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Quantum tricriticality in antiferromagnetic Ising model with transverse field:
A quantum Monte Carlo study
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Quantum tricriticality of a J1-J2 antiferromagnetic Ising model on a square lattice is studied using the
mean-field (MF) theory, scaling theory, and the unbiased worldline quantum Monte-Carlo (QMC) method based
on the Feynman path integral formula. The critical exponents of the quantum tricritical point (QTCP) and the
qualitative phase diagram are obtained from the MF analysis. By performing the unbiased QMC calculations,
we provide the numerical evidence for the existence of the QTCP and numerically determine the location of the
QTCP in the case of J1 = J2. From the systematic finite-size scaling analysis, we conclude that the QTCP is
located at HQTCP/J1 = 3.260(2) and �QTCP/J1 = 4.10(5). We also show that the critical exponents of the QTCP
are identical to those of the MF theory, because the QTCP in this model is in the upper critical dimension. The
QMC simulations reveal that unconventional proximity effects of the ferromagnetic susceptibility appear close
to the antiferromagnetic QTCP, and the proximity effects survive for the conventional quantum critical point. We
suggest that the momentum dependence of the dynamical and static spin structure factors is useful for identifying
the QTCP in experiments.
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I. INTRODUCTION

Quantum critical points (QCPs) are often found as a
vanishing point of a critical temperature of continuous phase
transition by changing external physical parameters such as
the magnetic fields and the pressure [1–4]. It is known that
quantum criticalities are governed by the types of symme-
try breaking and the dimensionality as conventional finite-
temperature critical points. In contrast to the conventional
finite-temperature phase transitions, quantum fluctuations
significantly modify the criticality. Thus, to identify the critical
exponents is one of the central issues in the study of the
QCPs. It is also important to reveal the proximity effects of
the quantum criticality because quantum criticality often takes
over in a wide parameter space at finite temperature.

According to the quantum-classical mapping [1,5], the
criticality of the QCP of the symmetry-breaking phase tran-
sition in spatial d dimensions is described by the criticality
of the (d + z)-dimensional classical critical point, where
z is the dynamical critical exponents. A typical example
of the quantum-classical mapping is the transverse Ising
model where the quantum phase transition induced by the
transverse magnetic field is of the d + 1-dimensional Ising
universality class. The dynamical exponent z can be different
from 1 in general. A prominent example is the so-called
magnon BEC transition of magnets near the saturation field
where z = 2 [6]. Another important example is the QCP
in itinerant electron systems. The theoretical studies using
the renormalization-group technique have demonstrated that
z = 3 for the ferromagnetic QCP while z = 2 for the an-
tiferromagnetic QCP [7,8]. This theory indeed successfully
explains the non-Fermi liquid behavior induced by the QCPs
in many materials [2–4]. It is also shown that self-consistent
renormalization theory reproduces the same non-Fermi-liquid
behaviors [9,10]. We note that the phase transitions that are not
characterized by the conventional symmetry breaking such as

metal-insulator [11,12] or Lifshitz transitions [13,14] do not
follow the quantum-classical mapping because they do not
have their classical counterparts.

In contrast to the conventional QCPs, a proximity effect
of first-order quantum phase transitions induces a quantum
tricritical point (QTCP) where a continuous phase transition
changes into a discontinuous one at zero temperature (see
Fig. 1). Extending the phase space of the ground state
phase diagram towards the field conjugate to the order
parameter, we can see three critical lines (phase boundaries of
continuous transition) meet at the QTCP as we see in finite
temperature phase diagrams including a thermal tricritical
point (TCP), e.g., phase diagram of the spin-1 Blume-Capel
model or Blume-Emery-Griffiths model [15,16]. Therefore, it
is expected that more than two different correlation lengths
diverge simultaneously; besides, corresponding multifluctu-
ations simultaneously diverge at the QTCP. Several experi-
mental and theoretical works actually indicate the existence
of such QTCPs and the importance of the quantum tricritical
fluctuations. For example, in the heavy-fermion compound
YbRh2Si2 [4,17], it has been proposed that its unconventional
quantum criticalities are due to a quantum tricriticality [18,19].
The possibility of the ferromagnetic QTCP has been also
discussed in Sr3Ru2O7 [20]. In addition, the existence of the
antiferromagnetic QTCP has been theoretically proposed in
the iron-based superconductor LaFeAsO [21]. More recently,
it has been shown that the quantum tricritical fluctuations play
a key role in stabilizing the superconductivity under magnetic
field in URh0.9Co0.1Ge [22].

