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Local and long-range magnetic order of the spin-3
2 system CoSb2O6
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The Co2+ ions of CoSb2O6 exhibit local magnetic order below ∼80 K followed by long-range antiferromagnetic
order below TN = 13.45 K. Analysis of the magnetic susceptibility above TN using an Ising model of Co-Co
dimers yields a magnetic exchange coupling J‖/kB = −10.603(6) K (kB is the Boltzmann constant). The transition
at TN is accompanied by a spin gap in the heat capacity [�2/kB = 33.92(9) K]. Highly anisotropic behavior of
the thermal expansion is observed, and the influence of local magnetic order is evident. A critical exponent of
α = 0.103(3) is obtained from analysis of the critical behavior of the heat capacity and thermal expansion near
TN , similar to the value expected for the three-dimensional Ising universality class.
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I. INTRODUCTION

Fermions constrained to one dimension are known to
exhibit bosonic behavior of some collective excitations [1,2].
This topic, referred to as Luttinger-liquid theory, is relevant
beyond the purely one-dimensional (1D) case [3], and it is
applicable to mobile fermions and those constrained to lattice
sites [4]. Luttinger-liquid behavior can be investigated in
bulk solids, but purely 1D states never exist there because
interchain interactions result in higher-dimensional behavior.
For example, a 1D chain of magnetic moments would not
exhibit long-range magnetic order due to quantum fluctua-
tions, but interchain coupling among a collection of chains
can induce order [3]. The coupling of 1D chains leads to
substantial mathematical complexity [3,5], and a theoretical
understanding is still developing. For example, the presence
of simple perturbations, such as a magnetic field, destroys the
integrability [6]. Thus, the study of bulk compounds with 1D
chains of magnetic moments is important for developing a
better understanding of 1D physics.

Transition-metal oxides with the chemical formula AB2O6,
where A is a 3d transition metal and B is either Sb or Ta, are
an interesting class of compounds with 1D magnetic chains.
In most cases, they possess a trirutile structure with the A2+
cations located at the corners and the B5+ cations forming two
parallel sheets [7]. Their low-dimensional magnetic behavior
is evident from experiments [8–12] and electronic structure
calculations [13,14]. In the case of CuSb2O6, orbital order
is believed to promote antiparallel ordering of the magnetic
moments along the [110] direction at z = 0 and the [11̄0]
direction at z = 1/2, which is commonly referred to as
the two-sublattice antiferromagnetic structure. Spin-exchange
constants of NiTa2O6, obtained [14] from density functional
theory (DFT), exhibit a dominant antiferromagnetic exchange
along the same structural diagonals as CuSb2O6. In contrast,
MnSb2O6 (trigonal crystal structure) possesses a cycloidal
magnetic structure, where all spin-exchange constants are of
similar magnitude [15].

The fact that some of these compounds can possess 1D
chains that are weakly coupled to one another was proven
through observations of an anisotropic magnetocaloric effect
(MCE) [12] in NiTa2O6 and CoSb2O6. The MCE is manifested
as a downward shift of the peak in heat capacity CP with
application of magnetic field H . If H is applied parallel to the

1D chains of one sublattice, it is then perpendicular to the 1D
chains of the second sublattice. This magnetic-field orientation
causes the peak in CP at TN to split into two distinct peaks.
The complexity of the magnetism in CuSb2O6, CoSb2O6, and
NiTa2O6 is further demonstrated in the CP data above TN

by the presence of local magnetic order between ∼100 K
and TN = 8.7, 13.45, and 10.5 K, respectively [11–14]. In the
case of CuSb2O6, CP exhibits an energy gap below TN , with
magnitude �/kB = 17.5 K (kB is the Boltzmann constant),
which is associated with the magnetic order, and this leads to
the elimination of a linear term in CP existing above TN [11].
Such analysis for CoSb2O6 will be reported below, and it has
yet to be performed for NiTa2O6. The magnetic susceptibility
χ of these compounds also exhibits behavior expected for
one-dimensional spin-chain systems [8,11,14,16], with broad
peaks in χ above TN .

