From Eqs. (6) and (7), and also the
hermiticity of Hint, we obtain that ξn(k) = ξn(g−1k) = ξn(−k)
and

Vnn′ (k,k′) = Vnn′ (g−1k,g−1k′) = V ∗
nn′ (k,k′) = V ∗

n′n(k′,k),

(19)

i.e., the interaction functions are invariant under the point
group and TR operations and independent of the phase choice
for the Bloch states. The strength of intraband pairing is
described by the diagonal elements Vnn, while that of the
pair transfer between the bands – by Vnn′ with n 
= n′. The
pairing interaction is nonzero only near the Fermi surfaces
and the band summations in Eqs. (17) and (18) is limited to
n = 1, . . . ,M , where M is the number of bands crossing the
Fermi level and participating in superconductivity.

One can decouple the pairing interaction (18) in the mean-
field approximation and obtain

Ĥint =
∑

k∈HBZ

M∑
n=1

[�n(k)ĉ†k,n
ˆ̃c†k,n + �∗

n(k) ˆ̃ck,nĉk,n], (20)

where �n(k) is the gap function in the nth band. The interband
gap functions are equal to zero, due to the large SO band
splitting. It follows from Eq. (5) and the anticommutation of
the fermion creation and annihilation operators that

�n(k) = �n(−k). (21)

We omitted a c-number term in Eq. (20) and restricted the
wave-vector summation to the half of the BZ, see the discus-
sion after Eq. (3). Similarly, the noninteracting Hamiltonian
can be written as

Ĥ0 =
∑

k∈HBZ

M∑
n=1

[ξn(k)ĉ†k,nĉk,n + ξn(k) ˆ̃c†k,n
ˆ̃ck,n]. (22)

Next, we introduce two-component Nambu creation and
annihilation operators associated with each k ∈ HBZ:

Ĉk,n =
(

ĉk,n

ˆ̃c†k,n

)
, Ĉ

†
k,n = (ĉ†k,n,

ˆ̃ck,n), (23)

and combine Eqs. (20) and (22) into the following expression:

Ĥ =
∑

k∈HBZ

M∑
n=1

Ĉ
†
k,nĥn(k)Ĉk,n, (24)

where

ĥn(k) =
(

ξn(k) �n(k)
�∗

n(k) −ξn(k)

)
= ĥn(−k) (25)

is called the Nambu Hamiltonian. Due to the two-component
nature of the Nambu wave functions, which mix the electron-
and holelike quasiparticle states, the total number of degrees
of freedom is unchanged compared to the noninteracting
Hamiltonian, despite the halving of the number of independent
wave vectors.

It follows from Eq. (19) that the gap functions transform
like complex scalars under the point group and TR operations,
namely,

g : �n(k) → �n(g−1k), K : �n(k) → �∗
n(k) (26)

(there is no need for the double group anymore, since Ē is
equivalent to the identity element E when acting on the gap
functions). These transformation properties are consequences
of the Cooper pairs being built from the time-reversed states
|k,n〉 and K|k,n〉, as opposed to |k,n〉 and | − k,n〉. In the latter
case, the mean-field gap functions in Eq. (20) are replaced by
�̃n(k) = tn(k)�n(k), which do not have any simple symmetry
properties [16]. Furthermore, we will see in Sec. III A that it is
�n, not �̃n, which enters the proper BdG Hamiltonian. Note
that advantages of pairing up the time-reversed states have
long been recognized in centrosymmetric superconductors,
see Ref. [34].

Due to the properties (26), the gap function in each band can
be represented as a linear combination of the basis functions
of the irreducible representations (IREPs) of the point group
G. In the pairing channel corresponding to the IREP � of
dimensionality d� , we have

�n(k) =
d�∑

a=1

ηn,aφa(k). (27)

Here, Md� complex coefficients ηn,a play the role of the order
parameter components and φa(k) are the basis functions. In a
BCS-like model, the gap function in the nth band is nonzero
only if |ξn(k)| � εc. For brevity, the momentum cutoff factors
are not explicitly shown in Eq. (27).

It follows from Eq. (21) that the basis functions that appear
in the expansion of �n(k) have to be even in k. In general,
they can have different momentum dependence in different
bands, which is neglected in Eq. (27) and everywhere below.
In Tables II and III, we list the IREPs for all 2D point groups,
together with the lowest-order polynomial expressions for their
even basis functions near the center of the BZ. The basis
functions of all A and B IREPs can be chosen to be real. The
cyclic groups C3,C4, and C6 have pairs of complex conjugate
one-dimensional (1D) representations, labeled by E(±). In the
absence of TR symmetry breaking in the normal state, any
such pair of IREPs should be treated as one 2D “physically
irreducible” representation [32], with the corresponding order
parameters having two components. Note that certain pairing
channels cannot be realized, because the corresponding IREPs
do not have even basis functions, which can be understood
as follows. If a 2D point group contains the twofold rotation
about the z axis, C2z(kx,ky) = (−kx,−ky), then its character
in the IREPs labeled with a dash in Tables II and III is equal to
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TABLE II. Even basis functions of the IREPs of the cyclic 2D
point groups (a and b are real constants and k± = kx ± iky).

G � d� φ�(k) = φ�(−k)

C1 A 1 1
C2 A 1 1

B 1 −
C3 A 1 1

E(±) 1 k2
±

C4 A 1 1
B 1 a(k2

x − k2
y) + bkxky

E(±) 1 −
C6 A 1 1

B 1 −
E

(±)
1 1 k2

±
E

(±)
2 1 −

−1 in the 1D IREPs and −2 in the 2D IREPs [32], therefore
the basis functions have to odd in k.

The order parameter cannot have more than two com-
ponents in each band, because all IREPs are either 1D or
2D. The stable uniform superconducting states are found by
minimizing the Ginzburg-Landau free energy F [η1, . . . ,ηM ]
in the 1D case, while in the 2D case the free energy has
the form F [η1, . . . ,ηM ], where ηn = (ηn,1,ηn,2). Since the
values of the order parameter components are not important
for our discussion below, we will not attempt the free energy
minimization here. One can expect that it can be done explicitly
only in the simplest models. For example, in the case of an 1D
IREP with M = 2, the free energy is formally the same as in
the usual two-band BCS model, which has recently attracted
a lot of attention due to its applications to MgB2 (Ref. [35]),

TABLE III. Even basis functions of the IREPs of the dihedral 2D
point groups (k± = kx ± iky).

