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Charge and spin currents in ferromagnetic Josephson junctions
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We determine, using a self-consistent method, the charge and spin currents in ballistic Josephson junctions
consisting of several ferromagnetic (F ) layers sandwiched between superconducting (S) electrodes (SFS-type
junctions). When there are two F layers, we also consider the experimentally relevant configuration where a
normal (N ) nonmagnetic spacer layer separates them. We study the current-phase relationships as functions of
geometrical parameters that are accessible experimentally including particularly the angles that characterize the
relative orientation of the magnetization in the F layers. Our self-consistent method ensures that the proper
charge conservation laws are satisfied, and that important proximity effects are fully and properly accounted
for. We find that as we vary the phase difference �ϕ between the two outer S electrodes, multiple harmonics
in the current-phase relations emerge, the extent of which depends on the interface scattering strength and on
the relative F layer widths and magnetization orientations. By manipulating the relative F layer magnetization
orientations, we find that the charge supercurrent can reverse directions or vanish altogether. These findings are
discussed in the context of the generation and long-range nature of triplet pair correlation within these structures.
We also investigate the spin currents and associated spin-transfer torques throughout the entire junction regions.
For noncollinear relative magnetizations, the nonconserved spin currents in a given F region give rise to net
torques that can switch directions at particular magnetic configurations or �ϕ values. The details of the spin
current behavior are shown to depend strongly on the degree of magnetic inhomogeneity in the system, including
the number of F layers and the relative widths of the F and N layers.
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I. INTRODUCTION

When a phase difference �ϕ exists between two super-
conductor (S) electrodes separated by a nonsuperconducting
material in a Josephson junction, the corresponding charge
supercurrent is directly controllable via �ϕ. Motivated by
the interplay between ferromagnetism and superconductivity,
researchers are also interested in the dc Josephson effect in
superconducting junctions that contain a central ferromagnet
(F ) region, which in turn can give rise to an additional spin
degree of freedom. More specifically, this kind of Josephson
effect provides a venue for the study of spin currents that can
be manipulated in cryogenic spintronic systems [1–3]. Besides
numerous practical applications [4] involving these SFS-based
Josephson junctions, it is found that novel and interesting
phenomena can arise. For example, the realization of a π state
[4–8], where the ground state of the system corresponds to
�φ = π across the junction. Moreover, if the ferromagnet
region consists of at least two F layers that each have a
uniform magnetization (e.g., a SFFS structure), manipulation
of the angle between the magnetization vectors can serve to
generate long-range triplet supercurrents [9–14] in addition to
the ordinary singlet ones. Additional control of the magnetic
state can also occur from the spatially varying spin current
within the F layers of the junction, causing mutual torques
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to act on their respective magnetic moments. Therefore, SFS-
based junctions that contain multiple F layers present many
opportunities for controlling the charge and spin currents, and
their influence on the magnetization in terms of the torque they
produce.

Besides these potential applications, it is also of funda-
mental importance to understand the basic physics of the
interplay between spin and charge currents and the long-range
triplet pairing associated with the supercurrents. For these
purposes, we consider in this paper nanoscale SFS Josephson
junctions, where the F region contains multiple layers: SFFS
spin valves consisting of two metallic ferromagnets separated
by a nonmagnetic normal-metal spacer, and trilayer SFFFS
junctions. In each case, a supercurrent is established via a
phase difference �ϕ between the S terminals. Interest in
superconducting spin valves has recently extended to the use
of strong, even half-metallic, ferromagnets [3,15,16]. Because
the characteristic lengths associated with proximity effects in
a moderate to strong magnet are comparable to the Fermi
wavelength, a quasiclassical approach in the diffusive limit
is usually not suitable [17] and a microscopic theory is
necessary. Furthermore, recent experimental evidence [18–20]
strongly suggests the ballistic regime is the relevant one: as
demonstrated in Refs. [19,20], the numerical solutions of the
Bogoliubov–de Gennes (BdG) equations [21] in the clean limit
clearly agree in quantitative detail with experimental data.
Hence, in this work we consider the ballistic limit and adopt a
self-consistent BdG calculation that permits us to properly
take into account the microscopic origin of the proximity
effects in the Andreev reflections. Our results, obtained from
a fully self-consistent microscopic approach, are therefore in
previously unexplored regimes.
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Using this framework, we find that the direction of
charge supercurrents can be reversed by adjusting the relative
magnetic orientations of F layers. We demonstrate that this
phenomenon is connected with both the π -state Josephson
junction and with the triplet correlations. It has long been
known [19,20,22] that experimental results depend crucially
on many parameters. Because of this, wide parameter ranges
are considered here, including F layer widths, the strength
of interfacial scattering, and the geometry of the different
magnetic configurations. We illustrate how the spin currents
locally satisfy the conservation law, and we also show that
reversal of charge currents signals a phase change in the spin
transport.

Although interest in the study of F/S multilayer structures
has recently increased considerably, work on SFS Josephson
junctions actually started long ago. The Josephson and critical
current oscillations were found to occur as a function of the
ferromagnet exchange field [23,24] and the thickness of the
magnet [24]. An essential principle behind many of these
important phenomena is the damped oscillatory nature of the
singlet Cooper pairs in the ferromagnetic regions, and the
associated phase shift in the superconducting order parameter.
Due to the intrinsic exchange field in the ferromagnet regions,
electrons of Cooper pairs with spin up (down) decrease
(increase) their kinetic energy and the Cooper pairs acquire
a nonzero center-of-mass momentum. It further leads to an
oscillatory order parameter in the F regions [25]. Owing to
this oscillatory nature, not only the Josephson critical current
but also the superconducting critical temperatures oscillate
as a function of exchange field and thickness of magnets.
Josephson junctions of the π type can also be realized by
using this principle by adjusting either the exchange field,
the magnet width, or both [6,26,27]. The proximity effects
between the S and F regions thus give rise to phenomena
[17,25,28,29] that subsequently play crucial roles in the charge
and spin currents that may be manipulated in low-temperature
nanoscale devices, including nonvolatile memory elements,
where the dissipationless nature of the supercurrent flow offers
reduced energy loss and Joule heating.

In equilibrium, singlet Cooper pairs carry no net spin,
hence, any spin current in the system either flows only within
the ferromagnets due to their exchange interaction, or it
flows by means of induced equal-spin triplet correlations,
where the Cooper pairs have a net spin of m = ±1 on the
spin quantization axis and they can reside in both S and
F regions. The generation of long-range triplet proximity
effects in superconducting heterostructures with magnetic
inhomogeneity has been both theoretically predicted and
experimentally confirmed: by introducing magnetic inhomo-
geneity, e.g., inclusion of an additional magnet with misaligned
exchange field, the Hamiltonian no longer commutes with the
total spin operator and equal-spin triplet correlations can then
be induced [14,30,31]. Due to the imbalance between majority
and minority spins in a ferromagnet, conventional singlet su-
perconducting correlations do not survive for long once inside
the magnetic region. However, Cooper pairs with electrons
that carry the same spin are not subject to paramagnetic pair
breaking and can in principle propagate for large distances
inside the ferromagnet, limited only by coherence breaking
processes [11,14,30,31]. Such equal-spin triplet correlations

thus play an important role in Josephson junctions with
inhomogeneous ferromagnets [11,32,33]. Indeed, it has been
reported experimentally that with the presence of magnetic
inhomogeneity, the Josephson critical current decays much
more slowly with increases in the F layer thicknesses [34,35],
as compared to junctions with homogeneous magnetization.
One of the simplest ways to introduce magnetic inhomogeneity
in a Josephson junction is through the insertion of bilayer
or trilayer of uniformly magnetized ferromagnets. Experi-
mentally, this has the advantages of reproducibility and easy
manipulation of the relative exchange field orientation. These
structures also provide direct evidence of triplet correlations
[19,36–38]. Recently, long-range coherent transport of triplet
pairs was studied in double-magnet SF1F2S junctions [2,39],
further demonstrating that it is not always necessary to have a
trilayer [40] ferromagnet structure of misaligned ferromagnets
to generate equal-spin triplet components to the supercurrent.
This finding was in agreement with the long-range phenomena
found in a similar structure [12] with asymmetric widths [12]
and orthogonal exchange fields. The behavior of the triplet
amplitude is often anticorrelated [38] to that of the critical
temperature and associated singlet correlations, suggesting
singlet-to-triplet conversion.

The oscillatory and long-range pair correlations also lead
to new behaviors in the current-phase relations (CPRs) in
SFS juncitons [4,9,41] with a nontrivial magnetic structure.
The CPR can in general contain not only the first harmonic
but also higher-order harmonics, i.e., I (�ϕ) ≈ I1 sin(�ϕ) +
I2 sin(2�ϕ). The appearance of additional harmonics in the
current-phase relation has also been discussed in the diffusive
and clean regimes for ferromagnetic Josephson junction
structures [17,32,42,43]. In conventional Josephson junctions
without any magnetic interaction, the magnitude of I2 is much
smaller than that of I1. However, in SFS Josephson junctions,
near a 0 to π phase transition, the roles of the first harmonic
and the second harmonic can be reversed, and the CPR can
be largely dominated by the second harmonic [42]. In this
regime, both �ϕ = 0 and π states can be stable or metastable,
and they can coexist. The physical origins of the second- and
higher-order harmonics are believed to lie in the long-ranged
triplet component of the supercurrent. In this regard, within
the vicinity of the 0-π transitions, the triplet correlations can
be tuned accordingly. Since the first harmonic is suppressed
due to the supercurrent flow reversing direction, the higher-
order harmonics are revealed at the 0-π transition point. The
influence of interface scattering on the higher-order harmonics
was investigated in the quasiclassical clean limit [44] and
experimentally detected [45]. The measured supercurrent at
the 0-π transition point [8] was attributed to the presence
of higher harmonics. Subsequent work with ferromagnetic
Josephson junctions demonstrated that the higher harmonics
can naturally arise when varying the location of domain
walls [46], and also in ballistic double-magnetic Josephson
junctions, provided that the thicknesses of the magnetic layers
are unequal [12]. Recently, evidence of higher harmonics has
been observed in Josephson junctions with spin-dependent
tunneling barriers [47].