Unambiguous identification of the magnetic structure asso-
ciated with the antiferromagnetism of AB2O6 compounds has
been challenging [7,15–17]. In the case of CuSb2O6, Nakua
and Greedan [17] proposed two magnetic structures based on
powder neutron diffraction data. One of these structures is
the two-sublattice (or orthogonal) antiferromagnetic (AFM)
structure, which describes the copper magnetic moments
ordered antiparallel along [110] at z = 0 and [11̄0] at z = 1/2.
Gibson et al. [18] reported neutron diffraction measurements
on single crystals, and they concluded that the moments
ordered in a similar manner, but with a slight tilting to account
for anisotropy in the magnetic susceptibility between the a

and b axes below the Néel temperature. Kato et al. [16]
utilized neutron diffraction on single crystals and determined
that the magnetic moments aligned ferromagnetically along
[010] with moments of adjacent chains aligned antiparallel,
thus forming a magnetic wave vector (π/a,0,π/c). More
recent experiments [19] agree with Kato et al. The latter
two investigations appear to be the most detailed, and they
are corroborated by magnetic susceptibility [12] and torque
magnetometry [20] data below TN . It thus appears that the
structure obtained by Kato et al. agrees best with the available
data. This structural model, however, disagrees with the
magnetic structure suggested from calculated spin-exchange
constants [13]. In the case of NiTa2O6, Law et al. [14]
determined that the dominant AFM exchange path is along
[110] at z = 0 and [11̄0] at z = 1/2, which describes the same
AFM two-sublattice structure as above. Ehrenberg et al. [21],

1098-0121/2015/92(17)/174425(8) 174425-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.174425


CHRISTIAN, REBELLO, SMITH, AND NEUMEIER PHYSICAL REVIEW B 92, 174425 (2015)

on the other hand, reported a different magnetic structure
in which the magnetic moments collinearly aligned parallel
to [110] (without a sublattice rotated by 90◦). However, the
anisotropic MCE [12] described above is consistent only with
the two-sublattice AFM structure.

The subject of the present study is CoSb2O6. It crys-
tallizes [22] in a tetragonal, trirutile structure with space
group P 42/mnm and lattice parameters a = 4.6495 Å and
c = 9.2763 Å. It is an electrical insulator with electrical
conductivity [23] �10−7 (� cm)−1 at 295 K. Long-range AFM
order occurs below Néel temperature TN = 13.45 K; this order
appears consistent with the two-dimensional Ising model [22].
The magnetic structure of CoSb2O6 was reported as similar
to that of FeTa2O6 [22]. However, two different magnetic
structures have been proposed for FeTa2O6 [9], one of which is
identical to the two-sublattice structure introduced above. Our
previous report [12] explored the anisotropy of the magnetic
susceptibility of single-crystal CoSb2O6, concluding that the
two-sublattice AFM structure seems appropriate for CoSb2O6.
Furthermore, the presence of one-dimensional magnetic chains
was convincingly revealed through the anisotropic MCE.

In this paper, an exploration of the physical properties
of single-crystalline CoSb2O6 is presented. The magnetic
susceptibility χ reveals significant anisotropy along with a
broad peak in its temperature dependence that is characteristic
of 1D AFM spin-chain systems. Curie-Weiss analysis indicates
that the Co2+ ion is in the high-spin state, S = 3/2. The χ (T )
data are also analyzed with a model for 1D spin-chain systems
consisting of S = 3/2 dimers. The results yield a value for
the coupling along the 1D chain of J‖/kB = −10.603(6) K.
Heat-capacity data reveal a significant loss of magnetic entropy
upon cooling below 80 K, which is well above TN = 13.45 K;
this indicates the presence of a substantial amount of local
magnetic order above TN . This local order coalesces into
long-range antiferromagnetism at TN for which a critical
exponent consistent with the three-dimensional (3D) Ising
model is observed. Thus, the transition at TN can be viewed as a
crossover from local, probably 1D, to 3D antiferromagnetism.
High-resolution thermal expansion measurements are also
presented. They exhibit significant anisotropy, including a
negative thermal expansion coefficient along the c axis below
80 K. Comparison to thermal expansion measurements of
nonmagnetic ZnSb2O6 allows the unusual thermal expansion
of CoSb2O6 to be associated with its local magnetic order.

II. SAMPLE PREPARATION AND
MEASUREMENT DETAILS

Polycrystalline samples were prepared using Co3O4 and
Sb2O3. A slight excess (about 5%) of Sb2O3 was added
to prevent [22] the formation of Co7Sb2O15. The starting
materials were mixed, pelletized, and placed in an alumina
crucible; the sample was warmed from 400 ◦C at 50 ◦C/day to
1050 ◦C and held there for 3 days. One regrinding and refiring
was performed to obtain a pure phase, which was confirmed
using x-ray diffraction. The crystal structure is tetragonal with
lattice parameters that agree with prior work [22].