As is the case of the classical TCP [15,23,24], the criticality
of the QTCP is described by the φ6 theory instead of the
φ4 theory, and quantum tricriticalities are different from
those of the conventional quantum criticality. Since the most
striking feature of the finite-temperature TCP is the divergence
of the concomitant susceptibility, it is expected that such
a concomitant divergence also occurs at the QTCP, and
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FIG. 1. (Color online) (a) Mean-field phase diagram for the J1-J2

model (1). We take J1 = J2 and J1 = 1. The left (blue) surface
and the right (red) surface represent the continuous and first-order
phase transition surface, respectively. The thick (black) line denotes
the tricritical line. The continuous phase surface and tricritical line
are determined by numerically solving the mean-field equations.
The first-order phase surface is drawn by smoothly interpolating
the tricritical line and the first-order phase transition line at zero
temperature. (b) Ground state phase diagram. The dashed thin (gray)
lines represent asymptotic lines for r = 0 and u = 0. The dashed thick
(black) lines represent the crossover curves, which are characterized
by u ∝ r2. Asymptotic behaviors of r and u around the QTCP are
given in Eq. (4).

its divergence makes the proximity effects of the quantum
tricriticality different from those of the conventional QCP.
For the itinerant electron systems, several phenomenological
theories have already been proposed for the criticalities of the
QTCP [18–20,25,26]. In the quantum Ising system, a mean-
field calculation of the QTCP [27,28] and a renormalization-
group study for the QTCP in the transverse-like Ising
model [29] have also been done. However, there are few studies
that treat the criticality of the QTCP in an unbiased way except
for interacting bosonic systems [30].

In this paper, to clarify the nature of the QTCP, we
perform numerically unbiased large-scale quantum Monte
Carlo (QMC) calculations for the transverse field Ising model.

As a result, we find that the critical temperatures of the TCP
are tuned by the transverse and longitudinal magnetic fields
and the QTCP actually appears in the ground state phase
diagram. By performing the systematic finite-size scaling
analyses, we clarify the criticality of the QTCP. We also
examine the momentum dependence of the fluctuations and the
static spin structure factors. In sharp contrast with the ordering
(antiferromagnetic) fluctuations, we find that the concomitant
(ferromagnetic) fluctuations and the static spin correlations
show peculiar momentum dependence. This characteristic
momentum dependence is a smoking gun for the QTCP. In
addition to that, we examine the proximity effects of the
QTCP in the paramagnetic phase, which is hardly captured
by the mean-field-type treatment. As a result, we find that
the ferromagnetic susceptibility has a peak structure, and then
the peak position converges into the QTCP approaching the
critical field. Because the peak structure itself still survives
for the conventional QCP, this behavior can be regarded as a
remnant of the QTCP. We will also discuss the relation between
the proximity effects and the experimental results.

This paper is organized as follows: In Sec. II, we introduce
the J1-J2 model with the transverse and longitudinal magnetic
fields. We also briefly explain the QMC method. In Sec. III we
show the results of the mean-field calculations and the scaling
theory for the QTCP. In Sec. IV, we show the results of QMC
simulations that are the ground state and finite-temperature
phase diagrams of the J1-J2 model, the finite-size scaling plots,
and the finite-temperature and the momentum dependence
of the dynamical and static spin structure factors. We also
examine the proximity effects of the QTCP in the paramagnetic
region. Section V is devoted to a summary and discussions.

II. MODEL AND METHOD

We consider a simple antiferromagnetic Ising model with
the external magnetic field on a square lattice with the periodic
boundary condition,

H = J1

∑
〈i,j〉

σ z
i σ z

j − J2

∑
〈〈i,j〉〉

σ z
i σ z

j

−H
∑

i

σ z
i − �

∑
i

σ x
i , (1)

where the Pauli matrices �σi represent a localized spin at site i

(S = 1/2), the J1 term (J2 term) represents antiferromagnetic
(ferromagnetic) Ising interaction between the (next) nearest
neighbor spins, i.e., J1 > 0 and J2 > 0, and the H term (�
term) represents the Zeeman coupling of spins to longitudinal
(transverse) external magnetic fields. For simplicity, we use
units � = kB = a = 1 in this paper where a is the lattice
constant. Especially for the classical case (� = 0), similar
models have been widely used for analyzing metamagnetic
phase transitions in highly anisotropic antiferromagnets such
as FeCl2, and detailed studies have been done in Refs. [15,31].
We note that the MF phase diagram of the model (1) has been
studied and summarized in Ref. [27], however the tricritical
line has not been determined precisely. To make this paper
self-contained and to polish the MF phase diagram, we also
perform the MF calculations.
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Here, we remark that the J2 term is crucial to obtain the
QTCP. When H = 0, the system exhibits the continuous phase
transition from the antiferromagnetic (AF) ordered state to the
fully-polarized (FP) state at the critical transverse field �c