The interaction of the spin current with the magnetization
in layered ferromagnetic junctions with multiple ferromagnets
has important consequences for memory technologies. Indeed,
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storage of information bits depends on the precise relative
orientation of the magnetizations in two F layers, where
nonconserved spin currents reflect the mutual torque acting
on the magnetic moments. The corresponding spin-transfer
torque (STT) can also switch magnetizations when a spin-
polarized electrical current flows perpendicular to the layers.
Spin-transfer torque is known to occur in a very broad variety
of materials, making it an attractive switching mechanism.
For equilibrium spin currents, governed by spin-polarized
Andreev bound states [48], tuning the supercurrent (via �ϕ)
directly influences the STT when varying the relative in-plane
magnetization angle [49]. The direction of supercurrent flow,
however, is not simply related to the direction of the induced
torque that tends to align the magnetic moments. The triplet
correlations generated in these types of Josephson junctions
(with noncollinear relative magnetizations) can also induce
spatial variations in the spin currents responsible for the mutual
torques acting on the ferromagnets [13].

When considering superconducting proximity effects, it is
important to make sure that the self-consistency condition for
the pair potential �(x) is fulfilled [38] in order to obtain
the correct physical picture. The self-consistency condition
is often neglected in the literature [50] mainly because it is
difficult to properly implement in the theoretical studies. As
we will show in the Sec. II, a source term in the continuity
equation for the charge currents usually arises when a non-
self-consistent superconducting order parameter is used. More
importantly, when the self-consistent condition is achieved, the
free energies of these proximity-coupled systems are properly
minimized. This concept is crucial especially when studying
Josephson junctions since the superconducting proximity
effects are the fundamental mechanism behind the nontrivial
charge and spin currents that flow within these structures.
Furthermore, when the solutions are self-consistent, the charge
conservation law is satisfied by properly accounting for the
proximity effects and transport properties for the charge cur-
rent [51]. When magnetic inhomogeneity is present, the spin
density is not conserved and STT can arise and interact with the
charge-dependent quantities. Although there is no continuity
equation for the spin density, since its gradients are nonzero,
there is still a corresponding, and fundamental, conservation
law that balances current gradients and the STT [38,52].

Above, we have discussed various physical phenomena
associated with the magnetic inhomogeneity such as triplet
correlations and the generations of STT and outlined the main
goal of this work. The rest of the paper is organized as follows:
We describe our method in Sec. II and derive conservation
laws for both spin and charge currents. Our method is based
on self-consistently solving the BdG equations. All important
physical quantities, e.g., the magnetization, can be extracted
or constructed from the self-consistent solutions. In Sec. III,
we present a detailed study of the transport properties by
considering a wide range of a number of material parameters.
Finally, we conclude with our main findings in Sec. IV.

II. METHODS

The general method that we use in this paper is that of
numerical diagonalization of the self-consistent Bogoliubov–
de Gennes (BdG) equations. Since many aspects of this
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FIG. 1. (Color online) Schematic of the SF 1F2F3S Josephson
junction considered in this paper. A generic configuration is shown,
described by the in-plane magnetization angles φi and the out-of-
plane angles θi (i = 1,2,3). The ferromagnetic exchange field hi in
each region is expressed as hi = hi(cos θi, sin θi sin φi, sin θi cos φi).

method have been extensively discussed in previous work
[28,38,46,53], we will only include here a brief review of
these points, as needed to make this paper understandable. We
will discuss in more detail additional aspects needed for the
transport calculations described in this work.

The derivation of the BdG equations for general magnetiza-
tion configurations begins with the effective BCS Hamiltonian
H:

H =
∫

d3r{ψ†(r)[He − h · σ ]ψ(r) + �(r)ψ†
↑(r)ψ†

↓(r)

+ �∗(r)ψ↓(r)ψ↑(r)}, (1)

where ψ(r) ≡ (ψ↑,ψ↓)T are the usual fermionic operators,
He = −1/(2m)∇2 − EF + U (r), and σ denote the set of
Pauli matrices. We describe the magnetism of the F layers
by effective Stoner exchange fields h(r) which in our case
have components in all (x,y,z) directions (see Fig. 1). The
spin-independent scattering potential is denoted by U (r), and
�(r) is the pair potential.

To diagonalize the effective Hamiltonian, the field operators
ψ↑ and ψ↓ are expanded [21] by means of a Bogoliubov
transformation:

ψ↑(r) =
∑

n

(un↑(r)γn − v∗
n↑(r)γ †

n ), (2a)

ψ↓(r) =
∑

n

(un↓(r)γn + v∗
n↓(r)γ †

n ), (2b)

where unα and vnα are the quasiparticle and quasihole ampli-
tudes, which are chosen so that the Hamiltonian is diagonalized
in terms of the fermionic γn operators. Therefore, [H,γn] =
−εnγn and [H,γ

†
n ] = εnγ

†
n . Also, the thermal expectation

values involving γn and γ
†
n are given by the usual Fermi

functions fn [54]. The anticommutation relations for ψ and
ψ† yield

[ψ↑(r),H] = (He − hz)ψ↑(r) − [hx − ihy]ψ↓(r)

+�(r)ψ†
↓(r), (3a)

[ψ↓(r),H] = (He + hz)ψ↓(r) − [hx + ihy]ψ↑(r)

−�(r)ψ†
↑(r). (3b)
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It is convenient at this point to simplify to the quasi-one-dimensional (quasi-1D) geometry (Fig. 1) of our problem. Then, by
inserting (2) into (3) and using the commutation relations, we obtain the general spin-dependent BdG equations for this geometry:⎛

⎜⎝
H0 − hz −hx + ihy 0 �

−hx − ihy H0 + hz � 0
0 �∗ −(H0 − hz) −hx − ihy

�∗ 0 −hx + ihy −(H0 + hz)

⎞
⎟⎠

⎛
⎜⎝

un↑(x)
un↓(x)
vn↑(x)
vn↓(x)

⎞
⎟⎠ = εn

⎛
⎜⎝

un↑(x)
un↓(x)
vn↑(x)
vn↓(x)

⎞
⎟⎠, (4)

where εn are the quasiparticle energies, x is normal to the
layers, which lie in the y-z plane (see Fig. 1), and �(x) is
the pair potential, to be found self-consistently as explained
below. Here, the single-particle Hamiltonian H0 is written

H0 = 1

2m

(
− ∂2

∂x2
+ k2

y + k2
z

)
− EF + U (x). (5)

The components of the exchange field h in each of the F layers
take the form

hi = h(cos θi, sin θi sin φi, sin θi cos φi), (6)

where i denotes one of the magnetic layers. We will assume
that the magnitude of the exchange field is the same in all
magnetic layers, and that it vanishes elsewhere. The angles θi

and φi will in general be taken to vary from layer to layer.
One obtains in the usual way [21] the self-consistency

condition for the pair potential, using �(r) = g〈ψ↓(r)ψ↑(r)〉.
Here, g is the superconducting coupling constant, which
vanishes in the non-S layers. In our geometry we find, after
using the Bogoliubov transformation and making use of the
appropriate averages such as 〈γ †

n γn〉 = fn, the pair potential
can be expressed in terms of the quasiparticle amplitudes as
an appropriate sum over states:

�(x) = g

2

∑
n

′
[un↑(x)v∗

n↓(x) + un↓(x)v∗
n↑(x)] tanh(εn/2T ),

(7)
where the prime on the sum indicates that only those states
that have energies within a “Debye energy” ωD are included.

The problem is then solved iteratively: the pair potential is
initially taken to be �0 in the first S layer and �0 exp(i�ϕ)
in the second S layer, where �0 is the initial guess of the
magnitude for the pair amplitudes. The Hamiltonian is then
numerically diagonalized and the new pair potential is found
via Eq. (7). Iteration is continued until convergence. The
details of the procedure, including the way to ensure, in the
Josephson calculations, that the phase difference between the
right and left ends of the sample remains �ϕ, is explained in
Appendix A.

Equilibrium and transport properties in the structures
considered are strongly influenced by the existence of “odd”
triplet pairs. The existence of such pairs is allowed by
conservation laws since, unless all of the F layers have
magnetizations along the same direction, the total spin of
the Cooper pairs is not a conserved quantity. Because of the
Pauli principle, these s-wave triplet pairs must have wave
functions odd in frequency [55] or, equivalently [14,31], in
time. Within the BdG framework, the time formulation is much
more convenient. Accordingly, we will describe the triplet pair
correlations via the following amplitude functions, in terms of
the field operators

f0(r,t) = 1
2 [〈ψ↑(r,t)ψ↓(r,0)〉 + 〈ψ↓(r,t)ψ↑(r,0)〉], (8a)

f1(r,t) = 1
2 [〈ψ↑(r,t)ψ↑(r,0)〉 − 〈ψ↓(r,t)ψ↓(r,0)〉]. (8b)

Taking the quantization axis along the z direction, the triplet
amplitudes f0 and f1 can be rewritten [14,31] in terms of the
quasiparticle amplitudes

f0 = 1/2
∑

n

(g↑↓
n − g↓↑

n )ζn(t), (9)

f1 = 1/2
∑

n

(g↑↑
n + g↓↓

n )ζn(t), (10)

where ζn(t) ≡ cos(εnt) − i sin(εnt) tanh(εn/2T ), and we de-
fine gσσ ′

n ≡ unσ v∗
nσ ′ . It is sometimes necessary to evaluate the

triplet amplitudes along a different spin axis. For example,
one may wish to use the direction of the local magnetization
(defined below) as the axis of quantization. To do so, one
rotates the quantization axis so that it is aligned with the
local magnetization direction using the spin rotation matrices
discussed in Appendix B.