For the single-crystal growth, 1 g of CoSb2O6 powder
was placed in a 1-cm-diam, 15-cm-long quartz tube (1 mm
wall thickness) along with 100 mg of TeCl4, the source

of Cl vapor [24]. The tube was evacuated to a pressure
of 1.3 × 10−3 mbar before being sealed. It was held at a
temperature of 220 ◦C for 1 h, then brought to 380 ◦C at a
rate of 50 ◦C/h. After remaining at this temperature for 1 h, the
temperature was increased to 930 ◦C at 183 ◦C/h, where it was
held for 200 h, after which it was cooled to room temperature
in 15 h. The thermal gradient across the tube length was
∼4.5 ◦C/cm. The Cl vapor transports the CoSb2O6 from the
hot side of the tube to the cool side, where single crystals
form. The crystals have the expected crystal structure [22], are
typically 3–5 mg in mass, dark brown in color, and often
formed as bicrystals. Bicrystal boundaries were identified
during the orienting process, in which Laue x-ray diffraction
was employed. The unwanted secondary crystal was removed
via polishing.

Magnetic susceptibility and heat capacity were measured
using a Quantum Design Physical Properties Measurement
System (PPMS). The susceptibility was measured for three
crystals (m1 = 3.71 mg, m2 = 4.74 mg, and m3 = 5.67 mg)
using a constant 2 kOe magnetic field over a temperature range
of 2–300 K; field is applied in the same direction as the moment
measurement. The data obtained from the three crystals agreed
well. Heat capacity was measured on a polycrystalline sample
of CoSb2O6 of mass 22.77 mg and on all three single crystals.
ZnSb2O6 was utilized as a nonmagnetic analog for analysis
purposes. Its preparation was reported previously [11].

Thermal expansion measurements were performed on
samples 1 and 2 (with dimensions a × b × c equal to
1.18 × 0.55 × 0.92 mm3 and 1.20 × 0.85 × 0.81 mm3) using
a dilatometer cell constructed of fused quartz [25], which can
determine changes in length at a resolution of up to 0.1 Å.
Each curve presented herein is composed of about 1800 data
points, with a spacing of 0.2 K. The data for the linear thermal
expansion were fitted using a method described previously [26]
prior to calculating the thermal expansion coefficient. Thermal
expansion data for the two crystals agree well.

III. RESULTS AND ANALYSIS

A. Magnetic measurements and analysis

Magnetic susceptibility χ at H = 2000 Oe is shown
in Fig. 1. The data were corrected for the temperature-
independent diamagnetism associated with the core electrons
(χdia = −112 × 10−6 emu/mol) [27]. They reveal a broad
peak, which is typical for systems possessing 1D chains of
antiferromagnetically coupled spins. Below this peak, a tran-
sition due to long-range antiferromagnetic order is observed at
TN = 13.45 K; this region is enlarged in the inset of Fig. 1. An
obvious anisotropy exists between the a and c axes. Cooling
in magnetic field (FC) and cooling in zero magnetic field,
followed by application of field (ZFC), exhibited no difference
in χ (T ). This conflicts with a prior report [28], in which the
FC susceptibility differed from the ZFC susceptibility below
the broad peak. The authors attributed this behavior to spin-
freezing, which must be associated with the polycrystalline
nature of the samples.

Analysis of χ (T ) was conducted using the Curie-Weiss
equation χ = C/(T − θ ) + χ0, where C is the Curie-Weiss
constant, θ is the Curie-Weiss temperature, and χ0 is a
temperature-independent constant. The Curie-Weiss constant

174425-2



LOCAL AND LONG-RANGE MAGNETIC ORDER OF THE . . . PHYSICAL REVIEW B 92, 174425 (2015)

FIG. 1. Magnetic susceptibility vs temperature for CoSb2O6 at
2000 Oe. The dashed line is a fit using Eq. (2) plotted for T > 14 K.
The inset shows an expanded view of the data near TN = 13.45 K
(vertical dashed line).

is given by

C = Ng2μ 2
BJ (J + 1)