whether J2 is zero or finite. When J2 = 0, the system exhibits
a first-order phase transition at � = 0 and Hc = 4J1, where the
energy curve shows a clear kink. At this transition point, many
states are degenerated. Let us start from the AF ordered state
[σ z = +1 (−1) for the A(B) sublattice]. It is easy to see that
the energy does not change by flipping one or more spins in
the B sublattice at the transition point (Hc = 4J1). Introducing
an infinitesimal �, such a huge number of degenerated energy
levels split, and the kink on the energy curve would be rounded.
As a result, the transition immediately becomes continuous;
the transition is always continuous until the transition line
ends up at H = 0 and � = �c; there is no QTCP when
J2 = 0. When J2 is finite, on the other hand, such a large
number of degeneracy does not exist at � = 0 and H = Hc.
Therefore, a small � does not change the order of the
quantum phase transition. Thus, the discontinuous transition
is expected to change into the continuous transition at QTCP
with increasing �.

We perform unbiased QMC simulations based on the
Feynman path integral formulation [32] to the model (1) using
the cluster algorithm invented by Evertz et al. [33] that is the
pioneering method for global-update QMC simulations. To
avoid the redundancy, we will not explain the cluster algorithm
in detail because the application is rather straightforward.
In the cluster algorithm, the worldlines described in the σ z

basis (σ z|mz〉 = mz|mz〉, mz ± 1) are divided into a number
of clusters by randomly placing the so-called vertices that are
intersite connectors or on-site disconnectors of worldlines. The
density of vertices are functions of local states and parameters
in the Hamiltonian such as J1, J2, and �. Then, taking into
account the longitudinal magnetic field H , each cluster is
independently flipped with probability,

p = e−HMcluster

eHMcluster + e−HMcluster
,

where Mcluster is the integral of mz in the cluster. The cluster
algorithm is expected to be inefficient where almost all the
spins are ferromagnetically aligned with the longitudinal
magnetic field because Mcluster becomes large, and p becomes
exponentially small. This difficulty is eased by the antifer-
romagnetic interaction (J1 term), which makes the Mcluster

smaller, and the Zeeman coupling to the transverse magnetic
field (� term), which makes the clusters’ size smaller. Indeed,
we obtained well converged data as will be shown later.

III. MEAN-FIELD THEORY AND CRITICAL EXPONENTS

In this section, we derive the critical exponents of the
QTCP using the mean-field theory. It is important to obtain
the mean-field exponents because these exponents are exact
when the effective dimension d + z is above the upper critical
dimension. Indeed, we will see the QMC data consistently
reproduce the mean-field exponents in Sec. IV. In this paper,
we assume the upper critical dimension of TCP is three
(du + z = 3) that is a consequence of the φ6 theory. We also
assume that the dynamical critical exponent is one (z = 1) for

the QTCP as well as the continuous quantum phase transitions,
because the dynamical critical exponent is usually one for the
transverse-field Ising model [1]. We note that there are other
proposals for TCP that lead a set of critical exponents different
from the mean-field theory in the three dimensions [34,35]. In
contrast to these proposals, as we show later, results of the
finite-size scaling as well as the temperature dependence of
the physical properties for the QTCP indicate the validity of
the above assumption.

A. Mean-field calculations for the J1- J2 model

Let us begin with the mean-field analysis of the J1-J2

model (1). At first, we define the sublattice magnetization
as 〈

σ z
i

〉 =
{
mf + maf, (i ∈ A)
mf − maf, (i ∈ B) ,

where mf (maf) is the ferromagnetic (antiferromagnetic) order
parameter, and A, B represent the sublattice index. Using the
mean-field decoupling,

σ z
i σ z

j → σ z
i

〈
σ z

j

〉 + 〈
σ z

i

〉
σ z

j − 〈
σ z

i

〉〈
σ z

j

〉
,

we obtain the mean-field Hamiltonian as

HMF = Ns

2

[
HA

MF + HB
MF − J−m2

f + J+m2
af

]
,

HX
MF = −HXσz

i − �σx
i , (i ∈ X)

where Ns is the number of spins, X = A or B,

HA = −J−mf + J+maf + H,

HB = −J−mf − J+maf + H,

J± = J1z1 ± J2z2,

and z1 (z2) is the coordination number for the (next) nearest-
neighbor bonds. (For concreteness, z1 = z2 = 4 for the square
lattice.) By diagonalizing HX

MF, we obtain the eigenvalues for
each sublattice as

EX
± = ±EX = ±

√
H 2

X + �2.