We will consider here spin currents, as well as charge
currents. In our structures, spin transport is influenced by
the leakage of magnetism out of the F layers and into
the superconductors. This can be characterized by the local
magnetization m(r):

m(r) = −μB 〈η(r)〉, (11)

where η(r) is the spin density operator

η(r) = ψ†(r)σψ(r), (12)

and μB the Bohr magneton. For our quasi-1D geometry, we
can rewrite the components of m in terms of the quasiparticle
amplitudes:

mx(x) = − μB

∑
n

{[u∗
n↑(x)un↓(x) + u∗

n↓(x)un↑(x)]fn

− [vn↑(x)v∗
n↓(x) + vn↓(x)v∗

n↑(x)](1 − fn)}, (13)

my(x) = − iμB

∑
n

{[un↑(x)u∗
n↓(x) − un↓(x)u∗

n↑(x)]fn

+ [vn↑(x)v∗
n↓(x) − vn↓(x)v∗

n↑(x)](1 − fn)}, (14)

mz(x) = − μB

∑
n

{[|un↑(x)|2 − |un↓(x)|2]fn

+ [|vn↑(x)|2 − |vn↓(x)|2](1 − fn)}. (15)

We now turn to the appropriate expressions for the currents.
As stressed in Sec. I, one needs to carefully establish proper
conservation laws when discussing the transport properties
of the system [56]. We first discuss the charge supercurrent.

174516-4



CHARGE AND SPIN CURRENTS IN FERROMAGNETIC . . . PHYSICAL REVIEW B 92, 174516 (2015)

In our geometry, the charge current has only one component
Jx , which depends on the x coordinate. In the absence of
an external magnetic field, the total charge current Jx(x) ≡
Jx↑(x) + Jx↓(x) is found from the standard quantum mechan-
ical expression Jx = (e/m)〈ψ†pxψ〉. This leads to the result

Jxσ (x) = e

2m

〈
−iψ†

σ

∂

∂x
ψσ + i

(
∂

∂x
ψ†

σ

)
ψσ

〉
. (16)

This expression for the current ensures, together with the self-
consistency condition, that charge conservation is satisfied,
that is, dJx/dx = 0 in the steady state [38,46,57]. It is of
course convenient numerically to rewrite the expression for
the current in terms of the calculated quasiparticle amplitudes
and energies. After inserting the Bogoliubov transformations
in Eq. (2), we can write the total charge current, as given by
Eq. (16), summed over spins as

Jx(x) = 2e

m

∑
n,σ

Im

[
unσ

∂u∗
nσ

∂x
fn + vnσ

∂v∗
nσ

∂x
(1 − fn)

]
. (17)

One can verify once again the conservation law by taking
the divergence of the current in Eq. (17) and using the BdG
equations (4) to find [38,46]

∂Jx(x)

∂x
= 2e Im

{
�(x)

∑
n

[u∗
n↑vn↓ + u∗

n↓vn↑] tanh

(
εn

2T

)}
.

(18)

When the self-consistency condition is satisfied, the right-
hand side vanishes, and charge is properly conserved. If
the self-consistency condition is not strictly satisfied, the
terms on the right side act effectively as sources or sinks of
current [38,46,57]. We will consider large-S contacts with the
amplitude and phase of the order parameter determined self-
consistently except near the sample edges (see Appendix A)
where sources and sinks of charge exist via the implicit external
electrodes. This gives the necessary charge conservation
condition in the region of interest. We emphasize here that with
self-consistent solutions, we are able to correctly determine
the effect of triplet correlations on both the charge and spin
transport.

The extension of the above considerations to spin transport is
relatively straightforward [38,49]. As in the case of the charge
density, the Heisenberg picture is utilized to determine the time
evolution of the spin density η(r,t),

∂

∂t
〈η(r,t)〉 = i〈[H,η(r,t)]〉, (19)

where η is given in Eq. (12). The associated continuity equation
now reads as

∂

∂t
〈η(r,t)〉 + ∂ S

∂x
= τ + JS, (20)

where S is the spin current which in our geometry is a vector
(in general it is a tensor). The spin-transfer torque τ is given
by

τ = −i〈ψ†(r)[h · σ ,σ ]ψ(r)〉 = 2〈ψ†(r)[σ × h]ψ(r)〉.
(21)

The JS term has components

JSx = 2 Im{�〈ψ†
↓(r)ψ†

↓(r) − ψ
†
↑(r)ψ†

↑(r)〉}, (22)

JSy = 2 Re{�〈ψ†
↓(r)ψ†

↓(r) + ψ
†
↑(r)ψ†

↑(r)〉}. (23)

For the s-wave superconductors considered in this paper, we
have JS = 0 by virtue of the Pauli principle since only equal
time correlations are involved. Thus, in the absence of spin-
transfer torque, we have ∂η/∂t + ∂ S/∂x = 0. However, in
general [38] spin-transfer torque is present and, in the steady
state, the derivatives of S with respect to x do not vanish.

The expression for the spin current S is found from taking
the commutator in Eq. (19) and using Eq. (1):

S = − i

2m

〈
ψ†(r)σ

∂ψ(r)

∂x
− ∂ψ†(r)

∂x
σψ(r)

〉
, (24)

where we recall that the vector S represents spin current
flowing along the x direction for our quasi-one-dimensional
systems. We can now expand each spin component of the spin
current in terms of the quasiparticle amplitudes to obtain

Sx = − i

2m

∑
n

{
fn

[
u∗

n↑
∂un↓
∂x

+u∗
n↓

∂un↑
∂x

− un↓
∂u∗

n↑
∂x

− un↑
∂u∗

n↓
∂x

]
− (1 − fn)

[
vn↑

∂v∗
n↓

∂x
+ vn↓

∂v∗
n↑

∂x
− v∗

n↑
∂vn↓
∂x

− v∗
n↓

∂vn↑
∂x

]}
,

(25)

Sy = − 1

2m

∑
n

{
fn

[
u∗

n↑
∂un↓
∂x

− u∗
n↓

∂un↑
∂x

− un↓
∂u∗

n↑
∂x

+un↑
∂u∗

n↓
∂x

]
− (1 − fn)

[
vn↑

∂v∗
n↓

∂x
− vn↓

∂v∗
n↑

∂x
+ v∗

n↑
∂vn↓
∂x

− v∗
n↓

∂vn↑
∂x

]}
,

(26)

Sz = − i

2m

∑
n

{
fn

[
u∗

n↑
∂un↑
∂x

− un↑
∂u∗

n↑
∂x

− u∗
n↓

∂un↓
∂x

+un↓
∂u∗

n↓
∂x

]
− (1 − fn)

[
−vn↑

∂v∗
n↑

∂x
+v∗

n↑
∂vn↑
∂x

+vn↓
∂v∗

n↓
∂x

− v∗
n↓

∂vn↓
∂x

]}
.

(27)

In the case of F layers with uniform magnetization, there is
no net spin current. The introduction of an inhomogeneous
magnetization texture, however, results in a net spin current
imbalance that is finite [38] even in the absence of a Josephson

current. This will be discussed in greater detail in the
following.

To compute the spin-transfer torque, it is useful to express
it in terms of the quasiparticle amplitudes. A convenient
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approach involves directly taking the expectation values of
Eq. (21):

τ = 2〈ψ†(r)σψ(r)〉 × h = − 2

μB

m × h, (28)

where we have used Eq. (11). The magnetization components
are given in Eqs. (13)–(15). Since the exchange field h is
prescribed, it is the self-consistently calculated magnetization
that determines the torque acting on the ferromagnet layers.
Equivalently, one can use the continuity equation in the
steady state to determine the torque transfer by evaluating
the derivative of the spin current as a function of position:

τ i = ∂ Si

∂x
. (29)

It is, however, safer to evaluate both sides of Eq. (29) indepen-
dently and use this equation as a consistency check. We have
performed extensive numerical checks using this procedure.
In most of the results presented we have calculated the torques
using Eq. (28), thus avoiding the numerical derivatives that
arise when using the right side of Eq. (29). Additional physical
insight can be gained by integrating Eq. (29) over a particular
region, e.g., F1:

Sx(b) − Sx(a) =
∫

F1

dx τx = τx,tot, (30)

which means that the change in spin current through F1 (from
x = a to b) is equivalent to the net torque acting within those
boundaries.

III. RESULTS

The results of our systematic investigations are presented
in terms of convenient dimensionless quantities. Our choices
are as follows: all length scales, including the position X ≡
kF x, and widths DFi ≡ kF dFi (i = 1,2,3) are normalized
by the Fermi wave vector kF . For the superconducting
correlation length ξ we choose the value kF ξ = 100, and
the computational region occupied by the S electrodes cor-
responds to a width of 8ξ (see Appendix B for numerical
details). All temperatures are measured in units of Tc0, the
transition temperature of bulk S material, and we consider
the low-temperature regime T/Tc0 = 0.01. Energy scales are
normalized by the Fermi energy εF , including the Stoner field
interaction h and the energy cutoff ωD , used in the self-
consistency condition Eq. (7). The latter is set at 0.04: results
are often independent of this cutoff choice. As mentioned
above, the strength of the magnetic exchange fields h is taken
to be the same in both magnets: we set its dimensionless value
to a representative h = 0.1. We vary the orientation angles
of the magnetic exchange field in each of the F regions,
depending on the quantity being studied. The magnetization
is normalized by μBne, where ne is the electron density ne =
k3
F /(3π2). The normalization τ0 for the torque follows from

the normalizations for h and m and Eq. (28). When presenting
results for the currents, we normalize the charge current
densities Jx by J0, where J0 ≡ enevF , and vF = kF /m is the
Fermi velocity. All three components of the spin current S are
normalized similarly, by the quantity S0, where S0 involves
the normalization of m and a factor of nevF . The interface

(a) (b) (c)

FIG. 2. (Color online) Normalized (see text) Josephson current
versus phase difference �ϕ for a SF1F2S structure with DF1 = 10,
DF2 = 100, and h = 0.1. For panels (a) and (b), the legend in (b)
labels the relative in-plane magnetization orientations: parallel (P),
antiparallel (AP), or normal (N). Two interface scattering strengths
are considered: (a) HB = 0 and (b) HB = 1. In panel (c), the
magnetization orientations are fixed in the normal configuration
(φ1 = 0, φ2 = 90◦), and the interface scattering is varied as HB =
0,0.2,0.5,0.6,0.7,0.8,1 (in descending order of peaks).

scattering U (x) is represented by delta functions of strength
H at all the interfaces. The corresponding dimensionless
parameter is HB ≡ H/vF . The self-consistency of the pair
potential that characterizes an accurate representation of the
Cooper pair correlations throughout the system is associated
with the proximity effects and depends to varying degrees on
the parameters outlined above. In some cases, the dependence
is rather obvious: for instance, large HB results in weaker
proximity effects. In other cases, it is more intricate and will
be analyzed more carefully.