G � d� φ�(k) = φ�(−k)

D1 A1 1 1
A2 1 kxky

D2 A 1 1
B1 1 kxky

B2 1 −
B3 1 −

D3 A1 1 1
A2 1 i(k6

+ − k6
−)

E 2 k+(k3
+ − k3

−), k−(k3
+ − k3

−)
D4 A1 1 1

A2 1 kxky(k2
x − k2

y)
B1 1 k2

x − k2
y

B2 1 kxky

E 2 −
D6 A1 1 1

A2 1 i(k6
+ − k6

−)
B1 1 −
B2 1 −
E1 2 −
E2 2 k2

+, k2
−

iron-based high-temperature superconductors [36], and other
materials. In addition to the TR invariant states, in which
the phase difference between the order parameters η1 and η2

is either 0 or π , there are also stable states that break TR
invariance [37].

A. Bogoliubov-de Gennes Hamiltonian

The energies and wave functions of fermionic quasiparticles
in the superconducting state are given by the eigenvalues and
eigenfunctions of a certain first-quantization operator, known
as the BdG Hamiltonian. It can be constructed by considering
an arbitrary basis of single-particle Bloch states |k,i〉 at each
k, labeled by some quantum numbers i. For instance, in
the generalized Rashba model, see Eq. (9), one can use the
pseudospin basis with i = α = ↑,↓. The second quantization
operators are transformed into the new basis according to

ĉk,n =
∑

i

〈k,n|k,i〉âk,i , ĉ
†
k,n =

∑
i

〈k,i|k,n〉â†
k,i ,

while for the creation and annihilation operators in the time-
reversed states, we obtain

ˆ̃ck,n =
∑

i

〈k,i|k,n〉 ˆ̃ak,i , ˆ̃c†k,n =
∑

i

〈k,n|k,i〉 ˆ̃a†
k,i ,

where ˆ̃ak,i = Kâk,iK
−1 and ˆ̃a†

k,i = Kâ
†
k,iK

−1. Therefore both
components of the Nambu operators (23) transform in the same
way and Eq. (24) takes the following form:

Ĥ =
∑

k∈HBZ

∑
ij

(â†
k,i ,

ˆ̃ak,i)〈k,i|HBdG(k)|k,j 〉
(

âk,j

ˆ̃a†
k,j

)
. (28)

Here,

HBdG(k) =
∑

n

|k,n〉ĥn(k)〈k,n| =
∑

n

�̂n(k) ⊗ ĥn(k),

(29)
ĥn is given by Eq. (25), and

�̂n(k) = |k,n〉〈k,n|
is the projector onto the nth Bloch band. Thus we have
represented the mean-field BCS Hamiltonian in an arbitrary
basis in terms of the matrix elements of an operator, called the
BdG Hamiltonian, which acts in the 2M-dimensional Hilbert
space LB × LN , where LB is the M-dimensional space of
single-particle Bloch states and LN is the 2D Nambu space.
Note that the BdG Hamiltonian with the correct transformation
properties necessarily has �n(k), not tn(k)�n(k), as its off-
diagonal Nambu matrix elements, therefore the ambiguity of
choosing the gap function in the BdG equations in the helicity
basis, see, e.g., Ref. [12], is avoided.

At each k, the BdG Hamiltonian (29) has 2M eigenstates

�n,s(k) = |k,n〉 ⊗ |k,n; s〉, (30)

where s labels the electronlike (s = +) or holelike (s = −)
branches of the spectrum and |k,n; s〉 are eigenstates of the
Nambu Hamiltonian ĥn(k). The corresponding eigenvalues are
given by sEn(k), where

En(k) =
√

ξ 2
n (k) + |�n(k)|2 (31)
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is the energy of the Bogoliubov fermionic excitations in the nth
band. As functions of k, the eigenvalues form 2M Bogoliubov
bands in momentum space. The gap in the excitation energy
is given by |�n(k)|, which can vanish at some high-symmetry
points or lines in the BZ, see Tables II and III. A line of
zeros crossing a Fermi surface produces a pointlike gap node.
For instance, the superconducting states corresponding to the
nonidentity 1D IREPs of D4 all have gap nodes: at kx = ±ky

for � = B1, at kx = 0 and ky = 0 for � = B2, at kx = 0, ky =
0, and kx = ±ky for � = A2.

When expressed in terms of the excitation energy, the
Nambu Hamiltonian takes the following form:

ĥn(k) = νn(k)τ̂ = En(k)ν̂n(k)τ̂ , (32)

where τ̂ are the Pauli matrices in the Nambu space,

νn(k) =
⎛
⎝ Re �n(k)

−Im �n(k)
ξn(k)

⎞
⎠,

and ν̂n = νn/|νn| is a unit vector. Due to the properties (1) and
(21), both En and νn are even functions of k. If the excitations
are fully gapped, then ν̂n is well defined everywhere in the BZ.

IV. GREEN’S FUNCTION TOPOLOGICAL INVARIANTS

As shown in the previous section, with each wave vector
in the half of the BZ of a noncentrosymmetric superconductor
one can associate the BdG Hamiltonian, which is given by a
2M × 2M Hermitian matrix of a special form, see Eq. (29).
Therefore the superconducting states can be classified into
different universality classes, according to the topology of the
mapping

k → HBdG(k). (33)

These universality classes are characterized by topological
invariants, which are obtained by integrating certain differ-
ential forms constructed from HBdG over closed manifolds in
momentum space. Since we focus on 2D superconductors, the
appropriate integration domains are either the 2D BZ itself
or its submanifolds. The topology of 3D noncentrosymmetric
superconductors was studied in Ref. [37].

One possible way of enumerating the universality classes
of the mapping (33) is based on the Maurer-Cartan topological
invariants, see Ref. [38] and Appendix B. Since the Maurer-
Cartan invariants are nonzero only in odd dimensions, we
introduce, following Ref. [17], an auxiliary real variable k0

(“frequency”) and define the BdG Green’s function as follows:
G(k,k0) = [ik0 − HBdG(k)]−1. Using Eqs. (29) and (32), we

obtain

G(k,k0) =
∑

n

�̂n(k) ⊗ ĝn(k), (34)

where

ĝn(k,k0) = − ik0 + νn(k)τ̂

k2
0 + E2

n(k)
.