3kB
= Nμ 2

eff

3kB
, (1)

where N is the number of moles, g is the Landé g factor, μB is
the Bohr magneton, and J is the total angular momentum. The
data were fitted for T > 130 K, which is above the region (T <

80 K) where local 1D antiferromagnetic order appears (see the
discussion of heat-capacity data below). The fits are shown
by the dashed lines in Fig. 2. The values μeff = 4.617(1)μB

and χ0 = 3.36(3) × 10−4 emu/mol Oe for the a axis, and
μeff = 4.606(3)μB and χ0 = 3.31(6) × 10−4 emu/mol Oe for
the c axis, were obtained from the fits. The orbital-angular
momentum is typically quenched for 3d ions [29], making
J = S in Eq. (1). The observed magnetic moment reveals that
the Co2+ ions are in the S = 3/2 state with ga = 2.384(1)
and gc = 2.379(1) for the a and c axes, respectively. Since
the values of μeff are identical, within error, the single-ion
anisotropy is negligible; this is consistent with the minimal
variation (about 2%) of Co-O bond lengths within the CoO6

FIG. 2. Plot of χ−1 vs temperature at 2000 Oe. The dashed lines
are linear fits upon which the Curie-Weiss analysis is based. These
lines were extrapolated to illustrate the T intercepts.

octahedra [12], which leads to a nearly cubic crystal electric
field. Deviation from g = 2.00 is common for 3d elements
with their d shells more than half-full, and it is associated
with the spin-orbit interaction. A typically observed value [30]
for μeff of Co2+ with S = 3/2 is 4.8μB, close to what
is observed here. For comparison, μeff = 4.62(1)μB was
reported for a polycrystal [22]. Curie-Weiss temperatures
θa = θb = −22.2 K and θc = −44.1 K were obtained in the
fitting. The average of these is similar to θ = −32.4 K reported
for a polycrystalline sample [22]. The negative values of θ

indicate antiferromagnetic correlations.
The temperature-independent constant χ0 ≈ 3.3 ×

10−4 emu/mol Oe is attributed to Van-Vleck paramagnetic
susceptibility. Its magnitude is comparable to the literature
value [31] χVV ∼ 4.0 × 10−4 emu/mol Oe. A Van-Vleck
susceptibility of χVV ∼ 9 × 10−3 emu/mol Oe was obtained
for the Co2+ ion from magnetization data for H > 30 T
measured on a sample of Ba3CoSb2O9 [32], but the
magnitude seems far too large when compared to this and
earlier work [31].

For an antiferromagnet, χ is expected to approach zero as
T → 0 for H applied along the easy axis of magnetization [33].
Figure 1 shows data for H along a and c. Clearly the easy
axis does not lie along c. Within the a − b plane, χ was
measured for H ‖ b (i.e., H applied parallel to the [010]
crystallographic direction), H ‖ [110], and H ‖ [110]. All of
these measurements revealed data identical to the H ‖ a data
shown in Fig. 1. This behavior of χ as T → 0 implies that
all of the moments are not aligned parallel to any of the axes
measured within the a − b plane. This is further evidence for
the two-sublattice structure described in the Introduction.

A broad peak in χ is characteristic of 1D spin-chain
systems, and it is generally modeled with the Bonner-Fisher
theory [34] for S = 1/2 using the anisotropic Ising-Heisenberg
Hamiltonian. Unfortunately, no analogous model exists for
spin chains with S = 3/2, due to the computational com-
plexities associated with the additional degrees of magnetic
freedom. We have therefore calculated an expression for χ‖
(the susceptibility of the magnetic moments measured parallel
to the applied field, called here H‖) for an S = 3/2 Ising
model by following the method of Carlin [35,36] for S = 1/2
dimers. In this model, the spins have only two orientations,
up or down. The eigenvalues of S‖ for a single Co2+ ion
are + 3

2 , + 1
2 , − 1

2 , and − 3
2 . A dimer, therefore, has a total of

16 possible states. The partition function Z for this system
can easily be written down and differentiated according to
M = NkBT (∂ lnZ/∂H‖)T to obtain the magnetization M .
Differentiation with respect to the magnetic field and taking
the low-field limit leads to the final result

χ‖ = Ng2μ2
B

2kBT

e
3J‖
kBT

(
2 + e

2J‖
kBT + 8e

3J‖
kBT + 9e

6J‖
kBT

)
1 + 2e

3J‖
kBT + e

4J‖
kBT + e

5J‖
kBT + 2e

6J‖
kBT + e

9J‖
kBT

. (2)

The parameter J‖ represents the coupling energy between the
two magnetic moments, and the factor of 2 in the denominator
is required to refer to a mole of magnetic ions.