A. Current-phase relations

We begin by showing our results for the self-consistent
current-phase relations in a simple double-layer ferromagnet
Josephson junction. At the interfaces between the F and
S regions, quasiparticles undergo Andreev and conventional
reflections [58–61]. The superposition of these waves in the F

regions results in subgap bound states that contribute, together
with the continuum states, to the total current flow. In Fig. 2,
we show the supercurrent as a function of phase difference
(current-phase relation CPR) for two ferromagnets of unequal
width: DF1 = 10 and DF2 = 100. This asymmetric choice of
widths helps ensure [12,19] that equal-spin triplet correlations
are generated in the system. The angular parameters in this
figure are fixed at θ1 = 90◦ and θ2 = 90◦, corresponding
to in-plane magnetization orientations. The F1 layer has its
magnetization aligned in the z direction (φ1 = 0◦). The first
two panels (a) and (b) display three different relative in-plane
magnetization configurations in the F2 layers: parallel (P)
(φ2 = 0◦), antiparallel (AP) (φ2 = 180◦), and normal (N)
[62] (φ2 = 90◦). Two different strengths of the interface
scattering parameter are considered. In (a) there is no interface
scattering (HB = 0), while in (b), a rather high rate of
scattering is present, with HB = 1. The CPR for the collinear
configurations (P or AP) possesses the conventional 2π

periodicity, and the supercurrent flows oppositely for the two
alignments. When the relative magnetizations are orthogonal
to each another, the CPR becomes π periodic as revealed
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by the sawtoothlike pattern in (a) or the more sinusoidal
behavior in (b), both of which change sign at �ϕ ≈ 90◦.
This is a consequence of the emergence of equal-spin triplet
correlations [17,32,42–45] that are absent when the exchange
fields in the ferromagnets point along the same direction.
When strong interface scattering is present, Fig. 2(b) shows
that the π -periodic CPR (N case) is substantially diminished,
relative to the P or AP cases. This is because the proximity
effect is weakened, with a resulting reduction of the associated
equal-spin triplet correlations. To further examine the effects
that interface scattering has on this π -periodic supercurrent,
we consider in Fig. 2(c) the same SF1F2S junction with
varying degrees of scattering strengths HB and with the
relative in-plane magnetizations fixed and orthogonal to each
another (φ2 = 90◦). Increasing HB clearly leads to a crossover
in the CPR from a sawtooth to sinusoidal form and to a
marked reduction of the supercurrent flow. As this occurs,
the phase difference �ϕ yielding the critical current density
also declines.

We next consider, in Fig. 3, the effect on the CPR of
changing DF1 and DF2 in a SF 1F2S structure. Figures 3(a)–
3(c) label the various widths DF1 considered. We keep DF ≡

FIG. 3. (Color online) Normalized Josephson current versus
phase difference �ϕ for a SF1F2S structure with no interface
scattering, HB = 0. In panels (a)–(c), various widths of the F

regions are considered, each panel labeled by the width DF1 of the
ferromagnet layer F1, with the constraint that DF1 + DF2 = 390. The
legend in (b) labels the relative magnetization orientation (see Fig. 2).
In (d) the magnetization configuration is N, DF1 = DF2 , and their
individual widths are given in the legend.

DF1 + DF2 fixed to a representative value of DF = 390. In
Figs. 3(a)–3(c), we consider the same three magnetization
orientations as in Fig. 2. One sees that, in the N configuration,
the structure with the greatest geometric asymmetry, as given
by the ratio DF1/DF2 , tends to have a more pronounced
superharmonic CPR relative to the P and AP collinear
configurations. Upon increasing DF1 , the jagged sawtooth
peaks at DF1 = 10 become smoothed and the π -periodic CPR
is reduced substantially. The observed reversal of current
direction for a given magnetic configuration when changing
the F widths is a direct consequence of the damped oscillatory
behavior of the singlet and triplet correlations, as will be
discussed following (see also Fig. 8). By comparing Fig. 3(a)
with Fig. 2(a) and noting that the only difference between
them is the thickness of the second magnet, one finds that
the magnitude of the supercurrent for the N case with thicker
F2 does not drop significantly, as it does in the P and AP
configurations. Such behavior is a signature of the long-range
nature of the equal-spin triplet correlations. To show further
the effects of increased width on the supercurrent, we consider
in Fig. 3(d) the symmetric geometry configuration for several
equal F layer widths DF . As shown in the legend, a broad
range of DF is considered. It is clear from the figure that the
equal-spin triplet correlations responsible for the previously
observed superharmonic CPRs are strongly impacted, and
only a 2π -periodic supercurrent arises. By increasing the
ferromagnet widths, the rate at which the current changes with
�ϕ tends to decline for wider junctions, and the “critical” �ϕ

where the current is suddenly reduced becomes smaller. In
this panel, the ferromagnetic region is no longer constrained
to have the same total width, hence, increasing DF reduces the
overall current flow.

We now consider a trilayer junction, where a nonmagnetic
normal-metal “spacer” separates the two ferromagnets. Such
spacers are convenient experimentally when it is wished [19]
to rotate the magnetization in one magnet only. We focus on
the case where the CPRs have important additional harmonics:
we keep the in-plane mutual magnetizations orthogonal (with
φ2 = 90◦ and θ2 = 90◦). In Figs. 4(a) and 4(b), the ferromagnet
widths are DF1 = 10 and DF3 = 100, while the width of the
normal metal spacer DN varies from 0 to 500 (corresponding
to 0 � dN/ξ � 5) as indicated in the legend. The interface
scattering parameter is HB = 0.5 for Fig. 4(a) and HB = 0.8
in Fig. 4(b). In either case, increasing DN leads to an
overall reduction in the supercurrent flow. For large interface
scattering, the CPR becomes less sensitive to DN . A wider
junction, with ferromagnet widths DF1 = 10 and DF3 = 380,
is shown in (c), with HB = 0. The details of the usual
sawtooth CPR reveal that the supercurrent flow can be quite
sensitive to the spacer width, as it abruptly reverses direction
at considerably different phase differences, for incremental
changes in DN . In this panel, results for an additional small
value of the spacer thickness DN = 5 are also shown. Since
the π -periodic CPR is closely related to the generation of the
equal-spin triplet correlation, one can infer from Fig. 4 that
the introduction of an additional nonmagnet metallic layer can
quantitatively changes the transport properties. In Sec. III C,
we will discuss connections between the results in this figure
and those for the induced triplet correlations to be shown in
Figs. 9 and 10.
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(a) (b) (c)

FIG. 4. (Color online) Normalized Josephson current versus �ϕ

for a SF1NF3S structure. The legend labels the N spacer widths
DN . The relative in-plane magnetization angle between the two F

layers is 90◦. For panels (a) and (b), the layers F1 and F3 have
widths DF1 = 10 and DF3 = 100. In panel (a) HB = 0.5, in panel
(b) HB = 0.8, and in panel (c) HB = 0, with ferromagnet widths
DF1 = 10 and DF3 = 380. In panel (c) the additional dotted curve
corresponds to DN = 5, illustrating the sensitivity of the current phase
relation to DN .

To examine the effects of increased magnetic inhomogene-
ity, we show in Fig. 5 results for a pentalayer SF 1F2F3S

junction. This structure is complementary to that studied in
Fig. 3, the main difference being an additional ferromagnet
layer F2 with an out-of-plane magnetic exchange field oriented
in the x direction (corresponding to θ2 = 0◦ in Fig. 1). The
relative magnetic orientations are labeled in the legend by
the directions of the axes along with the magnetizations are
aligned in each F layer. For example, z/x/y denotes a sample
in which F1 and F3 are normal to each other (the configuration
labeled N in the previous figures) with an additional out-of
plane magnetization in F2. The width of the F2 layer is identical
to that of the F1 layer: DF1 = DF2 = 10 in Fig. 5(a) and DF1 =
DF2 = 20 in Fig. 5(b). The thicker ferromagnet F3 has width
DF3 = 380. The π -periodic CPR that arises in double magnet
SF1F2S junctions with orthogonal in-plane magnetizations
remains relatively unchanged by the addition of the additional
out-of-plane intermediate ferromagnet. However, it was shown
in Figs. 3(a)–3(c) that the collinear P or AP magnetic states still

FIG. 5. (Color online) Normalized Josephson current versus �ϕ

for a SF 1F2F3S structure. The legend labels the three relative
magnetization directions between the F layers. They correspond in
order to the configurations labeled N, P, and AP in the previous
figures for F1 and F3, while the intermediate layer F2 has out-of-
plane magnetization. The ferromagnetic layer F3 has a fixed width
corresponding to DF3 = 380. The adjacent F layers have widths
[panel (a)] DF1 = DF2 = 10 and [panel (b)] DF1 = DF2 = 20.

(a) (b)

(c)

FIG. 6. (Color online) Normalized Josephson current versus the
in-plane relative magnetization angle φ′

1 ≡ φ1 + 90◦ (see text), for
a SF 1F2S junction (a), and for a SF 1NF 3S junction with HB =
0.8 (b). The legends show the geometric and material parameters
that are varied. In (a) �ϕ = 100◦, DF1 = 10, and DF2 = 100. In
(b) �ϕ = 100◦, DF1 = 10, and DF3 = 100. In (c) an SF 1F2S junction
is considered with HB = 0 and �ϕ = 60◦. The outer ferromagnet
layer has DF2 = 380, while three different DF1 values are considered
(see legend).

with 2π periodicities behaved in an approximately piecewise
linear fashion and that the current maintained its direction
when varying �ϕ. Now, on the other hand, the insertion of an
additional F layer between the collinear ferromagnets makes
it possible for equal-spin triplet correlations to be generated
and the supercurrent becomes drastically modified. For phase
differences in the vicinity of 0 or π , Figs. 5(a) and 5(b) show
that the current is approximately linear in the phase difference,
but there is a broad intermediate range of �ϕ, where the
supercurrent flow is relatively uniform. Moreover, for either
the P or AP configuration, varying the phase can result in the
Josephson current switching direction. These trends are the
same for each of the cases presented in Figs. 5(a) or 5(b).