The Maurer-Cartan invariants are constructed using the 2M ×
2M matrix-valued 1-form ω = GdG−1. We assume a fully
gapped spectrum, therefore G is nonsingular and the Maurer-
Cartan form is well defined everywhere in the BZ. We focus
on the following invariant:

I2+1 =
∫

Tr ω3, (35)

where “ Tr ” stands for 2M × 2M matrix trace and combined
matrix and exterior multiplication is implied in ω3. Although
the BdG Hamiltonian and the 1-form ω are defined only in the
HBZ, one can show that Tr ωD(−k,k0) = Tr ωD(k,k0) for all
D, due to TR symmetry. Therefore Tr ω3 can be extended to
the whole BZ and integrated over a closed (2 + 1)-dimensional
manifold with coordinates kx,ky,k0, which is topologically
equivalent to a 3D torus (the frequency variable runs over the
whole real axis, which is assumed to be closed into a circle).

From Eq. (34) we obtain the following expression for the
Maurer-Cartan form:

ω =
∑
mn

�̂md�̂n ⊗ P̂mn +
∑

n

�̂n ⊗ Q̂n, (36)

where

P̂mn = amn + ibmnτ̂ , Q̂n = cn + idnτ̂ (37)

are 2 × 2 matrix-valued 0- and 1-forms, respectively, with

amn = k2
0 + νmνn

k2
0 + E2

m

, bmn = νm × νn − k0(νm − νn)

k2
0 + E2

m

,

cn = k0dk0 + νndνn

k2
0 + E2

n

, dn = νn × dνn + k0dνn − dk0 νn

k2
0 + E2

n

.

To facilitate the calculation of the topological invariant (35),
we introduce the Bloch Berry connections in momentum space
[39]:

Amn(k) = i〈k,m|d|k,n〉, (38)

which form a Hermitian M × M matrix-valued 1-form. Then,

Tr ω3 =
∑

n

K (0)
n +

∑
mn

K (2)
mnAmnAnm +

∑
lmn

K
(3)
lmnAlmAmnAnl, (39)

where

K (0)
n = 2

[
c3
n − cn(dndn) + dn(dn × dn

]
,

K (2)
mn = −3(amnanm − bmnbnm − amn − anm + 1)(cm − cm) + 3(amnbnm + anmbmn − bmn − bnm)(dm − dn),

K
(3)
lmn = 2i[almamnanl − alm(bmnbnl) − amn(blmbnl) − anl(blmbmn) + blm(bmn × bnl)

− almamn − amnanl − anlalm + (blmbmn) + (bmnbnl) + (bnl blm) + alm + amn + anl − 1]
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are 3-, 1-, and 0-forms, respectively. The derivation of these
expressions is outlined in Appendix C. The third term on the
right-hand side of Eq. (39) vanishes upon (2 + 1)-dimensional
integration, because the Berry connections do not contain k0.
In the second term, one can write K (2)

mn = ρdk0 + (. . .), where
the ellipsis stands for the terms that do not contribute to the
integral. A straightforward calculation gives ρ = 0, therefore
the second term also vanishes. The only remaining term can
be simplified and becomes

K (0)
n = − 6dk0(

k2
0 + E2

n

)2 νn(dνn × dνn).

This expression is nonzero only near the nth Fermi surface, be-
cause νn = ξnẑ outside the BCS momentum shell. Integrating
over the frequency variable k0 in Eq. (35), we obtain

I2+1 = −3π
∑

n

∫
BZ

ν̂n(d ν̂n × d ν̂n). (40)

Note that the Maurer-Cartan invariant depends only on the de-
tails of the Nambu Hamiltonian ĥn(k), i.e., on the quasiparticle
band energies and the superconducting gap functions, while
all information about the topology of the normal-state Bloch
bands, which is contained in the band projectors and the Berry
connections, has been lost.

Further progress can be achieved for a fully gapped
superconducting state of the form

�n(k) = |�n(k)|eiϕn(k), (41)

where the gap amplitudes do not vanish anywhere at the Fermi
surface. Inserting this into Eq. (40) and integrating over ξn, we
finally obtain

I2+1 = −24π2
∑

n

Nn,

where

Nn = 1

2π

∮
FSn

dϕn (42)

is the phase winding number of the gap function along the
nth Fermi surface. The latter’s orientation is fixed by ẑ × vF,n,
where vF,n is the Fermi velocity, therefore the integration in
Eq. (42) is performed counterclockwise for electronlike Fermi
surfaces and clockwise for holelike Fermi surfaces. To make
the topological invariant integer valued, we introduce

Ñ ≡ − 1

24π2
I2+1 =

∑
n

Nn, (43)

therefore the Maurer-Cartan invariant is nothing but the total
phase winding number of the gap functions.

For the order parameter corresponding to a 1D IREP of
the point group, the expression (43) vanishes, but one can
get a nonzero phase winding in TR breaking superconducting
states with intrinsically complex gap functions. For example,
choosing real basis functions for the 2D IREP E2 of D6, we
have from Eq. (27) and Table III: �n(k) = ηn,1(k2

x − k2
y) +

2ηn,2kxky . If there is a stable superconducting state of the
form ηn ∝ (1,i), called the chiral d-wave state, then

�n(k) = �n,0
(
k̂2
x − k̂2

y + 2ik̂x k̂y

)
, (44)

where k̂ = k/|k|. The phase winding number is equal to 2 for
any electronlike Fermi surface enclosing the � point in the
BZ, therefore Ñ = 2M [for ηn ∝ (1, − i) one has Nn = −2
and Ñ = −2M]. Similar results are obtained for the chiral
d-wave states corresponding to the “physically irreducible”
2D representations E(±) of C3, or E

(±)
1 of C6.

Another example of a topologically nontrivial state is the
d + id state with �n(k) = �n,1(k̂2

x − k̂2
y) + 2i�n,2k̂x k̂y (�n,1

and �n,2 are assumed to be real), which is produced by
mixing two 1D IREPs B1 and B2 of D4. The phase winding
numbers are equal to ±2, depending on the relative sign of
the order parameter components [40], and the topological
invariant (43) is given by Ñ = 2

∑
n sgn (�n,1�n,2). Note

that the chiral p-wave states with �n(k) ∝ kx ± iky are not
possible, because the gap functions in the band representation
are even in momentum.