The fit using Eq. (2) is shown in Fig. 1 as a dashed line. The
fit’s quality is good, with the exception of the slight offset of the
peak. The values g‖ = 2.4442(5) and J‖/kB = −10.603(6) K
were obtained. The negative sign indicates antiferromagnetic
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FIG. 3. Magnetic moment vs magnetic field at T = 3 K. The
c-axis data are linear while the a-axis data deviate slightly from
linearity (shown by the dashed line) at high field.

coupling. The value of g is comparable to the value obtained
from Eq. (1). The magnitude of J‖ is comparable to values
reported for polycrystalline CoSb2O6 and CoTa2O6, which
were stated to be consistent with the anisotropic square planar
Ising model [22]. It is apparent in Fig. 1 that the peak in χ for
the c-axis data occurs at 23.6 K while the peak for the a-axis
data occurs at 34.3 K. This reflects a preference for the locally
ordered magnetic moments (dimers) to lie in the a − b plane.
When H ‖ c, more thermal energy must be removed before
the susceptibility drops upon cooling, which would signal the
presence of more dimers with spins pointing along H .

Magnetization of the crystal with m = 4.74 mg (sample 2)
was measured from 0 to 9 T at 3 K (see Fig. 3) in order to search
for a spin-flop transition, which is observed in CuSb2O6 [11].
The data reveal a linear trend for H ‖ c. A minor deviation
from linearity beginning above 7 T for H ‖ a is observed. The
a-axis data in Fig. 3 contain three separate measurements for
field applied along the [100], [010], and [110] crystallographic
directions. The data lie directly on top of one another. The
slight deviation at higher fields for the H ‖ a data may be
caused by the known shift in TN to lower temperature when an
applied field has a component parallel to the spin chains within
one of the sublattices [12]. No deviation would be expected
for H ‖ c since no shift in TN with H occurs.

B. Heat-capacity and thermal expansion
measurements and analysis

The heat capacity of CoSb2O6 is shown in Fig. 4(a). The
phase transition at TN = 13.45 K is clearly visible. Fitting with
the equation CP /T = γ + βT 2 for the polycrystalline sample
over the range 24 < T < 37 K yields γ = 204(1) mJ/mol
K2 and β = 0.096(1) mJ/mol K4 with a Debye temperature
of �D ≡ [(12π4NiR)/(5β)]1/3 = 567(2) K, where Ni is the
number of ions per formula unit and R is the gas constant.
The same analysis for sample 3 yields γ = 203(4) mJ/mol
K2, β = 0.076(3) mJ/mol K4, and �D = 613(8) K. Note that
CoSb2O6 is an electrical insulator [23], so the γ term is not

associated with the presence of conduction electrons. The heat
capacity of ZnSb2O6 is also shown in Fig. 4(a); fitting results

FIG. 4. (a) Heat capacity (CP ) for CoSb2O6 and the nonmagnetic
analog ZnSb2O6. The upper inset shows a natural log vs 1/T plot of
the difference between the heat capacities of CoSb2O6 and ZnSb2O6

(δCP ); the solid line is a fit using Eq (3). (b) δCP /T is plotted vs T .
The area under this curve is the magnetic entropy. It is shown in the
inset.

for these data can be found in Ref. [11]. The CP data of
ZnSb2O6, which are nonmagnetic, were subtracted from the
CoSb2O6 data in order to isolate the magnetic contributions to
the heat capacity; the result, δCP , is plotted in Fig. 4.

An asymmetric peak with a long tail is observed in δCP /T

[Fig. 4(b)], which goes to zero near 80 K, signaling the
temperature below which local magnetic order begins to occur.
The area under this curve is the magnetic entropy �Sm, which
is shown in the inset of Fig. 4(b). The saturation value for
the magnetic entropy should be R ln(2S + 1) = 11.526 J/mol
K, where S = 3/2 and R is the ideal gas constant. The
observed �Sm saturates at 7.64 J/mol K, which is 66.3% of the
theoretical value for spin 3/2. The loss of entropy upon cooling
from 80 K to TN is significant, 5.68 J/mol K (or 49.3% of the
theoretical value for S = 3/2), which indicates that nearly half
of the magnetic moments are engaged in local magnetic order
prior to the onset of long-range magnetic order below TN . This
is consistent with the modeling of the magnetic susceptibility
through Eq. (2). A significant amount of local magnetic order
above TN was also observed [11] in CuSb2O6.