B. Magnetic orientation and CPR

Having discussed the current phase relations for a few
different ferromagnetic Josephson junction configurations,
we now will study in more detail the effect of varying
magnetization orientations on the CPR. We will set the
macroscopic phase difference to a prescribed value and study
the supercurrent response within the junctions for a range of
relative magnetization orientations.

We begin with a basic SF 1F2S Josephson junction whose
phase difference is set at �ϕ = 100◦. We consider in Fig. 6(a)
the normalized supercurrent density as a function of the
in-plane magnetization angle φ′

1 (θ1 = 90◦), where φ′
1 ≡ φ1 +

90◦, with φ1 being the angle shown in Fig. 1. The P and
AP states correspond to φ′

1 = 0◦ and φ′
1 = 180◦, respectively

(since the magnetization in F2 is fixed along y). Four interface
scattering strengths are considered in Fig. 6(a), as indicated in
its legend. In all cases, by tuning the relative alignment angles,
supercurrent switching occurs when the mutual magnetization
orientations are approximately orthogonal. As expected, the
supercurrent flow is greatest for transparent interfaces (HB =
0), and decreases with increasing HB , as the sensitivity to
φ′

1 becomes weaker. The maximum current flow occurs at
different φ′

1 values, depending on the interface scattering
strength. In Fig. 6(b), an additional N layer, of variable
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width as indicated, is inserted between the two ferromagnets
and the interface scattering parameter is set to HB = 0.8.
The solid DN = 0 curve corresponds to the HB = 0.8 curve
in Fig. 6(a). The figure shows that increasing the N layer
thickness tends to generally dampen the current through the
junction. The current flow peaks when the two ferromagnets
are aligned (P configuration) and it vanishes altogether near the
N arrangement, before reversing direction as the the AP state
is approached. In Fig. 6(c), we investigate the supercurrent
flow in a wide SF 1F2S junction, with DF2 = 500 and three F1

widths (see legend). The phase difference is set at �ϕ = 60◦.
For this geometry, we see that the current has some features
that contrast with the previous cases involving thinner F

layers. For instance, when tuning φ′
1, now the weakest current

flow occurs in the P state, and the maximum occurs in
the orthogonal configuration. For all F widths considered,
the current undergoes rapid changes in the vicinity of the
middle value between N and P or N and AP configurations,
with the DF1 = 10 case changing the most, and then remains
nearly constant at angles near the P and AP configurations.
Since �φ = 60◦ is near where the maximum currents occur
in π -periodic Josephson junctions, it is evident that the results
in Fig. 6(c) are a direct consequence of the induced equal-spin
triplet correlations. We will see in Sec. III C that this correlates
with the triplet generation behavior.

We next study the magnetization orientation role in the
supercurrent for more complicated SF 1F2F3S junctions. We
consider a scenario where the F1 and F3 layers have mag-
netizations pinned along the z and y directions, respectively
(a relative N configuration), while the magnetization in the
central F layer rotates on the x − z plane (φ2 = 0) from along
the x axis to the z axis. In Fig. 7(a), we show the normalized
current density as a function of θ2 for several F3 layer widths
DF3 . We set DF1 = DF2 = 10, and consider values of DF3

that lead to both symmetric and asymmetric structures. In
each case, �ϕ = 100◦, and interface scattering is present with
HB = 0.8, except for the widest junction with DF3 = 380

(a) (b)

FIG. 7. (Color online) Normalized Josephson current for a
SF 1F2F3S junction versus (a) the out-of-plane angle θ2 (see Fig. 1)
and (b) the in-plane angle φ′

1. A set phase difference �ϕ = 100◦ is
assumed for all cases. In (a), F1 and F2 have widths DF1 = DF2 = 10,
and the legend lists the three F3 widths considered. The exchange field
points along the y direction in F3 and the z direction in F1. The right
vertical axis is for the DF3 = 100 case only. For the DF3 = 380 case,
there is no interface scattering (HB = 0), while the remaining DF3

cases have HB = 0.8. In (b) θ1 = 90◦, and h is directed along y in
F2, and along z in F3. The legend indicates the F layer widths of the
two trilayer ferromagnet structures considered: they have the same
total width. Interface scattering in both cases is HB = 0.8.

where HB = 0. In the case DF1 = DF2 = DF3 = 10, the current
flow is approximately antisymmetric around θ2 = 180◦. The
current flow is suppressed for the asymmetric DF3 = 100
situation by decoherence effects arising from the larger width.
While Jx for the SF 1F2S junctions in Fig. 6 was π periodic in
φ′

1, variations in θ2 for trilayer ferromagnetic junctions are in
general 2π periodic, as seen in the figure. The asymmetric case
also exhibits a more intricate structure as the magnetization
angle is swept. For the narrower junction DF3 = 10, the
orientations in which the current switches direction are near
θ2 = 0◦ and 180◦. When DF3 = 100, the current never changes
direction. The rotating out-of-plane exchange field of F2 does
affect the strength of current with 2π periodicity. For the highly
asymmetric DF3 = 380 case, the current again maintains its
flow direction over the full range of θ2. It is also approximately
constant except for orientations when the exchange field in
F2 points along z: θ2 = 90◦ or 270◦. For orientations near
θ2 = 270◦, the current is strongly suppressed.

In Fig. 7(b), the in-plane magnetization in the first ferro-
magnetic layer is now varied, while the other two are kept fixed:
for F2 along y, and for F3 along z, an N configuration. Two
types of structures are considered, with the total width of the
three ferromagnetic regions being constant. In the first case,
DF1 = DF2 = 10, and DF3 = 100, while in the second one,
DF1 = DF2 = DF3 = 40. Both cases exhibit similar behavior
as a function of φ′

1. The current vanishes when F1 is antiparallel
to F2 and is highest when the magnetization lies nearly in
between the those of F2 and F3. Thus, the charge supercurrent
which flows oppositely in the two structures can be effectively
switched on or off by manipulating the in-plane magnetization
angle of the first ferromagnet.

It is known that in F/S heterostructures, including bilayers
[29] and Josephson junctions, variations in the magnetic
exchange field and ferromagnet thickness induce damped
oscillations in the spatial behavior of the Cooper pair am-
plitudes, resulting in modulation of physical quantities as a
function of either h or DF . The damped oscillations in the
clean limit have a wavelength that goes as the inverse of
the exchange field. To investigate this phenomenon in an
SF 1F2S junction, we show in Fig. 8 the supercurrent that
flows through the junction as a function of the F1 width DF1 .
For the adjacent F2 layer, the width is DF2 = 100, and with
interface scattering strength HB = 0.8. Two exchange fields
are considered: h = 0.04 and 0.1. The period of oscillations
in each case is seen to be approximately 2πkF ξF , where
kF ξF ≡ εF /h = 25 and 10, respectively. The current for both
cases is maximal when the two F regions are equal, and then
slowly dampens out with increasing DF1 . This decay length is
inversely proportional to the magnitude of the exchange field.
Moreover, the charge current in each case periodically changes
sign. Since the oscillations in the current as a function of DF1

increase with larger exchange fields, the current direction can
be very sensitive to fabrication tolerances for strong magnets.

C. Induced triplet pairing

We now discuss the induced triplet pairing correlations in
ferromagnetic Josephson junctions. The presence of multiple
misaligned ferromagnets yields both the m = 0 [Eq. (9)] and
the m = ±1 [Eq. (10)] triplet pair amplitudes as permitted
by conservation laws and the Pauli principle. To gain an
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FIG. 8. (Color online) Normalized Josephson current for a
SF 1F2S structure as a function of F layer width DF1 . The other
ferromagnet’s width is fixed at DF2 = 100. The exchange field is
along z in F1 and along y in F2. The legend indicates two normalized
h values: the dashed curve corresponds to h = 0.04, while the solid
curve is for h = 0.1. The interface scattering parameter is set to
HB = 0.8, and a phase difference of �ϕ = 100◦ is maintained across
the S electrodes.

overall view of the opposite-spin triplet amplitudes f0 and
the equal-spin amplitudes f1, we illustrate in Fig. 9 the
spatial behavior of these correlations in the N and F regions
of an SF 1NF 3S junction. We focus on the real parts of
these complex quantities, keeping in mind that the imaginary
components obey similar trends. The vast majority of previous
studies of triplet correlations in these double-magnet structures
are in the diffusive regime and do not include [2,13,27,39] the

(a) (b)

(c) (d)

FIG. 9. (Color online) Normalized triplet correlations in an
SF 1NF 3S Josephson junction as a function of position. The F layers
have widths DF1 = 10 and DF3 = 380, and HB = 0, corresponding
to the parameters used in Fig. 4(c). The top set of panels relate
to structures with a normal-metal spacer N of width DN = 10,
while the bottom set represent a larger N layer with DN = 100. The
dashed vertical lines represent the interface between the N and F2

regions. Various phase differences �ϕ are considered (see legend).
The magnetization in F1 is along z, while it is along y in F2.

normal-metal insert actually present in most experiments. In
the ballistic regime, double-magnet structures were studied
only in the quasiclassical limit [12,63]. The scope of their
results is thus limited to weak magnets. By fully taking into
account the microscopic proximity effects between all of the
interacting layers, we demonstrate that the interference effects
taking place over the Fermi length scale combined with the
self-consistency of the pair potential create the interesting local
spatial behavior.