Using EX, the mean-field free energy density is represented
as

f = − 1

βNs
ln Tr[e−βHMF ] = −T

2
ln[e−βEA + eβEA

]

− T

2
ln[e−βEB + eβEB

] − J−
2

m2
f + J+

2
m2

af,

where T is the temperature, and β = 1/T is the inverse tem-
perature. Minimizing f , we obtain the mean-field solutions.
From the stationary condition of f ,

∂f

∂mf
= 0,

∂f

∂maf
= 0,

we obtain the self-consistent equations,

maf = 1

2

[
HA

EA
tanh[βEA] − HB

EB
tanh[βEB ]

]
,

mf = 1

2

[
HA

EA
tanh[βEA] + HB

EB
tanh[βEB ]

]
. (2)
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Solving these self-consistent equations, we obtain the mean-
field phase diagram (see Fig. 1).

Let us consider a simple case J− = J1z1 − J2z2 = 0 where
the free energy f does not contain mf explicitly, and the
qualitative feature is not different from the case of J− �= 0.
In this case, at T = 0, we can easily expand the free energy as
a function of maf up to sixth order as

f = f0 + r

2
m2

af + u

4
m4

af + v

6
m6

af, (3)

where explicit forms of coefficients f0,r,u,v are given as

f0 = −�,

r = 1

2
J+

(
1 − �2J+

�3

)
,

u = (�2 − 4H 2)�2J 4
+

8�7
,

v = (12�2H 2 − 8H 4 − �4)�2J 6
+

16�11
,

� =
√

�2 + H 2.

The conventional continuous phase transition occurs at r = 0
when u > 0, and the first-order phase transition occurs when
u < 0. Thus, the location of the QTCP, where the continuous
phase transition changes into the first-order phase transition,
is determined from r = u = 0, i.e.,

HQTCP = 4
√

5

25
J+,

�QTCP = 2HQTCP.

[(HQTCP,�QTCP) 
 (2.86,5.72) when J1 = J2 = 1 as shown in
Fig. 1.] Then, r and u are expanded around the QTCP as

r 

√

5

8
δ� + 3

√
5

8
δH , u 
 25

√
5

128
δ� − 25

√
5

64
δH , (4)

where δH ≡ H − HQTCP, and δ� ≡ � − �QTCP.

B. Mean-field critical exponents

Here, we discuss the critical exponents of the quantum
criticality. As is easily understood from the expansion of the
free energy in Eq. (3), the mean-field critical exponents of
QTCP are the same as those of finite-temperature TCP. We
note that the mean-field critical exponents are exact above the
upper critical dimensions, which is given by du + z = 3. As we
will see later, the mean-field critical exponents are expected to
be observed in the two- and higher-dimensional J1-J2 model
because z = 1. We also show the finite-temperature properties
nearby the QTCP using the scaling theory.

At the QTCP, both maf and mf are expected to exhibit
singularity. Let us consider the critical exponents regarding
maf first. Supposing the vicinity of the critical point (maf � 1),
we obtain a simplified self-consistent equation as

maf
[
r + um2

af + vm4
af

] = 0,

from the free-energy expansion in Eq. (3). This equation is
easily soluble and (assuming maf �= 0,v > 0, and r < 0), maf

is represented as

m2
af = −u + (u2 − 4rv)1/2

2v
. (5)

For u = 0, we obtain maf ∼ |r|βt ,βt = 1/4. This critical
exponent is nothing but the thermal tricritical exponent. On
the other hand, for r = 0, we obtain a different exponent as
maf ∼ |u|β∗

t ,β∗
t = 1/2. In other words, the critical exponents

of the QTCP depend on the way of approaching the QTCP
in general because both r and u include O(δ�) and O(δH ) as
shown in Eqs. (4). These critical behaviors lead to a scaling
relation equation for the order parameter maf as

maf = |r|βtM
( |u|

|r|φt

)
,

where M is the scaling function, and φt = βt/β
∗
t = 1/2 is

the crossover exponent [this relation equation can be easily
confirmed by Eq. (5)]. The crossover line is defined from
the condition |u|/|r|φt ∼ O(1), i.e., maf ∼ δ

βt

(�H ) is observed

when |u| � |r|φt , while maf ∼ δ
β∗

t

(�H ) when |u| � |r|φt where

δ(�H ) ≡
√

δ2
� + δ2

H . Since φt < 1, the primary singularity is
maf ∼ δ

βt

(�H ) when approaching the QTCP from the generic
direction in the phase space. Only when approaching the
QTCP from the special direction with r = 0 (δ� = −3δH ), the
primary singularity is maf ∼ δ

β∗
t

(�H ) [see Fig. 1(b)]. Therefore,
we will consider only the generic case in this paper.