The presence of thermal excitations above TN is evidenced
by the linear term in CP . Since this term is not due to
conduction electrons, it seems reasonable to assume that
its origin lies with magnetic excitations associated with the
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local magnetic order observed above TN . In comparing the
CP data of CoSb2O6 and CuSb2O6, two main differences
arise. First, the observed value of γ is significantly larger
in CoSb2O6 [203(4) mJ/mol K versus 58.7(7) mJ/mol K].
Second, although the linear term vanishes rapidly below TN

[see Fig. 4(a) and Ref. [11]], in CuSb2O6, δCP follows the
simple form δCP ∼ exp(−�/kBT ) below TN [with �/kB =
17.48(6) K] [11]. In the case of CoSb2O6, the plot of ln(δCP )
versus 1/T [inset of Fig. 4(a)] is not linear over the entire
range below TN , and it requires a more complicated analysis.
The data in this region were fitted with the equation

δCP = A1T exp(−�1/kBT ) + A2T
3exp(−�2/kBT ). (3)

The first term is associated with the decay of the linear-in-T
excitations observed above TN . These are probably due to
the regions of the sample that remain unordered below TN .
The second term is the dominant one; it represents antifer-
romagnetic magnons that possess a gap in their excitation
spectrum [37]. The constant prefactors A1 = 13.3(7) mJ/mol
K2 and A2 = 0.0544(4) mJ/mol K4. The energy gaps obtained
from the fitting are �1/kB = 1.49(26) K and �2/kB =
33.92(9) K. The fit is shown in the inset of Fig. 4(a) by the
solid line.

Thermal expansion measurements were performed along
each of the three axes of samples 1 and 2 over a temperature
range from 5 to 300 K. The change in sample length �L

was normalized to the length at 300 K, L300. It is plotted
versus T in Fig. 5(a). Measurements along the a and b axes
agree well, as expected for a sample with a tetragonal crystal
structure. Comparison of the expansions along a and c reveals
significant anisotropy, with the expansion along a about 1.75
times larger than the expansion along c over the measured
temperature range. A change in slope of �L/L300 is apparent
at 13.45 K for both axes [see the upper insets in Fig. 5(a)].
This is associated with the antiferromagnetic phase transition.
Since a change in slope is observed rather than a jump, the
phase transition appears to be continuous (second-order) in
nature. The feature at TN along the a axis is about 33 times
larger than the feature along c, indicating that the coupling
between the lattice and the magnetic order is stronger within
the a-b plane than along c.

The thermal expansion coefficients μ were obtained by
taking the temperature derivative of the �L/L300 data; they
are shown in Fig. 5(b). Also plotted are μ along a and c

for the nonmagnetic analog compound ZnSb2O6; note that
CoSb2O6 and ZnSb2O6 both have tetragonal crystal structures,
and their lattice parameters differ by 1.7% or less. The
thermal expansion coefficients of these two compounds have
similar values near 300 K, but they deviate markedly as the
temperature is lowered below ∼180 K. This difference must
be associated with the presence of the magnetic ions and the
existence of local magnetic order as revealed in the �Sm data
in Fig. 4(b).

Thermal expansion in solids results from anharmonic
contributions to the elastic potential, with the pair potentials
between neighboring atoms playing an important role in this
many-body potential [38]. In CoSb2O6, local 1D magnetic
order occurs upon cooling below ∼80 K. This local magnetic
order would directly affect the pair potentials in ordered
regions of the sample [38], which in turn could dramatically

FIG. 5. (a) Linear thermal expansion normalized to the length at
300 K. The insets reveal the region near TN = 13.45 K. (b) Thermal
expansion coefficients found by taking the temperature derivatives
of the data in the top panel. The dashed lines reveal the thermal
expansion coefficients of the nonmagnetic compound ZnSb2O6. The
inset is the region near TN .

alter the phonon spectrum, especially given the large fraction
of Co ions participating in magnetic order. We believe that
the local magnetic order along the Co-O-O-Co chains leads
to anharmonicity in some lattice vibrations, and the very
different behavior of μ for CoSb2O6 below 180 K when
compared to ZnSb2O6. Below ∼40 K, the thermal expansion
coefficients change behavior because such a large proportion
of the spins are ordered that the anharmonic contributions
reduce upon further cooling, which leads to a decrease in
the magnitude of μ. The negative thermal expansion along
c is in strong contrast to the behavior along a, and it is
probably connected to the 1D behavior between TN and 80 K,
and anharmonic lattice vibrations that specifically affect μ

along this direction. CuGeO3 also exhibits [39] a prominent
correlation between thermal expansion and the formation of
1D magnetic correlations.