A. Boundary modes

If the bulk superconducting state is topologically nontrivial,
then one can expect that gapless fermionic modes exist near the
system’s boundary [17]. In this section, we derive the spectrum
of the boundary modes in the helicity band representation
and establish its relation to the phase winding numbers, see
Eq. (42). We consider a superconductor occupying the x �
0 half space, with a specularly reflecting surface. To make
analytical progress, we neglect self-consistency and assume
that the order parameter is uniform.

For simplicity, we consider the case of M = 1, so that
there is just one Bloch band participating in superconductivity,
which allows us to drop the band index. Due to the translational
invariance along the surface, ky is a good quantum number.
The Bogoliubov quasiparticle spectrum at given ky can be
found using the semiclassical (Andreev) approximation [41],
in which the wave function is sought in the form eikF rψkF

(x),
where kF = (kF,x,ky) is a Fermi wave vector and kF,x is a root
of the equation

ξ (kF,x,ky) = 0. (45)

The two-component Nambu spinor ψkF
varies slowly on

the scale of the Fermi wavelength and satisfies the Andreev
equation: (−ivF,x∇x �(kF )

�∗(kF ) ivF,x∇x

)
ψkF

= EψkF
, (46)

where vF,x is the x projection of the Fermi velocity at kF .
Thus, for a given momentum along the surface, each root of
Eq. (45) defines a semiclassical trajectory, and the Andreev
wave function associated with this trajectory is found from
Eq. (46). Depending on the band structure, Eq. (45) can have
several solutions. The corresponding trajectories are classified
as either incident (vF,x < 0) or reflected (vF,x > 0). For the
trajectories parallel to the surface, we have vF,x = 0 and the
semiclassical approximation is not applicable.

We assume a fully gapped superconducting state of the form
(41) with a constant gap magnitude |�(k)| = �0. Focusing
on the quasiparticle states localized near the surface, which
are called the Andreev bound states (ABS), we expect that
|E| � �0. The ABS solution of Eq. (46) has the form
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ψkF
(x) = φ(kF )e−�x/|vF,x |, where

φ(kF ) ≡ ψkF
(x = 0) = C(kF )

⎛
⎝ �(kF )

E − i� sgn vF,x

1

⎞
⎠ (47)

and � =
√
�2

0 − E2 and C is a coefficient.
The semiclassical approximation breaks down near the

surface due to the rapid variation of the lattice potential.
Following Ref. [42], we describe the effects of the surface
scattering by an effective boundary condition at x = 0, which
expresses the Andreev wave functions (47) for the reflected
trajectories in terms of those for the incident trajectories. In the
general case, if Eq. (45) has an equal number (N ) of incident
and reflected solutions, corresponding to the Fermi wave
vectors kin,1, . . . ,kin,N and kout,1, . . . ,kout,N , respectively, the
boundary condition can be written in the following form:

φ(kout,i) =
N∑

j=1

Sijφ(kin,j ). (48)

Here, Ŝ is an N × N unitary matrix, which is determined by
the microscopic details of the surface scattering in the normal
state. Inserting the wave functions (47) into Eq. (48), we obtain
a homogeneous system of 2N linear equations for the co-
efficients C(kin,1), . . . ,C(kin,N ) and C(kout,1), . . . ,C(kout,N ).
Equating its determinant to zero yields an equation for the
ABS energy E.

The calculations are particularly simple in the case of N =
1, when the scattering matrix becomes just a single complex
number (a pure phase). The energy equation then has the
form

E + i�

E − i�
= �(kin)

�(kout)
, (49)

which remarkably does not contain any surface scattering
details. For a circular Fermi surface of radius kF , we
have kin = kF (− cos θ, sin θ ),kout = kF (cos θ, sin θ ), where
−π/2 < θ < π/2 is the polar angle. Writing the gap function
as �(k) = �0e

iNθ , where N is the phase winding number
around the Fermi surface, we obtain from Eq. (49) the
following expression for the ABS energy:

E(θ ) = −�0 cos(Nθ ) sgn [sin(Nθ )]. (50)

For example, the chiral d-wave state, see Eq. (44), has N = 2,
and the ABS energy dispersion as a function of ky = kF sin θ

is shown in Fig. 1. The spectrum is discontinuous and has two
nondegenerate branches, passing through zero at θ = ±π/4,
i.e., at ky = ±kF /

√
2. According to Eq. (49), the origin of

the subgap surface states can be traced to the gap function
having different values on the incident and reflected legs of the
semiclassical trajectory, similar to the ABS in centrosymmetric
d-wave superconductors [43] or near a superconducting
domain wall [24]. The spectrum discontinuity occurs at
ky = 0, where the ABS is absent due to the quasiparticles
sensing the same gap function before and after the surface
reflection.

In general, the ABS energy (50) vanishes at

θ = ± π

2|N | (2k + 1), k = 0, . . . ,
|N |
2

− 1.

-1 -0.5 0 0.5 1
k

y
 / k

F

-1

-0.5

0

0.5

1

E/Δ0

FIG. 1. (Color online) The ABS energy for the chiral d-wave
state in the single-band case as a function of the momentum along
the surface.

Therefore, if the phase winding number of the gap function in
the bulk is equal to N , then there are exactly |N | fermionic zero
modes propagating in the same direction along the surface,
which is a manifestation of the bulk-boundary correspondence
in topological superconductors [17]. Note that N is even,
because the gap function is even in momentum.

V. BOGOLIUBOV BERRY PHASE

Another type of topological invariants is obtained using
the Berry connections of the Bogoliubov quasiparticle wave
functions. Let us look at the Bogoliubov band labeled by
the Bloch band index n and the electron-hole index s = ±.
Assuming a nodeless gap function, the excitation energy is
nonzero at all momenta. We introduce the Berry connection
1-form, which is an analog of the magnetic vector potential:

i〈�n,s(k)|d|�n,s(k)〉 = An(k) + an,s(k). (51)

We used Eq. (30) to represent the last expression as a sum of
the intraband Bloch Berry connection

An(k) = i〈k,n|d|k,n〉 = Ann(k), (52)

see Eq. (38), and the Nambu Berry connection

an,s(k) = i〈k,n; s|d|k,n; s〉. (53)

Both connections can be integrated along one-dimensional
manifolds in momentum space. In our case, it is natural to
integrate along the Fermi surfaces, which form closed loops
on the BZ torus.