Next let us consider the critical exponent regarding mf . The
singularity of the ferromagnetic order parameter mf around the
QTCP is obtained from Eq. (2). Expanding mf with respect to
maf , we obtain the relation

mf = a0 + a1m
2
af + a2m

4
af + · · · ,

where an are constants that do not include mf and maf .
Associated with the singularity of antiferromagnetic order
parameter maf ∼ |r|βt , the singularity of mf is obtained as

mf − a0 ∼ |r|β2t , β2t = 2βt = 1/2.

The singularity of the ferromagnetic susceptibility is obtained
as

χzz = ∂mf

∂H
∼ ∂mf

∂r
∼ |r|−γ2t ,

γ2t = −2βt + 1 = 1

2
> 0.

Therefore, the ferromagnetic susceptibility generally di-
verges at the QTCP. Indeed, we will confirm the diver-
gence at the QTCP by performing the numerically unbiased
calculations.

By the conventional argument, we can derive the other
critical exponents, δt , νt , and αt , which are defined as

maf ∼ |hs |1/δt ,

ξ ∼ |r|−νt ,

fs ∼ |r|2−αt ,

where hs is the staggered magnetic field conjugate to the
antiferromagnetic order parameter, ξ is the correlation length
associated with the antiferromagnetic order, and fs is the
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TABLE I. List of mean-field critical exponents for QTCP.
Mean-field critical exponents become exact above the upper critical
dimensions du + z = 3.

αt βt γt δt β2t γ2t ηt νt φt

Mean field 1/2 1/4 1 5 1/2 1/2 0 1/2 1/2

singular part of the free energy. In the mean-field theory, each
critical exponent is given by δt = 5, νt = 1/2, and αt = 1/2.
We note that the anomalous dimension ηt is zero within the
mean field theory. Lastly, we summarize the mean-field critical
exponents for the QTCP in Table I.

C. Scaling theory

Here, we discuss the finite-temperature properties of the
QTCP by employing the scaling theory with the finite
temperature analogue of the finite-size scaling hypothesis
β/ξz ∼ O(1) in the vicinity of the QTCP. The singular part of
the free energy is expressed as

fs ∼ |r|2−αtF
(

u

|r|φt
,

|hs |
|r|δt βt

,
T

|r|νt z

)
,

∼ T (2−αt )/νt zF̃
(

r

T 1/νt z
,

u

T φt /νt z
,

|hs |
T δtβt /νt z

)
,

where F and F̃ are scaling functions. We obtain the singular-
ities of maf and mf from fs as

maf ∼ ∂fs

∂hs

∼ |r|2−αt−δt βt ∼ T (2−αt−δt βt )/νt z,

mf ∼ ∂fs

∂r
∼ |r|1−αt ∼ T (1−αt )/νt z.

The susceptibilities are also obtained as

χs
zz = ∂maf

∂hs

∼ |r|2−αt−2δt βt ∼ T (2−αt−2δt βt )/νt z,

χzz ∼ ∂m

∂r
∼ |r|−αt ∼ T −αt /νt z.

Temperature dependence of the specific heat (C) is given by

C ∼ T
∂2fs

∂T 2
∼ T (2−αt )/νt z−1 = T d/z,

where we use the hyperscaling relation [2 − αt = νt (d + z)]
to derive the last relation. (The specific heat and Sommerfeld
constant (γS = C/T ) are zero at T = 0 and do not show r

dependence.) We note that the same temperature dependence
is derived by assuming the dispersion of the low energy
excitation proportional to kz, where k represents the wave
number. Using the mean-field critical exponents and assuming
z = 1, the temperature dependences of the fluctuations around
the two-dimensional QTCP are summarized as

χs
zz ∼ T −2, (6)

χzz ∼ T −1, (7)

C ∼ T 2. (8)

We note that the dangerously irrelevant variables generally
exist above the upper critical dimensions, and the simple
scaling argument does not hold and leads to incorrect critical
exponents [1,23,36]. Indeed, this is the reason why the
critical exponents of the QTCP in the itinerant-electron
system [18,19] are apparently inconsistent with the critical
exponents derived from the simple scaling argument. Further
detailed calculations on dangerously irrelevant parameters are
necessary to derive the correct critical exponents for those
cases. On the other hand, the obtained temperature dependence
of the specific heat C ∝ T d/z is expected to hold even above the
upper critical dimensions, because the dangerously irrelevant
variables do not affect its criticality [37] except for the
logarithmic corrections.