The antiferromagnetic phase transition appears as a peak in
the thermal expansion coefficient, as expected for a continuous
phase transition. This temperature region is highlighted in the
inset of Fig. 5(b). The peak associated with the phase transition
for the c axis is extremely small. For the a-axis data, a small
double-peak is evident in μ, which is associated with a change
in the sample warming rate [40]. The heat capacity in the
immediate vicinity of a continuous phase transition can be
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FIG. 6. Plot of C ∗
P and λ�T vs temperature illustrating the

overlap of heat capacity and volume thermal expansion coefficient
data in the vicinity of TN . The double-peak nature of CP and � is
also evident in this figure. The inset shows the critical behavior of C ∗

P

for samples 1 and 3 in the vicinity of TN . The average of the critical
exponent is α = 0.103(3).

written as [41]

CP = T

(
∂S

∂T

)
TN

+ νT �

(
∂P

∂T

)
TN

, (4)

where S, P, ν, and � are the molar entropy, pressure,
molar volume, and volume thermal expansion coefficient,
respectively. The subscript TN denotes that the equation is
valid near the Néel temperature. The molar volume is ν =
6.864 × 10−5 m3/mol, and � is taken to be the sum of the
linear expansion coefficients (2μa + μc) near TN . The first
term in Eq. (4) is linear. It can be subtracted from CP to yield
C ∗

P ≡ CP − a − bT . With ν/λ = dTN/dP , C ∗
P scales with

λ�T . The values a, b, and λ are chosen such that the λ�T and
C ∗

P data have the best possible overlap. This is achieved (see
Fig. 6) with a = 0.2 J/mol K, b = −0.06 J/mol K2, and λ =
1.7 × 105 J/mol K, which yields dTN/dP = 0.40 K/GPa.
We are unaware of any direct measurements of dTN/dP at
this time with which to compare this value. The good overlap
of the C ∗

P and λ�T in the vicinity of TN (see Fig. 6) suggests
that the phase transition at TN is continuous.

The sharpness of the peak in CP in sample 2 was observed
to be very broad, as illustrated in Fig. 6, where a double-peak is
evident; a double-peak was also observed in the polycrystalline
sample as well (not shown). Measurement of CP in a magnetic
field on single crystals revealed [12] that a field can split the
peak in CP into two peaks, depending upon the orientation of
the magnetic field with respect to the crystallographic axes. In
this case, since a magnetic field was not present, the appearance
of two peaks is probably associated with disorder.

The C ∗
P data of sample 3 have been analyzed in the vicinity

of the phase transition TN to determine the heat-capacity
critical exponent α. The singularity in heat capacity around
a phase transition originates from a nonanalytic term in the
thermodynamic free energy, and it can be asymptotically

described [41] by a function of the form

C ∗
P =

(
A±
α±

)
|t |−α± + B± + Dt, (5)

where t is the reduced temperature t ≡ |T − TN |/TN ; A±, B±,
and D are constants; and α± is the critical exponent [41,42].
The subscripts denote values of the parameters above (+) and
below (−) TN . The value for α can be determined from the
CP data by plotting log(C ∗

P − B± − Dt) against log(t) and
adjusting fit parameter values until the regions above and below
the phase transition become linear, with similar slopes. For a
continuous phase transition, α+ ≈ α−. This was achieved over
two decades [43] in t (see the inset of Fig. 6) with B+ =
−4.5 J/mol K, B− = −45 J/mol K, D = 5 J/mol K, and
TN = 13.5 K, resulting in A+ = 0.2290(20) J/mol K, A− =
0.4986(76) J/mol K, α+ = 0.1062(9), and α− = 0.100(2) [av-
eraging to α = 0.103(3)]. Data for samples 1 and 3 were used
in the analysis. The obtained α value is close to α = 0.110(1),
which is associated with the three-dimensional ferromagnetic
Ising universality class [44]. Note that calculations of critical
exponents for a given universality class usually assume a
ferromagnetic model, but there is reason to believe that they
are also valid for antiferromagnets [45,46]. Some amplitude
ratios are predicted to be universal quantities that should be
identical for all systems in a given universality class [47]. For
the 3D Ising model, A+/A− is predicted to be 0.523(9) [48];
the obtained value of A+/A− = 0.459(8) is close to that
prediction. Similarities to an Ising model are not surprising
since Co2+ ions provide some of the best examples of Ising
systems [35].