One can define the Berry phase factor associated with the
(n,s)th Bogoliubov band as the Wilson loop along the nth
Fermi surface:

Wn,s = ei
∮
FSn

(An+an,s ). (54)

Each Fermi surface is assumed to be connected, with the
orientation defined by ẑ × vF,n. In the next two sections, we
will prove that the Bogoliubov Wilson loop has the following
form:

Wn,s = (−1)Mn+Nn, (55)
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where Mn is the number of the band degeneracies enclosed by
the nth Fermi surface and Nn is the phase winding number of
the nodeless gap function �n(k) around the Fermi surface.

A. Bloch Berry phase

The Bloch Berry phase factor

wB
n = ei

∮
FSn

An (56)

is invariant under the U(1) gauge transformations, in which
the phase of the Bloch state |k,n〉 can change by an integer
multiple of 2π as one goes around the Fermi surface. To
calculate wB

n , we introduce another gauge-invariant quantity,
called the Berry curvature of the connection An (Ref. [39]). It is
defined as dAn = (1/2)Fijdkidkj (the exterior product sign is
again omitted for brevity), where the field strength tensor has
only two nonzero components: Fn,xy = −Fn,yx = Bn. Thus
the Berry “magnetic field” is directed along the z axis and
given by

Bn(k) = i

(
∂〈k,n|
∂kx

∂|k,n〉
∂ky

− ∂〈k,n|
∂ky

∂|k,n〉
∂kx

)
. (57)

For a nondegenerate band, the flux of the Berry field through
the entire BZ torus is a topological invariant, called the first
Chern number. It is also known as the TKNN integer, after
Ref. [44], where it was shown to be responsible for the
quantization of Hall conductance in the presence of magnetic
field.

In our case, the electron bands are invariant under TR,
which means that Bn(−k) = −Bn(k) (Ref. [39]). On the other
hand, the Bloch Berry field transforms as a vector under
proper rotations. In particular, if the 2D point group of the
system contains the twofold rotation C2z, which acts as a “2D
inversion:” C2z(kx,ky) = (−kx,−ky), then Bn(−k) = Bn(k).
Therefore, for G = C2, C4, C6, D2, D4, and D6, we have

Bn(k) = 0 (58)

everywhere except the TR invariant points K i , where the nth
band is degenerate with another band, see Sec. II A, and the
Berry field is not defined. Now one can use Stokes’ theorem
to contract the integration contour in Eq. (56) by deforming it
through the degeneracy-free regions of the BZ and show that∮

FSn

An =
∑

i

′
∮

ci

An. (59)

Here the prime means that the sum is taken only over the TR
invariant points enclosed by the nth Fermi surface and ci is
an infinitesimally small circular contour around K i , whose
orientation is inherited from the Fermi surface. Therefore the
Berry phase is completely determined by the behavior of the
Bloch wave functions in the vicinity of the band degeneracies.
Note that, according to Eq. (58), the Berry flux through the
entire punctured BZ (with K i’s removed) vanishes. Then it
follows from Stokes’ theorem that

NTRI∑
i=1

∮
ci

An = 0, (60)

where the summation is over all TR invariant points in the BZ.

It is easy to see that the above results also hold for the
remaining 2D point groups, G = C1, C3, D1, and D3. In these
cases, the Berry field is not identically zero at all k 
= K i , but
its fluxes through the punctured interior of the Fermi surface as
well as through the entire punctured BZ still vanish due to the
TR invariance. Since the integration contour in Eq. (56) can be
deformed into ci in such a way that it stays TR invariant (i.e.,
symmetric with respect to k → −k), the Berry flux through
the contour remains zero and we again arrive at Eq. (59).

As an illustration, let us consider the generalized Rashba
model, see Eq. (9), with just two bands labeled by n = λ = ±.
Using the spherical angle parametrization of the SO coupling
and the eigenstates (10), we obtain for the Berry connections:

Aλ = − 1
2 (1 − λ cos α)dβ. (61)

For the 2D point groups containing the rotation C2z, the
antisymmetric SO coupling is planar, see Sec. II A, i.e., γz = 0
and α = π/2, therefore, Aλ = −dβ/2. Neither β nor Aλ are
defined at the band degeneracies, but everywhere else the Berry
connection form is locally exact, resulting in the Berry field
Bλ being zero in the entire punctured BZ. For the point groups
not containing C2z, the SO coupling is nonplanar and the Berry
field is given by

Bλ(k) = −λ

2
sin α

(
∂α

∂kx

∂β

∂ky

− ∂α

∂ky

∂β

∂kx

)
= −Bλ(−k).

The last equality is due to TR invariance, which implies
γ (−k) = −γ (k), therefore α(−k) = π − α(k) and β(−k) =
π + β(k). Then it follows from Eq. (61) that∮

ci

Aλ = −πNβ(K i), (62)

where Nβ is the winding number of the planar component
γ ‖ = (γx,γy,0) of the antisymmetric SO coupling around
K i . The contribution to the integral of the second term in
Aλ vanishes, because it is odd under the inversion with re-
spect to K i : γ (K i − q) = γ (K i + G − q) = γ (−K i − q) =
−γ (K i + q). Inserting the expression (62) in Eqs. (56) and
(59), we obtain for the Berry Wilson loop in the helicity bands:

wB
λ = (−1)

∑′
i Nβ (K i ). (63)

This is a Z2 invariant determined by the total winding number
of β for the band degeneracies inside the Fermi surface.