IV. RESULTS OF QUANTUM MONTE CARLO
CALCULATIONS

A. Ground state phase diagram

Figure 2 is the ground state phase diagram of the model (1)
at J1 = J2 = 1 obtained by the unbiased QMC method. There
is no question that the antiferromagnetic (AF) ordering is
stabilized at zero magnetic field at low temperature because
this system is frustration free. The model (1) without the
transverse field (� = 0) is a classical Ising spin system. In this
limit, it is well known that the AF phase is stabilized even with
finite H < H ∗. The ground state is switched into a FP phase
from an AF phase through the discontinuous phase transition at
H = H ∗. On the other hand, in another limit where H = 0, the
model is a simple transverse field Ising model, which exhibits
a continuous quantum phase transition to a FP phase. The
universality class is the 2 + 1D Ising universality class because
the dynamical critical exponent is z = 1. These quantum phase
transitions are extended to the region where H �= 0 and � �= 0
keeping their order of phase transition unchanged, and then
these phase transition lines meet at the QTCP.

The transition points H ∗ are estimated from the energy-
level crossing when the transition is discontinuous. In Fig. 3(a),
we show an example of energy level crossing at � = 2.
From the crossing point, we estimate the first-order transition

FIG. 2. (Color online) Ground state phase diagram at J1 = J2 =
1 obtained by the QMC simulations.
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FIG. 3. (Color online) Determination of the transition points by
QMC data. We fix J1 = J2 = 1 and the inverse temperature as β/L =
1/4. (a) Energy level crossing at � = 2. The QMC simulations are
started from either a perfect FP state or a perfect AF state. (b),(c) Finite
size scaling analysis of (b) the staggered magnetic susceptibility χ s

zz

and (a) a Binder ratio B4 assuming critical exponents of 3D Ising
universality class ν = 0.6301, and η = 0.0364 [39].

point as H ∗ = 3.827(1) at � = 2. In general, the Monte-Carlo
simulation faces the so-called freezing problem and obtains the
wrong expectation values of physical quantities near a strong
first-order phase transition, because the system is trapped by a
local minimum in the (free) energy landscape, and it takes an
exponentially long time to reach the global minimum once the
system falls into a metastable state. To obtain the two branches
of the energy curve, we prepared a couple of well-converged
worldline configurations for both the deep AF regime and
the FP regime. Then we gradually changed H . We perform
the calculations up to L = 32 and confirm that the finite-size
effects are negligibly small.

The continuous transition point Hc or �c and its errors
are estimated using the finite-size scaling analysis based on

the Bayesian estimate developed by Harada [38] assuming
the dynamical critical exponent z = 1, i.e., we increase the
system size keeping the ratio β/L constant and use the 3D
Ising critical exponents. As shown in Figs. 3(b) and 3(c), the
data of different system sizes are collapsed onto a single curve
for both the staggered magnetic susceptibility

χ s
zz ≡ 〈Mz( Q)2〉

βL2

and a Binder ratio

B4 ≡ 1

2

[
3 − 〈Mz( Q)4〉

〈Mz( Q)2〉2

]
,

where Q = (π,π ),

Mz(q) ≡
∫ β

0
dτ

∑
i

σ z
i (τ )e−iq·r i ,

and r i is the real space coordinate of site i. These well
collapsed scaling plots support the validity of the assumption
z = 1.

From the above analyses, we find that the first-order phase
transition at zero temperature terminates around � = 4.1.
Thus, as shown in Fig. 4, we perform the finite-size scaling
analysis for the QTCP. The critical exponents are expected
to be different from the 3D Ising critical exponents and are
of the mean-field theory because the upper critical dimension
for the QTCP is du = 2 assuming z = 1. The position of the
QTCP is, indeed, obtained from the finite-size scaling analysis
using the exponents derived from the mean-field theory. The
deviation from the single curve in the finite-size scaling plots
may be due to a rather large step size of � for searching
QTCP (we set the step size as �� = 0.1), or due to the
strong correction to scaling, i.e., the logarithmic correction
due to the dangerous irrelevant variables. Another reason for
the strong correction to scaling may be the existence of the
crossover around the QTCP discussed in Sec. III B. Actually,
a different finite-size scaling form can be derived for r = 0.
Except for the slight deviations, data are well collapsed by the
quantum tricritical exponents. This result shows that the QTCP
is located around �QTCP = 4.10(5) and HQTCP = 3.260(2)
(�QTCP/HQTCP 
 1.25). For comparison, we show the data
for � = 4.0 and � = 4.2 in the Appendix. We note that
the relation �QTCP/HQTCP = 2 obtained in the mean-field
calculations is strongly modified by the spatial and quantum
fluctuations.