The geometrical parameters in this figure are DF1 = 10,
DF3 = 380, and DN = 10 (top panels) or DN = 100 (bottom
panels). Thus, in all panels the region 800 < X < 810 is
occupied by F1 while F3 occupies the region 820 < X < 1200
in the top panels and 910 < X < 1290 in the bottom panels
Figs. 9(c) and 9(d), where the vertical dotted line denotes the
N spacer boundary. Hence, different horizontal scales are used
in each case. The scattering parameter is set to HB = 0, and
each curve corresponds to a different phase difference �ϕ

as indicated by the legend. The exchange fields are in-plane
and normal to each other. Within the F1 region, Figs. 9(a)
and 9(c) reveal that the magnitude of the f0 pair correlations
are approximately of the same magnitude, decreasing in the
vicinity of the S/F interface located at X = 800. The system
with the wider normal-metal layer DN = 100 is slightly more
sensitive to phase variations. Within the ferromagnet F3,
Figs. 9(a) and 9(c) show the oscillatory nature of f0, which
behaves similarly to the singlet pair amplitude, the periodicity
arising from the difference in spin-up and spin-down wave
vectors. For the chosen exchange field, the oscillations are
limited in F1 due to the confined width. Turning now to the
equal-spin triplet correlations f1, Figs. 9(b) and 9(d) display
behavior which contrasts with the f0 results. In particular,
within the narrow F1 region, the f1 triplets are negligibly small,
and the f0 correlations clearly dominate. In the N region,
the f0 correlations nearly vanish, while the equal-spin triplets
peak near the F1/N interface (at X = 810), before dropping
within the normal metal [see Fig. 9(d)]. Finally, within F3, the
triplets f1 assume a slow, long-range variation compared to the
damped oscillatory behavior of the f0 curves. Thus, we have
shown a large enhancement of triplet correlations consisting of
equal-spin pairs that reside in the nonmagnetic normal metal
regardless of whether the width of N is relatively thin or thick.
For the thick N case shown in Fig. 4(c), the maximum in
the CPR occurs at �ϕ = 90. Remarkably, the corresponding
f0 is weakest in F1 but f1 is very uniformly distributed
in N .

In addition to investigating the relevant spatial behavior
of the triplet amplitudes, it is instructive to also examine the
spatially averaged triplet and singlet correlations as functions
of the relevant system parameters. For example, by tuning the
relative magnetization angle (varying φ′

1 at fixed φ2 = 90◦),
important overall features can be revealed. Figures 10(a)–
10(c) show the φ′

1 dependence of the magnitudes of the
triplet and singlet amplitudes averaged over the F3 region
for the SF 1NF 3S structure studied initially in Fig. 6(b). Four
representative N layer widths are considered as indicated in
the legend. The proximity effects and hence coupling of the
two ferromagnets diminish with increasing DN , and therefore
the pair correlations become less sensitive to variations in
φ′

1, as observed for the largest DN = 500 case. Other than
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FIG. 10. (Color online) Top row, panels (a)–(c): Normalized sin-
glet and triplet correlations versus in-plane relative magnetization
angle φ′

1 ≡ φ1 + 90◦ for a SF 1NF 3S structure. The magnitudes
of these pair correlations are averaged over the F3 region. The
geometrical and material parameters are the same as in Fig. 6(b). The
bottom panels (d) and (e) correspond to the local spatial behavior
of the triplet correlations for the DN = 100 case studied in the top
panels. The two F regions are plotted in separate frames to discern
the triplet correlations in the narrow F1 region. The dashed vertical
lines represent the interface between the N and F3 regions. Several
values of φ′

1 are considered, as shown in the legend.

the diminished magnitudes, the overall trends and behavior,
however, do not depend strongly on the presence of the
normal-metal spacer. This may be important in experiment
design, where spacers are often needed. The opposite-spin
triplet correlations f0 and the singlet pair amplitude (f3 ≡
�/g) in Figs. 10(a) and 10(c) behave in rather similar ways,
but f3 is more symmetric about the orthogonal direction
φ′

1 = 90◦. When the relative magnetization orientation varies
in inhomogeneous S/F systems, the process of singlet-triplet
conversion plays a role in the transport and thermodynamic
properties of such systems. It is apparent from Figs. 10(a)
and 10(b) that the orientation φ′

1 that leads to a minimum
in f0 and f3 corresponds to that where f1 is largest. These
occurrences arise when the exchange fields in F1 and F3

are nearly orthogonal. This angle for f0 slightly shifts with
variations in DN . Changing DN is seen to cause the optimal
angle for local minima or maxima to differ from the expected
π/2 result. The exact angle for this can only be determined
from a numerical self-consistent calculation as done here.

In Figs. 10(d) and 10(e) we display the spatial dependence
of the real components of the triplet correlations throughout
each of the three junction regions discussed in the top panels.
Results for five different relative magnetic orientations are
presented (see legend). Considering first Fig. 10(d) in the
F1 region, we see behavior similar to that found for the
wider junction case in Fig. 9, including a relatively weak
dependence on the orientation angle φ′

1 (as opposed to the

phase difference �ϕ). The central N region is most affected
by variations in φ′

1: the real part of f0 changes sign when φ′
1 is

swept from the P to AP state, and nearly vanishes altogether
at φ′

1 ≈ 90◦. In F3, a series of oscillations emerge with a
periodicity similar to that found in Fig. 9 since an exchange
field of the same strength was used. In Fig. 10(e), the equal-spin
f1 amplitudes exhibit considerably different behavior. First,
only three of the considered φ′

1 yield nonzero results since
the P and AP configurations cannot generate equal-spin triplet
correlations. Interestingly, within the F1 region f1 does not
exhibit a slow decay, but rather oscillates with a period that
is much shorter than the oscillation period of opposite spin
pairs governed by spin-up and -down wave vectors. We find
that within the normal-metal layer, there is nearly a complete
absence of equal-spin correlations, this is accompanied by the
appearance of opposite-spin correlations f0 [see Fig. 10(d)].
The f1 amplitudes are largest in the F3 layer, for the relative
orientation of φ′

1 = 90◦, in agreement with the averaged
results in Fig. 10(b). For the relative magnetization angles
of φ′

1 = 30◦ and φ′
1 = 150◦, the f ′

1 amplitudes are identical
due to the symmetry about φ′

1 = 90◦. One can now correlate
the features Figs. 9 and 10 to Fig. 4. From Fig. 4, we learn that
the N magnetic configuration often leads to the appearance
of π -Josephson junctions. From the behavior of the charge
current in Fig. 6(b), we see that Jx vanishes at φ′

1 where
the averaged opposite-spin singlet and triplet correlations are
smallest and when f1 is largest. Here, we are able to give
concrete proof that in the N cases the average magnitude
of equal-spin triplet correlations are maximized and weakly
dependent on �ϕ. Therefore, the CPRs for different magnetic
configurations are essentially characterized by their detailed
singlet/triplet nature.

We next examine, in Fig. 11, the behavior of the averaged
triplet and singlet amplitudes, as the magnetic orientation
angles θ2 (top panels) and φ′

1 (bottom panels) are changed, in
more complicated SF 1F2F3S Josephson junctions. This study
is therefore complementary to the results shown in Fig. 7
involving the charge supercurrent. The geometric parameters
are DF1 = DF2 = 10 and DF3 = 100. The region in which
the pair correlations are averaged over is specified in the
top legends. In the top row of Fig. 11 we present results
for magnetization orientations θ2 sweeping the entire angular
range from 0◦ to 360◦, while the magnetizations are aligned
along z in F1 and along y in F3. Therefore, when θ2 = 0◦
or 180◦, all three ferromagnets have mutually orthogonal
magnetizations, corresponding to a high degree of magnetic
inhomogeneity. Under these circumstances, one can expect
that the equal-spin triplet correlations f1 should be, on the
average, at their highest values, while the opposite spin
correlations should be weakest. Indeed, in the central region
F2, the opposite-spin singlet f3 and triplet f0 correlations
possess minima near these angles, in contrast to the spatially
averaged f1 amplitudes, which peak at those orientations.
Although the general trends are usually the same for all F

layers, geometrical effects can result in self-consistent triplet
correlations with more intricate nontrivial structure, and this
is the case with the averages over the F1 and F3 regions where
the proximity effects are most prominent. In the bottom panels
of Fig. 11, we consider in-plane magnetization rotations of
the F1 layer. The other ferromagnets F2 and F3 have their
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(a) (b) (c)

(d) (e) (f)

FIG. 11. (Color online) Normalized triplet |f0,avg|, |f1,avg|, and
singlet |f3,avg| amplitudes, averaged over the F regions indicated
on the overhead legends, plotted as functions of θ2 and φ′

1. The
geometrical and material parameters correspond to the DF3 = 100
cases presented in Fig. 7.

magnetizations fixed in the y and z directions, respectively. For
this situation, the opposite-spin f0 amplitudes in F1 are seen
to be 2π periodic, peaking at φ′

1 ≈ 225◦. As in the previous
case, there are simple correlations between the maximum and
minimum values of f0 and f1 in F2. These triplet amplitudes
are seen to be largest when the relative orientations between
F1 and F2 are either P (φ′

1 = 0◦,360◦) or AP (φ′
1 = 180◦). This

is consistent with the behavior of the triplet amplitudes found
in double-magnet spin valve systems [38].

D. Spin transport

Having established the salient features of supercurrent
charge transport and pair correlations in a variety of fer-
romagnetic Josephson junctions, we now explore the spin
degree of freedom and determine the crucial spin currents
and the associated STT. The current that is generated from
the macroscopic phase differences between the S electrodes
can become spin polarized [13,49] when entering one of the
ferromagnetic regions. This spin current can then interact
with the other ferromagnets and be modified by the local
magnetizations due to the spin-exchange interaction, via the
existence of STT. The conservation law associated with this
process is described by Eqs. (28) and (29). It is important not
only to understand the behavior of the spin-polarized currents
in ferromagnetic Josephson junctions, but also the various
ways in which to manipulate them for practical spintronic
applications. With the insertion of N layers, the anisotropy
energies between the magnetization of one of the F layers,
typically pinned by an antiferromagnet, and that of a “free”
F layer can be overcome via, e.g., a small external field
[19]. As stated in Ref. [49], the STT can be studied through
the effect of the Josephson induced exchange interaction

FIG. 12. (Color online) (a) Normalized x component of the spin
current in an SF 1NF 3S Josephson junction vs position. The
geometric widths are DF1 = 10, DF2 = 100, and DN = 100. There is
moderate interface scattering with HB = 0.5 [see, e.g., Fig. 4(a)]. The
dashed vertical lines mark the interfaces. (b) The total torque τx,tot

acting within the F1 region as a function of �ϕ. Several normal-metal
widths are considered (see legend). The DN = 0 case has been shifted
downwards by 4 × 10−3 for comparison purposes. In (c), the x

component of the local torque is shown vs position with the same
phase differences used in (a). The inset is a magnification of the
torque within the narrow F1 region (800 < X < 810).

provided that the interaction energy exceeds the anisotropy
energy. We therefore investigate from a microscopic and
self-consistent perspective the equilibrium spin currents and
associated torques throughout the entire junction regions as
functions of position, phase difference, and magnetization
orientation angles.