The winding number Nβ(K i) is nothing but the index of
the critical point K i of the vector field γ ‖(k). In the vicinity of
K i , one can write γ‖,l(K i + q) = μi,lmqm, where l,m = x,y.
Then,

Nβ(K i) = sgn det μ̂i , (64)

see Ref. [45]. We assume that ci is oriented counterclockwise
and that the matrix μ̂i is nondegenerate, which is a generic
situation, according to Table I. For example, from Eqs. (13)
and (15), we obtain

Nβ(K 1) = Nβ(K 4) = 1, Nβ(K 2) = Nβ(K 3) = −1

for the square lattice and

Nβ(K 1) = Nβ(K 5) = Nβ(K 6) = 1,

Nβ(K 2) = Nβ(K 3) = Nβ(K 4) = −1
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for the hexagonal lattice. In both cases, the sum of the winding
numbers for all K i vanishes, in agreement with Eq. (60). This
is just a consequence of the Poincare theorem [45], according
to which the sum of the indices for all critical points is equal
to the Euler characteristic of the BZ, which is zero.

It follows from Eq. (64) that Nβ = ±1 and, therefore, the
Z2 invariant (63) is equal to +1 (−1), if the Fermi surface
encloses an even (odd) number of the TR invariant points.
Remarkably, this result also holds in the general case of
arbitrary bands in a noncentrosymmetric crystal, beyond the
model (9). Indeed, in the vicinity of an isolated point K i , where
two Bloch bands cross, one can neglect all other bands and
describe the remaining two-band structure using a generalized
Rashba model, as illustrated in Appendix A. This allows one
to represent the Berry connection near K i in the form (61),
which means that its loop integral is quantized as in Eq. (62):∮

ci

An = ±π.

Therefore

wB
n = (−1)Mn, (65)

where Mn is the number of the TR invariant points enclosed
by the nondegenerate Fermi surface in the nth band.

One can also define a Z2 invariant for the whole BZ,
see Appendix D, which does not depend on the position of
the Fermi level and can therefore be used for a topological
classification of the Bloch bands in any crystal, whether
superconducting, metallic, or insulating. In contrast to the
Wilson loop (65), the whole-BZ invariant is determined by
the parity of the number of the TR invariant points inside the
HBZ.

B. Nambu Berry phase

The Nambu Berry phase is given by the Wilson loop

wN
n,s = ei

∮
FSn

an,s , (66)

which is invariant under the U (1) gauge transformation
of the Nambu eigenstates |k,n; s〉. Introducing two spher-
ical angles to parametrize Eq. (32): ν̂n = (sin α̃n cos β̃n,

sin α̃n sin β̃n, cos α̃n), we obtain the following expression for
the Nambu connection:

an,s = − 1
2 (1 − s cos α̃n)dβ̃n, (67)

cf. Eq. (61). At the Fermi surface, ξn = 0 and the connection
is exact: an,s = −dβ̃n/2. For a nodeless gap function given by
Eq. (41), we have β̃n = −ϕn and

∮
FSn

an,s = πNn, where Nn

is the phase winding number, see Eq. (42). Therefore

wN
n,s = (−1)Nn. (68)

Now one can calculate the total Berry phase factor of the
Bogoliubov quasiparticles in the nth band, Wn,s = wB

n wN
n,s .

Combining Eqs. (65) and (68), we arrive at the expression (55).
The case of a TR invariant superconducting state, cor-

responding to real gap functions �n, requires a different
treatment, because the phase winding numbers all vanish and
wN

n,s = 1. Instead of the Wilson loop (66), one can introduce
another natural invariant—the sign of the gap in the nth band,

which cannot be changed without the gap closing. Then,
Eq. (55) is replaced by WTRI

n = (−1)Mn sgn (�n), so that

WTRI =
∏
n

(−1)Mn sgn (�n) (69)

is a Z2 invariant. In particular, in the two-band case, assuming
M+ = M− = 1, we have WTRI = sgn (�+�−). Therefore the
superconducting state is topologically nontrivial (WTRI = −1)
if the two gap functions have opposite signs. This result is
consistent with Refs. [12,13], and [46], where a Z2 invariant
in the TR invariant case was derived following different routes.

VI. CONCLUSIONS

We developed a theory of superconductivity in 2D metals
lacking the mirror symmetry under the reflection z → −z.
Strong SO coupling of electrons with the crystal lattice results
in the splitting of the Bloch bands, which is much larger than
the energy scales associated with superconductivity. Spin or
pseudospin is no longer a good quantum number, and the
Cooper pairing occurs only between the time-reversed states
of the same helicity. Constructing the pairing Hamiltonian
and the gap functions from the exact Bloch band states not
only naturally fits into the framework of the Fermi-liquid and
the BCS theories, but also highlights the novel features of
noncentrosymmetric superconductors.

Superconducting states are classified according to the irre-
ducible representations of the 2D point groups, but the results
differ significantly from the textbook case of centrosymmetric
superconductors. In particular, the gap functions are always
even in momentum, and not every irreducible representation
corresponds to a possible pairing symmetry. We also derived
the proper BdG Hamiltonian for noncentrosymmetric super-
conductors in the band representation, avoiding any ambiguity
about the choice of the gap functions.

We studied the momentum-space topology of 2D noncen-
trosymmetric superconductors using two different topological
invariants. The first one is the Maurer-Cartan invariant built
from the BdG Green’s functions. It takes integer values,
determined by the winding numbers of the gap function phases
around the Fermi surfaces, and is independent of the Berry
curvature of the Bloch states. The absolute value of the phase
winding number is equal to the number of fermionic subgap
boundary modes propagating in the same direction along the
surface of the superconductor. We calculated the spectrum
of these modes in the semiclassical approximation, solving
the Andreev equations in the helical bands with the boundary
conditions expressed in terms of the surface scattering matrix.
The boundary modes can provide an experimentally verifiable
signature of a topologically nontrivial superconducting state.
The second type of the topological invariants is given by
the Wilson loops of the Berry vector potential of the BdG
eigenstates. In each band, the Wilson loop is equal to the
parity of the sum of the number of the band degeneracies
(Weyl points) enclosed by the Fermi surface and the gap phase
winding number. The helicity bands always remain pairwise
degenerate at the TR invariant points, the latter serving as the
sources of a topological “twist” in the band wave functions,
whose positions in the BZ are fixed by the crystal symmetry.
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APPENDIX A: FOUR-BAND MODEL

We begin with two bands, ε1(k) and ε2(k), satisfying
ε1(k) < ε2(k), each twofold degenerate due to pseudospin, and
turn on the inversion-antisymmetric part of the lattice potential
along with the corresponding SO coupling. In Eq. (8), we keep
only μ,ν = 1,2 and introduce the following notations:

A11 = A22 = 0, A12 = −A21 = �,

B11 = γ 1, B22 = γ 2, B12 = B21 = γ̃ .