To demonstrate the validity of the estimated value of HQTCP

and �QTCP, we compute the momentum dependence of the
dynamical spin structure factor at zero frequency (ω = 0),

χzz(q) ≡ 〈Mz(q)2〉 − 〈Mz(q)〉2

βL2
,

=
∫ β

0
dτ

∑
i

cq(i,τ ),

where

cq(i,τ ) ≡ [〈
σ z

i (τ )σ z
0 (0)

〉 − 〈
σ z

i (τ )
〉〈
σ z

0 (0)
〉]
eiq·(r i−r0),
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FIG. 4. (Color online) Finite-size scaling analysis at � = 4.1 for
the QTCP of (a) the staggered magnetic susceptibility χ s

zz, (b) a Binder
ratio B4, and (c) the uniform magnetic susceptibility χzz, using the
critical exponents for the QTCP, ν = 1/2, η = 0, and α = 1/2. We
fix J1 = J2 = 1 and the inverse temperature as β/L = 1/4 assuming
z = 1.

and the static spin structure factor (equal time)

Szz(q) ≡ 〈M̃z(q)2〉 − 〈M̃z(q)〉2

L2
,

=
∑

i

cq(i,0),

M̃z(q) ≡
∑

i

σ z
i e−iq·r i ,

at (H,�) = (4.1,3.26) in the low temperature regime (see
Fig. 5). Note that Szz(q) is observable as the energy integral
of the scattering cross section in the neutron scattering exper-
iments. As shown in Fig. 4, χ s

zz = χzz( Q) and χzz = χzz(0)
are scaled as χzz( Q) ∼ O(L2) and χzz(0) ∼ O(L). Simple
dimensional analysis leads to

χzz(q) ∼ 1

|q| , (|q| � 1),

χzz(q) ∼ 1

(q − Q)2
, (|q − Q| � 1).

(a)

(b)

1/
χ

z
z
(q

,0
)

(d)

q

1/
χ

z
z
(q

+
π
,π

)

(c)
3.547

−2.278 − ln |q|

1.050 × |q|

π−π 0

3.279 × q2

6.76084 × |q|

1/
S

z
z
(q

,0
)

1/
S

z
z
(q

+
π
,π

)

FIG. 5. (Color online) Low temperature momentum dependence
of (a),(b) inverse dynamical spin structure factor χ−1

zz (q) and (c),(d)
inverse static spin structure factor S−1

zz (q) at (HQTCP,�QTCP) =
(4.1,3.26) near (a),(c) q = 0 and (b),(d) q = Q. We fix J1 = J2 = 1
and the inverse temperature as β/L = 1/4.

We note that the linear |q| dependence of the concomitant
fluctuation has been analytically obtained for the exactly
solvable model for the thermal TCP [40]. It has also been
pointed out that simple MF calculations do not reproduce
the linear |q| dependence [40,41]. Since the imaginary
time direction and the real space direction are equally
treated (z = 1), the correlation function is expected to decay
as

cq(i,τ ) ∼
{
R−2 (q 
 0)

R−1 (q 
 Q)

in the d + 1-dimensional time space where R ≡√
(rx

i − rx
0 )2 + (ry

i − r
y

0 )2 + τ 2. By integrating the correlation
function only in the real space with τ = 0, the static structure

174419-7
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FIG. 6. (Color online) Temperature dependence of (a) 1/χ s
zz,

(b) 1/χzz, and (c) C at QTCP, (�,H ) = (4.1,3.26).

factor is obtained as Szz(q) ∼ O(log L) when |q| � 1 and
Szz(q) ∼ O(L) when |q − Q| � 1. Again from the simple
dimensional analysis, we obtain the logarithmic and power
law singularities of Szz(q) at the QTCP as

Szz(q) ∼ − log(|q|), (|q| � 1),

Szz(q) ∼ 1

|q − Q| , (|q − Q| � 1).

Indeed, we confirm that the QMC data show these expected
singularities of χzz(q) and Szz(q) at the QTCP (see Fig. 5).
These results strongly suggest the validity of our scaling
analysis for the QTCP.

To see the finite-temperature properties of the QTCP, we
compute the temperature dependence of 1/χ s

zz, 1/χzz and the
specific heat C at the QTCP determined by the QMC method
(�QTCP = 4.1, HQTCP = 3.26). As shown in Fig. 6, at sufficient
low temperatures and large system sizes we confirm that the
susceptibilities are well consistent with the QTCP exponents
derived from the scaling theory, i.e., χ s

zz ∼ 1/T 2 and χzz ∼
1/T . Although the error bars are relatively large due to the
smallness of C at low temperature, we confirm that the data of
specific heat is consistent with C ∼ T 2, which is also obtained

FIG. 7. (Color online) Finite-temperature phase diagrams at
(a) � = 6, (b) � = 4.1, and (c) � = 2, where (a) the conventional
QCP, (b) the QTCP, and (c) the discontinuous quantum phase
transition point exist at T = 0, respectively. The solid thick lines (light
blue) and double line (pink) show the continuous and discontinuous
phase transition points, respectively. T ∗

0 and T ∗
C show the positions of

the broad peaks of χzz and C, respectively. The background intensity
plots represent χzz computed with L = 16, and the thinner lines
represent their contours.

from the scaling theory. All these scaling results indicate that
the 2 + 1D QTCP exists at �QTCP = 4.1 and HQTCP = 3.26.