In Fig. 12(a), we consider the spatial dependence of the spin
current in a SF1NF3S junction. The geometrical parameters
used in this plot are the same as in Fig. 4(a), with DN = 100.
Our geometry ensures that the generally tensorial spin current
is reduced to a vector in spin space, representing a spin
vector current flowing in the spatial x direction and having
in general three components in spin space. We display the
spatial dependence of the x spin component Sx (normalized
as previously discussed). Because the exchange interaction
(and hence the torque) vanishes in the N and S regions, only
the F regions of the junction can have a spatially varying
spin current: in the N and S regions the spin current must be
spatially invariant. Under our constant-phase and zero-voltage
boundary conditions, the outer s-wave superconducting re-
gions do not [38] support a spin current, and hence S vanishes
there. The central nonmagnetic N layer, however, couples the
two ferromagnets via a constant spin current, which is related
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FIG. 13. (Color online) (a) Normalized spin current in an
SF 1NF 3S Josephson junction as a function of position. The
geometric widths are DF1 = 10, DF2 = 100, and DN = 100. The
interface scattering strength is set to HB = 0.8. These values are
the same as in Fig. 6(b). The dashed vertical lines mark the interfaces.
(b) Illustrates the total torque τx,tot within the F1 region as a function
of the relative in-plane magnetization angle φ′

1. Several normal-metal
widths are considered as depicted in the legend. The DN = 0 results
have been multiplied by 1

5 for comparison purposes. In panel (c) the
x component of the torque is shown as a function of position for the
same case considered in (a).

to the net torque acting within the F regions [see Eq. (30)].
The spin current oscillates in the F3 region. The amplitude of
these oscillations depends on �ϕ, while the period does not:
the points in F3 where Sx vanish are independent of �ϕ. If a
ferromagnet is very thin, as occurs for F1, the spin currents
vary nearly linearly with X, which can be viewed as a small
segment of a sinusoidal function. To present an overall view
of how the change in spin current and its associated torque
vary as the phase varies, we do this in terms of the total
torque, defined as the integral of the local torque, normalized
as discussed above, over dimensionless distance. We plot in
Fig. 13(b) the total torque τx,tot within F1 for a few values of
the interlayer N spacer thickness. In all cases, τx,tot is relatively
uniform until a sharp crossover near �ϕ = 90◦, where the net
torque changes sign, coinciding with the point of supercurrent
reversal [Fig. 4(a)]. Interestingly, only when the normal-metal
insert is present does τx,tot reverse direction. Figure 13(c)
illustrates the local x component of the torque τx as a function
of position throughout the entire junction region. The inset is
the same quantity, but plotted only over the narrow F1 region.
To correlate with Fig. 13(a), the DN = 100 case is considered
here. Each curve represents a different phase difference as
shown in the legend for Fig. 13(a). For in-plane exchange

field interactions, no other component of the torque can exist
in equilibrium when spin currents do not enter or leave the
superconducting electrodes [49]. Thus, the net torque for the
entire system must vanish, requiring τx,tot for each of the two
F regions to be opposite in sign, despite the dissimilar spatial
behavior as exhibited in Fig. 13(c). Comparing Figs. 13(a) and
13(c), it is also evident that within the oscillatory F3 region, τx

and Sx behave similarly, but are out of phase by approximately
90◦, in agreement with Eq. (29). Since the spin current was
shown to be uniform in the normal-metal region, the torque
is seen to vanish there, as it should be in regions where the
magnetic exchange interaction is absent.

We next study how the spin currents and associated torques
change when varying the relative exchange field directions
between F1 and F3 in an SF 1NF 3S junction. A supercurrent
is generated in the structure by maintaining a phase difference
which we take to be �ϕ = 100◦ in Fig. 13. We rotate in-plane
magnetization F1, while keep that in F3 fixed along the y [as
in Fig. 6(b)]. Control of the free-layer magnetization can be
achieved experimentally via external magnetic fields [19] or
spin-torque switching [64,65]. In Fig. 13(a), the x component
of the local spin current Sx is shown throughout the junction
as a function of position X, for four values of the φ′

1 angle
(we have θ1 = θ2 = 90◦). The spin current is again seen to be
a nonconserved quantity within the ferromagnets, reflecting
the existence of a STT. In the nonmagnetic normal metal
connecting the two F regions, the current is constant, and
its value as φ′

1 is varied Sx cycles from positive to negative.
To explore this further, we examine the total change in spin
current across F1, as φ′

1 sweeps from the P to AP state. This
change is related via Eq. (30) to the integrated torque in this
region. Hence, in Fig. 13(b) we plot τx,tot versus φ′

1 for a wide
range of DN . When the normal metal is absent (DN = 0), the
magnitude of the total torque reaches its peak around φ′

1 = 90◦,
indicating that this component of the torque, which tends to
align the magnetic moments of the two F layers is largest when
they are mutually orthogonal. This makes sense physically.
The presence of even a thin normal-metal spacer causes τx,tot

to become much smaller (the DN = 0 results are plotted after
dividing them by five) and nearly π symmetric, so that now
the orthogonal magnetic configuration produces negligible
net torque within the F layers. Increasing DN reduces the
ferromagnetic coupling and hence reduces the magnitude of
the mutual torques, although the π periodicity is retained.
Finally, in Fig. 13(c) we plot the local value of the torque,
and find its spatial behavior to be consistent with that of Sx as
given in Eq. (29).

Finally, we consider the SF 1F2F3S system, studied previ-
ously in Fig. 7(a), with DF1 = DF2 = 10 and DF3 = 100. A
phase difference of �ϕ = 100◦ maintains a constant current
throughout the junction, and there is moderate interface
scattering, with HB = 0.8. The magnetization in F1 is along
z, and in F3, it is along y. The central ferromagnet F2

has a magnetization vector that is rotated the xz plane (see
Fig. 1), so that for θ = 0◦, it is oriented along x, and for
θ = 90◦, it is aligned along z. For these more complex
magnetic configurations, where one of the F layers possesses
an out-of-plane exchange field, all three spin components of
the current S must be considered. The top panels in Fig. 14
depict the components of the total torque τi,tot (i = x,y,z) for
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(a)

(d)

(b) (c)

FIG. 14. (Color online) Top panels: total torque within each of
the ferromagnet regions (see overhead legend) in an SF 1F2F3S
junction as the angle θ2 varies. The system parameters are those used
in Fig. 7(a). The sum τi,tot (i = x,y,x) over all three ferromagnetic
regions vanishes for each component. In the bottom panel, the spatial
behavior of the normalized x component of the spin current is shown
throughout the system for a few select magnetization orientations
θ2 (see legend). The inset is a magnification of the region centered
around the F2/F3 interface located at X = 820. Vertical dashed lines
in the main plot mark interface locations.

each ferromagnet region, identified in the legend above these
panels. Since the total torque in a given direction equals [see
Eq. (30)] the overall change in spin current, and, as explained
above there is no spin current in the S regions at fixed phase, the
sum of each component τi,tot over all F regions must be zero.
This is seen in these three panels, where the oscillatory curves
exactly cancel one another. For each of the three components,
we also observe that the total torque in either F1 or F3 nearly
vanishes over the whole angular range of θ2. This follows
from the expression for the local torque (21), which implies
that τ is orthogonal to the exchange field vector h, and the
magnetization m. For example, considering the leftmost panel
the only component of the exchange field in F1 is along z,
and since τx ∼ myhz, a y component of the magnetization is
needed in F1 to generate a torque along x. However, h in the
adjacent F2 rotates solely in the xz plane, and thus my vanishes
in F1 except in a narrow region near the interface (see Ref. [38])
resulting in a very small value for the averaged τx,tot.

When the spin current density S is spatially nonuniform, the
resulting torque influences the magnetization configurations.
It is therefore insightful to examine also in this case, as we did
in Figs. 12 and 13, the spatial behavior of the spin current.
The results are displayed in the bottom panel of Fig. 14.
For clarity, we present only the x component Sx since the
other spin components behave similarly. A few representative
angle orientations θ2 are considered (see legend). As expected,
we see that Sx vanishes in the outer S electrodes. Within the
larger F3 region, the spin current undergoes regular oscillations
which are much harder to distinguish in the narrow F2 and F1

regions. To compare with the previous results, we see from this
panel that the change in the x component of the spin current

�Sx across the F1 boundaries is negligible, in agreement with
the results in the left top row panel. In F2, this component of the
current is very small near the left interface, but it increases near
the right edge, so that �Sx agrees well with the τx,tot variations
in F2 observed in the left top panel. Also in agreement is the en-
hancement of the spin current Sx that is narrowly peaked at the
F2/F3 interface for θ2 that are near normal to the plane (θ2 ≈
90◦). Finally, since the interface adjoining F3 and the right S

electrode has Sx = 0, the change �Sx in the F3 region is due
entirely from the value of the spin current at the F2/F3 inter-
face, thus resulting in �Sx that is exactly opposite to that in F2.

IV. CONCLUSIONS

We have presented here an extensive study of the Josephson
currents flowing in generic ballistic structures of the SFS type
where the F regions contain two or three ferromagnetic layers,
possibly separated by normal spacers. For the SFFS-type spin
valves, we study their transport properties by considering
different in-plane relative magnetization angles. When the
third F layer is present (SFFFS), we allow the central F

region to have out-of-plane magnetic orientation while those
for the two outer F layers are still in plane. Our self-consistent
formalism ensures [38] that the charge conservation law is
satisfied and that the proper relations that balance the STTs
and the gradients of the spin current components hold. Results
are given for a wide range of values of the geometrical and
orientation parameters, as well as interfacial scattering.