Here the scalar �(k) and the pseudovectors γ 1,2(k),γ̃ (k) are
real, odd in k, and invariant under the point group operations.
The Hamiltonian (8) takes the form of two coupled Rashba
models:

Ĥ0 = Ĥ1 + Ĥ2 + Ĥ12, (A1)

where

Ĥμ =
∑
k,αβ

[εμ(k)δαβ + γ μ(k)σ αβ]â†
kμαâkμβ

and

Ĥ12 =
∑
k,αβ

[i�(k)δαβ + γ̃ (k)σ αβ]â†
k1αâk2β + H.c.

Representative expressions for the pseudovector SO couplings
near the � point can be found in Table I, while those for
the scalar coupling are given in Table IV. The latter vanishes
identically for the point groups containing the rotation C2z,
because �(k) = �(C−1

2z k) = �(−k) = −�(k), therefore �(k) =
0. Diagonalizing Eq. (A1), we will obtain four bands, which
remain twofold degenerate at the TR invariant points, where
�,γ 1,2, and γ̃ all vanish.

One can make analytical progress by assuming that,
due to their symmetry properties being the same, all three
pseudovector SO couplings have the same momentum depen-
dence: γ 1,2(k) = γ1,2g(k) and γ̃ (k) = γ̃ g(k), where γ1,2 and
γ̃ are positive constants. Then we obtain the following band
dispersions:

ξ1,2(k) = r∓(k) − s∓(k), ξ3,4(k) = r∓(k) + s∓(k), (A2)

TABLE IV. The scalar antisymmetric interband coupling near the
center of the BZ (a1,2 and a are real constants, b is a complex constant,
and k± = kx ± iky).

G �(k)
C1 a1kx + a2ky

C3 bk3
+ + b∗k3

−
D1 aky

D3 ia(k3
+ − k3

−)

C2,4,6,D2,4,6 0

where

r± = ε1 + ε2

2
± γ1 + γ2

2
|g|

and

s± =
√(

ε1 − ε2

2
± γ1 − γ2

2
|g|

)2

+ γ̃ 2|g|2 + �2.

Near the TR invariant points, the band structure is given
in the leading approximation by ξ1,2(k) = ε1(k) ± γ1|g| and
ξ3,4(k) = ε2(k) ± γ2|g|, with ξ1(k) � ξ2(k) < ξ3(k) � ξ4(k),
i.e., the spectrum is entirely determined by the intraband
antisymmetric SO couplings of the Rashba type.

APPENDIX B: MAURER-CARTAN
TOPOLOGICAL INVARIANTS

Let us consider a map of a D-dimensional manifold
M, supplied with coordinates x = (x1,x2, . . . ,xD), into a
manifold of invertible square matrices ĝ(x). We also assume
that there exists a constant matrix Ŝ, which either commutes or
anticommutes with ĝ at all x. The matrix Ŝ is then represents a
“symmetry” of ĝ. The matrix-valued Maurer-Cartan 1-form is
defined by ω̂ ≡ ĝ−1dĝ. One can then introduce the following
scalar-valued D-forms on M:

�D = tr Ŝω̂D, (B1)

where the matrix trace is taken and the powers of ω̂ should
be understood in the sense of combined exterior and matrix
multiplication. Using cyclic invariance of the trace in Eq. (B1)
and antisymmetry of the exterior product, it is easy to show
that �D = (−1)D−1�D , therefore �D = 0 for even D.

In odd dimensions, we integrate Eq. (B1) over M to obtain

ID[ĝ] =
∫
M

�D. (B2)

Now let us show that if M is a closed manifold, then the above
expression is invariant under small variations ĝ → ĝ + δĝ,
which respect the symmetry of ĝ, i.e., δĝ also either commutes
or anticommutes with Ŝ. Keeping only the terms linear in
δĝ, we find δω̂ = dρ̂ + [ω̂,ρ̂], where ρ̂ = ĝ−1δĝ is a matrix
(0-form), and

δ�D = D tr Ŝδω̂ω̂D−1 = D tr Ŝdρ̂ω̂D−1 + D tr Ŝ[ω̂,ρ̂]ω̂D−1.

(B3)
Since ω̂ commutes with Ŝ and D is odd, the second term on
the right-hand side vanishes. Taking into account the product
rule of differentiation for differential forms, d(ab) = (da)b +
(−1)deg aa(db), we obtain from Eq. (B3)

δ�D = D tr Ŝd(ρ̂ω̂D−1) − D tr Ŝρ̂dω̂D−1.

One can use the product rule again, along with the property
dω̂ = −ω̂2, to show that the second term here is zero. Indeed,

dω̂D−1 = dω̂ω̂D−2 − ω̂dω̂D−2 = −ω̂D − ω̂(dω̂ω̂D−3

− ω̂dω̂D−3) = ω̂2dω̂D−3 = · · · = 0,

because D − 1 is even. Thus we have shown that δ�D is exact:
δ�D = d�̃D−1, where �̃D−1 = D tr Ŝρ̂ω̂D−1. If M is closed,
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then, according to Stokes’ theorem,

δID =
∫
M

δ�D =
∫

∂M
�̃D−1 = 0.

Therefore the expression (B2) is a topological invariant, said
to be “protected” by the symmetry Ŝ. If ĝ does not have any

symmetries, then Ŝ in the above expressions is just the unit
matrix, which is what we assumed in Sec. IV.