IV. DISCUSSION AND CONCLUSIONS

The AB2O6 family is a fascinating class of low-dimensional
magnetic compounds. The two-sublattice antiferromagnetic
structure exhibited by CoSb2O6, and some other AB2O6

compounds [12], is particularly interesting due to the 90◦
rotation of neighboring A-O-O-A chains along c. This un-
usual magnetic structure is partly responsible for the highly
anisotropic MCE [12]. Also responsible is the nature of
the antiferromagnetism, as elucidated in the present work.
Immediately above TN , nearly 50% of the magnetic moments
have lost their spin entropy, and they are therefore in a state of
partial order, where clusters of ordered 1D spins exist on the
Co-O-O-Co chains.

The ordering at TN must be such that the clusters align
with regard to one another, combined with further ordering
of the moments. This is similar to the picture put forth for
CuSb2O6 [11]. The feature in the heat capacity and thermal ex-
pansion coefficient, however, is a peak rather than the steplike
feature exhibited in CuSb2O6 [11]. This difference suggests a
shorter correlation length associated with the magnetic order
in CoSb2O6 [49], which leads to critical phenomena. The
presented analysis is consistent with a continuous transition
that is Ising-like. However, the transition’s shape is easily
affected by disorder, as revealed in Fig. 6, or the presence of
a magnetic field [12]. This supports the idea that the coupling
between adjacent layers along c is weak and easily disrupted
by perturbations or defects because of the 90◦ rotation of
neighboring Co-O-O-Co chains along c.
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Another important aspect is the presence of a very large
linear term in CP , which completely vanishes below TN .
This term must be associated with spin excitations in the
paramagnetic state [50,51], and it seems appropriate to
attribute it to the local magnetic order that is present between
TN and 80 K. Unlike CuSb2O6, where a simple spin gap
forms below TN , the behavior of CP for CoSb2O6 indicates the
presence of antiferromagnetic magnons, with a gap. However,
although the magnon term accounts for the majority of the
δCP curve below TN , there is a minor residual portion that
appears to be associated with unordered regions of the sample,
which the analysis of �Sm reveals to be about 34% of the
magnetic moments at the lowest measured temperature. The
existence of significant magnetic disorder is revealing itself as
a characteristic of the low-temperature magnetic ground state
of these transition-metal-antimony oxides [11,12].

The AFM phase transition in CuSb2O6 was interpreted
as a spin-Peierls transition, with the addition that interchain
coupling leads to 3D AFM order. We believe that the transition
in CoSb2O6 has a similar origin, although here S = 3/2 on
the transition-metal site. Theory has not yielded a strong
conclusion regarding the existence of spin-Peierls transitions
in S = 3/2 systems, but a qualitative argument has been
advanced [52], and the possible existence of spin dimers
is suggested [53]. The spin gap observed in CuSb2O6 was
�/kB = 17.5 K, which is about half of the �2/kB value

reported here. However, the gapped region is more complex
here, requiring two terms to obtain a reasonable fit. More
work will be required to sort out the origin of these two
gaps.

In conclusion, a broad range of temperature is observed
where CoSb2O6 exhibits local antiferromagnetic order. This
state is described simply as a collection of 1D ordered regions,
but within 1D physics it may be thought of more properly
as a spin-liquid phase [54]. At TN = 13.45 K, a transition
to long-range antiferromagnetism occurs. This transition can
be viewed as a 1D to 3D transition upon cooling through
TN , realized through alignment of the 1D regions and further
alignment of stray magnetic moments. Significant magnetic
disorder remains to the lowest measurement temperatures. The
transition at TN appears to be continuous, and it is consistent
with the 3D Ising universality class. The results provide an
example of a crossover from 1D to 3D behavior resulting from
3D coupling among 1D magnetic chains of S = 3/2 magnetic
moments that occurs below TN .
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