We have organized our results in several sections. We first
have considered (Sec. III A) the current-phase relations (CPRs)
as a function of geometrical parameters (layer thicknesses)
at fixed relative angles between the in-plane magnetizations:
parallel (P), antiparallel (AP), and normal (N). We find that,
in general, larger geometric asymmetry (the aspect ratio for
the thicknesses of the two outer F layers) leads to larger
superharmonic (π periodic) behavior. This is particularly
pronounced in the two-magnet case. It is found that the
strength of interfacial scattering can affect the magnitude
of the critical current. Next, in Sec. III B, we consider the
effect of magnetization misorientation on the CPR. We find
that these effects are profound. In particular, by sweeping
the relative in-plane angle from P to AP at fixed phase
differences �ϕ between two S electrodes, the supercurrent
flow first vanishes at N configurations, followed by reversal of
its direction. These can be understood to a very large extent by
noting that the generation of induced spin triplets (studied in
Sec. III C) is correlated with magnetic inhomogeneity and, via
this phenomenon, to the CPR relationships. In Sec. III C, we
also presented the local spatial behavior of both the m = 0 and
±1 triplet correlations and carefully quantify each component
as functions of magnetic orientations and �ϕ. The results
clearly demonstrate the existence of the singlet-to-triplet
conversion in the Josephson junctions. Finally, in Sec. III D
we have discussed spin transport and shown that, due to the
interaction between the charge current and the magnetizations,
both the spin current and the STT oscillate in the F regions.
By varing �ϕ or the magnetic misalignment angles, the phase
of their oscillations can change accordingly. In addition, we
have shown how the spin current gradient equals the STT.
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We hope that our rather comprehensive study of transport
in these multilayer structures will guide the experimentalist
in choosing optimal configurations for building devices such
as low dissipation memory storage units, which are expected
to rely on the behavior of the Josephson junctions studied
here. Based on our investigation, the flow direction of
charge supercurrents can be controlled by varying the relative
orientation angles in SFFS and SFFFS clean heterostructures.
This property renders these systems prominent candidates in
making superconducting spin valves. Experimentally, these
switching effects can be easily achieved by applying an
external magnetic field [18,19]. Our study indicates that by
adjusting the layer thicknesses can lead to a modified behavior
of the CPR. In particular, we urge experimentalists to consider
ferromagnets with asymmetric widths while making such spin
valves in order to maximize the switching effects.

ACKNOWLEDGMENTS

K.H. was supported in part by IARPA and ONR. K.H.
was also supported in part by a grant from the Department
of Defense High Performance Computing Modernization
Program. K.H. would like to thank M. Alidoust for helpful
discussions. In the latest stages of this work, O.T.V. was
supported in part by DOE Grant No. DE-SC0014467.

APPENDIX A: NUMERICAL PROCEDURE

Here, we discuss some technical aspects of the numerical
procedure used in calculating the spin and charge currents
governed by the Andreev bound states. We first expand [29]
the quasiparticle amplitudes in terms of a complete set:

ψn(x) =
√

2

d

N∑
q=0

sin(kqx)ψ̂q(kq), (A1)

where we use the shorthand notation ψn(x) =
[un↑(x),un↓(x),vn↑(x),vn↓(x)], and ψ̂q = (ûq↑,ûq↓,v̂q↑,v̂q↓).
We write the wave-vector index as kq = qπ/d, so that
�kq ≡ kq+1 − kq = π/d. Thus, N grid points subdivide
the system of width d. We take d to be large enough so
that the results become independent of d. The next step
involves Fourier transforming the real-space BdG equations
[Eq. (4)], resulting in the following set of coupled equations
in momentum space:⎛
⎜⎜⎜⎝

Ĥ0−ĥz −ĥx+iĥy 0 �̂

−ĥx−iĥy Ĥ0 + hz �̂ 0

0 �̂∗ −(Ĥ0−ĥz) −ĥx−iĥy

�̂∗ 0 −ĥx+iĥy −(Ĥ0+ĥz)

⎞
⎟⎟⎟⎠

⎛
⎜⎝

û↑
û↓
v̂↑
v̂↓

⎞
⎟⎠

= εn

⎛
⎜⎝

û↑
û↓
v̂↑
v̂↓

⎞
⎟⎠. (A2)

Here, we have defined ûσ = (û1σ ,û2σ , . . . ,ûNσ ), v̂σ =
(v̂1σ ,v̂2σ , . . . ,v̂Nσ ), and the matrix elements

Ĥ0(q,q ′) = 2

d

∫ d

0
dx

(
k2
q

2m
+ ε⊥ − μ

)
sin(kqx) sin(kq ′x),

(A3)

�̂(q,q ′) = 2

d

∫ d

0
dx �(x) sin(kqx) sin(kq ′x), (A4)

ĥi(q,q ′) = 2

d

∫ d

0
dx hi(x) sin(kqx) sin(kq ′x), i = x,y,z

(A5)

where ε⊥ is the kinetic energy on the y-z plane. Our numerical
procedure for calculating the supercurrent involves initially
assuming a constant amplitude form for the pair potential in
each S layer, but with a total phase difference �ϕ (0,�ϕ at
each S region). We then expand the pair potential via Eq. (A4).
Similarly, the exchange field and free-particle Hamiltonian are
expanded using Eqs. (A5) and (A3), respectively. We then find
the quasiparticle energies and amplitudes by diagonalizing
the resultant momentum-space matrix [Eq. (A2)]. Once the
momentum-space wave functions and energies are found, they
are transformed back into real-space via Eq. (A1). From them,
a new pair potential �(x) is self-consistently determined via
Eq. (7) through the entire region except for a small region
(three coherence lengths from the sample edges) where the
pair potential is fixed to its bulk absolute value, with phases
0,�ϕ. The newly calculated �(x) is then used in the BdG
equations and the above process is repeated iteratively until
convergence is achieved. When determining the current-phase
relations, �ϕ is defined as the difference in phases between
the superconductors in the outermost self-consistent regions.

As self-consistency evolves with each iteration, the final
�ϕ often differs slightly from the fixed difference �ϕ that is
set in the non-self-consistent regions. Thus, to have �ϕ fixed
to a prescribed value while varying other parameters, e.g.,
θ2, additional calculations are needed with slightly different
initial choices for the phase �ϕ. Following the discussion in
the main text, when current is flowing through the junction, the
self-consistently calculated regions have always been found to
possess the necessary spatially constant current. The fixed-
phase non-self-consistent edge regions provide the physically
necessary source or sink of current, via the applied electrodes,
thus acting as an effective boundary condition.

APPENDIX B: SPIN ROTATION MATRICES

Here, we show how to perform the spin rotations for the
two triplet components f0 and f1 (the singlet amplitude is of
course invariant under spin rotations). The problem simplifies
if all one wishes is to align the spin quantization axis with
the local magnetization direction: this affords easier physical
interpretation of the results. The central quantity that we use
to perform the desired rotations is the spin transformation
matrix T in particle-hole space. The quasiparticle amplitudes
transform as

� ′
n(x) = T �n(x). (B1)

In our notation the matrix T can be written as

T =
[

A 0
0 B

]
, (B2)

where the submatrices A and B are trigonometric functions
solely of the angles that describe the local magnetization
orientation. Expressing the orientation of the exchange fields
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in the regions F1 and F2 in terms of the angles θi and φi introduced in Eq. (6) we can write A and B as the following 2 × 2
matrices:

A =
[

cos(φi/2) sin(θ+
i ) + i sin(φi/2) sin(θ−

i ) − cos(φi/2) sin(θ−
i ) − i sin(φi/2) sin(θ+

i )
cos(φi/2) sin(θ−

i ) − i sin(φi/2) sin(θ+
i ) cos(φi/2) sin(θ+

i ) − i sin(φi/2) sin(θ−
i )

]
, (B3)

B =
[

cos(φi/2) sin(θ+
i ) − i sin(φi/2) sin(θ−

i ) cos(φi/2) sin(θ−
i ) − i sin(φi/2) sin(θ+

i )
− cos(φi/2) sin(θ−

i ) − i sin(φi/2) sin(θ+
i ) cos(φi/2) sin(θ+

i ) + i sin(φi/2) sin(θ−
i )

]
. (B4)

Here, we have defined θ±
i ≡ θi/2 ± π/4. Using the spin rotation matrix T , we can transform the original BdG equations

H�n = εn�n [Eq. (4)] by performing the unitary transformation: H′ = T HT −1 (of course, we have T †T = 1). We then end up
with the magnetization effectively along the new z axis and

H′ =

⎛
⎜⎝
H0 − h 0 0 �

0 H0 + h � 0
0 �∗ −H0 + h 0

�∗ 0 0 −H0 − h

⎞
⎟⎠. (B5)

One of the benefits of working in this rotated coordinate system is that now the Hamiltonian matrix can be reduced to a smaller
2 × 2 size by using symmetry properties that now exist between the quasiparticle amplitudes and energies [29]. As is the case
under all unitary transformations, the eigenvalues here are preserved, but the eigenvectors are modified in general according to
Eq. (B1). Thus, for example, operating on the wave functions using Eq. (B1), and examining the terms involved in calculating
the singlet pair correlations [Eq. (7)], it is easily shown that for a given set of quantum numbers n and position x, the following
relation between the transformed (primed) and untransformed quantities holds: u′

n↑v′∗
n↓ + u′

n↓v′∗
n↑ = un↑v∗

n↓ + un↓v∗
n↑. Thus, the

terms that dictate the singlet pairing are invariant for any choice of quantization axis, transforming as scalars under spin rotations,
as they should.

The terms governing the triplet amplitudes on the other hand are generally not invariant under the spin rotation. It is illuminating
to see how both the equal-spin and different-spin triplet correlations transform. The relevant particle-hole products in Eq. (9) that
determine f0 upon the spin transformations obey the following relationships:

u′
n↑v′∗

n↓ − u′
n↓v′∗

n↑ = cos θi(un↑v∗
n↑ + un↓v∗

n↓) + sin θi[cos φi(un↑v∗
n↓ − un↓v∗

n↑) + i sin φi(un↑v∗
n↑ − un↓v∗

n↓)]. (B6)

Similarly, the quasiparticle terms in the sum for f1 [Eq. (10)] transform as

u′
n↑v′∗

n↑ + u′
n↓v′∗

n↓ = sin θi(un↑v∗
n↑ + un↓v∗

n↓) + cos θi[cos φi(un↓v∗
n↑ − un↑v∗

n↓) + i sin φi(un↓v∗
n↓ − un↑v∗

n↑)]. (B7)

Thus, the triplet amplitudes f0 and f1 in the rotated system are linear combinations of the f1 and f0 in the original unprimed
system (and vice versa). It is a simple matter to go from the rotated to the original system (and vice versa) by the route expressed
in Eq. (B1).
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