APPENDIX C: SKETCH OF THE DERIVATION OF EQ. (39)

It follows from the representation (36) of the Maurer-Cartan
form that

Tr ω3 =
∑

m1,2,3n1,2,3

trB
(
�̂m1d�̂n1�̂m2d�̂n2�̂m3d�̂n3

)
trN

(
P̂m1n1 P̂m2n2 P̂m3n3

)

+
∑

m1,2n1,2,3

trB
(
�̂m1d�̂n1�̂m2d�̂n2�̂n3

)
trN

(
P̂m1n1 P̂m2n2Q̂n3

) −
∑

m1,3n1,2,3

trB
(
�̂m1d�̂n1�̂n2�̂m3d�̂n3

)
trN

(
P̂m1n1Q̂n2 P̂m3n3

)

+
∑

m1n1,2,3

trB
(
�̂m1d�̂n1�̂n2�̂n3

)
trN

(
P̂m1n1Q̂n2Q̂n3

) +
∑

m2,3n1,2,3

trB
(
�̂n1�̂m2d�̂n2�̂m3d�̂n3

)
trN

(
Q̂n1 P̂m2n2 P̂m3n3

)

−
∑

m2n1,2,3

trB
(
�̂n1�̂m2d�̂n2�̂m3

)
trN

(
Q̂n1 P̂m2n2Q̂n3

) +
∑

m3n1,2,3

trB
(
�̂n1�̂n2�̂m3d�̂n3

)
trN

(
Q̂n1Q̂n2 P̂m3n3

)

+
∑
n1,2,3

trB
(
�̂n1�̂n2�̂n3

)
trN

(
Q̂n1Q̂n2Q̂n3

)
. (C1)

Here, “ trB” and “ trN” denote the matrix traces in the Bloch (LB) and Nambu (LN ) spaces, respectively. The sign change in the
third and sixth terms is due to the anticommutation of 1-forms. The Bloch traces on the right-hand side can be calculated using
the Berry connection, see Eq. (38), and the following properties of the band projectors:∑

n

�̂n = 1B, �̂m�̂n = δmn�̂n, �̂md�̂n�̂m = 0,

where 1B is the unit operator in LB . For instance, we have

trB
(
�̂m1d�̂n1�̂m2d�̂n2�̂m3d�̂n3

) = (
δn1m2Am1n1 − δm1n1An1m2

)(
δn2m3Am2n2 − δm2n2An2m3

)(
δn3m1Am3n3 − δm3n3An3m1

)
,

trB(�̂m1d�̂n1�̂n2�̂n3 ) = 0,

etc. Collecting similar terms in Eq. (C1), we obtain

Tr ω3 =
∑

n

K (0)
n +

∑
mn

K (2)
mnAmnAnm +

∑
lmn

K
(3)
lmnAlmAmnAnl, (C2)

where

K (0)
n = trNQ̂3

n,

K (2)
mn = − trN (2P̂mnP̂nmQ̂m − 2P̂mnQ̂m − 2P̂nmQ̂m + 2Q̂m − P̂mnQ̂nP̂nm + P̂mnQ̂n + Q̂nP̂nm − Q̂n),

K
(3)
lmn = i trN (P̂lmP̂mnP̂nl − P̂lmP̂mn − P̂mnP̂nl − P̂nlP̂lm + P̂lm + P̂mn + P̂nl) − 2i.

Inserting here Eq. (37), calculating the Nambu traces, and
using the fact that, since the Berry connection 1-forms
anticommute, only the part of K (2)

mn which is antisymmetric
under the interchange m ↔ n enters the right-hand side of
Eq. (C2), we finally arrive at the expression (39).

APPENDIX D: Z2 INVARIANT FOR THE WHOLE BZ

We focus on the nth Bloch band in a 2D noncentrosymmet-
ric crystal. According to Eq. (2), the Bloch states K|k,n〉 and
| − k,n〉 differ by a phase factor tn(k), which is not defined at
the TR invariant points K i , where i = 1, . . . ,NTRI. We want
to find whether the maps k → tn(k) can fall into different
topological classes. Since tn(−k) = −tn(k), it is sufficient to
consider just the maps of the HBZ.

We introduce the 1-form αn = −id ln tn, which can be
integrated along the HBZ boundary to define

Dn = − 1

2π

[∮
∂(HBZ)

αn

]
mod 2.

Any singularities in the integrand that are due to the TR
invariant points located at the HBZ boundary can be removed
by redefining (shifting) the HBZ. However, regardless of how
one redefines the HBZ, half of the TR invariant points will
always remain in its interior. Removing infinitesimal vicinities
of these points, the form αn becomes locally exact in the
punctured HBZ and one obtains from Stokes’ theorem:

Dn = − 1

2π

(NTRI/2∑
i=1

∮
ci

αn

)
mod 2. (D1)
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The sum here is taken over the band degeneracies inside
the HBZ. Under a gauge transformation of the Bloch states,
|k,n〉 → eiθn(k)|k,n〉, where eiθn is a single-valued function
in the punctured BZ, we have αn(k) → αn(k) − d[θn(k) +
θn(−k)], which leaves Dn unchanged.

As discussed in Sec. V A, one can describe the band
structure in the vicinity of any band degeneracy point using
an effective generalized Rashba model, in which the planar
component of the antisymmetric SO coupling is parametrized
by an angle β(k). Then it follows from Eqs. (11) and (D1) that
αn = −dβ and

Dn =
[

NTRI/2∑
i=1

Nβ(K i)

]
mod 2. (D2)

Since the winding number of β around a generic band
degeneracy is either +1 or −1, we obtain that Dn = 0 if the
number of the band degeneracies in the HBZ is even, and
Dn = 1 if this number is odd.

Another way of calculating the same Z2 invariant involves
integrals of the Bloch Berry connection and curvature, see
Eqs. (52) and (57), and is based on the following quantity:

D̃n = 1

π

[∫
HBZ

Bn −
∮

∂(HBZ)
An

]
mod 2, (D3)

which characterizes an “obstruction” to the Stokes’ theorem
over the HBZ [18,47]. This last expression makes sense only if
one can find a way of dealing with the TR invariant points K i at
the HBZ boundary and in its interior, as neither An nor Bn are
defined at those points. We shift the HBZ as explained above,
to make sure that its boundary avoids any band degeneracies,
and perform the integration in the first term over the punctured
HBZ. Then, Eq. (D3) becomes

D̃n = − 1

π

(
NTRI/2∑
i=1

∮
ci

An

)
mod 2

=
[

NTRI/2∑
i=1

Nβ(K i)

]
mod 2 = Dn, (D4)

where we used the expression (62) for the Bloch Berry phase
integral in the vicinity of a band degeneracy.

Thus, we see that the Bloch band is topologically trivial
(Dn = 0) if NTRI/2 is even, and topologically nontrivial (Dn =
1) if NTRI/2 is odd. According to Eqs. (14) and (16), the former
possibility is realized, for instance, in a square lattice, while
the latter in a hexagonal lattice.
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