B. Finite-temperature phase diagrams

Figure 7 shows the finite-temperature phase diagrams at
� = 6, 4.1, and 2 where the quantum phase transition is a
generic continuous one in the 3D Ising universality class,
a continuous one with the quantum tricriticality, and a dis-
continuous one, respectively. The positions of discontinuous
transition are determined from the discontinuous jumps of the
magnetization (mx and mz). On the other hand, the positions
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FIG. 8. (Color online) Temperature dependence of (a) χ s
zz,

(b) χzz, and (c) C at (�,H ) = (4.1,5).

of continuous transition are determined from the finite-size
scaling analysis of the staggered magnetic susceptibility χ s

zz

and the Binder ratio B4 with critical exponents of the 2D Ising
universality class (ν = 1 and η = 1/4).

In the phase diagrams, we display the positions of broad
peaks of χzz and C in the paramagnetic phase. It is well known
that the magnetic susceptibilities exhibit a broad peak as a
proximity effect near a finite-temperature tricritical point (e.g.,
Ref. [42]). Indeed, we confirm such a proximity effect in the
case of the finite-temperature tricritical point in Fig. 7(c): Both
T ∗s converge on the tricritical point, and the closer H is to
the tricritical point, the sharper the peaks are. The proximity
effects for QTCP exist as well as those of the thermal tricritical
point. We show an example of the proximity effect around the
QTCP in Fig. 8. The only difference is that the broad peak of
specific heat does not converge to the QTCP and stay at higher
temperature. The reason is simply because the specific heat is
zero at T = 0 and does not diverge at the QTCP. In other words,
the weaker the first-order quantum phase transition is, the
weaker the proximity effect of specific heat is. In the case of the
conventional QCP [Fig. 7(a)], χzz exhibits a similar broad peak
structure, and T ∗

0 seems to converge into the QCP. However,
χzz does not show divergence at the QCP and remains a rather
small value unlike the QTCP.

V. DISCUSSIONS AND CONCLUSIONS

In conclusion, we study the J1-J2 antiferromagnetic Ising
model with both the longitudinal and the transverse magnetic
fields by the MF theory, the scaling theory, and the unbiased
large-scale QMC calculations. In the MF theory, we show
that the critical temperature of the TCP can be tuned by the
longitudinal and the transverse magnetic fields, and the QTCP
appears at (�QTCP,HQTCP) = (8

√
5/25J+,4

√
5/25J+) when

J− = 0. We also clarify the singularity of physical quanti-
ties associated with the QTCP using the Ginzburg-Landau
expansion. We summarize the critical exponents for the QTCP
and complete the phase diagram in the case of J1 = J2 by the
MF analysis. Especially we show that the uniform magnetic
susceptibility χzz that is not the ordering but the concomitant
susceptibility diverges at the QTCP unlike the generic case of
QCP. Using the scaling theory, we also clarify the temperature
dependence of physical quantities around the QTCP.

By performing the QMC calculations, we obtain the
numerically unbiased phase diagram in the case of J1 = J2.
The QTCP is found at HQTCP = 3.260(2) and �QTCP = 4.10(5)
in our finite-size scaling analysis. We also examine the
momentum dependence of the dynamical and static spin
structure factors. All the obtained results are consistent with
the expected QTCP singularities. This consistency strongly
supports the validity of our assumption that the dynamical
critical exponent is one (z = 1) and the QTCP is located on
the upper critical dimension.

In this paper, we mainly focus on the case of J1 = J2.
The qualitative feature of the model (1) is unchanged as
long as J1 > 0 and J2 > 0 even if J1 �= J2. Furthermore, it
is expected that �QTCP/HQTCP becomes smaller (larger) when
decreasing (increasing) J2. The reason is as follows: When
J1 = 0 (a decoupled ferromagnetic Ising model), the phase
boundary sticks to the � axis (H = 0), and the transition
is of the first order except for the critical end point. When
J2 = 0, on the other hand, all the quantum phase transition is
expected to be continuous unless � = 0 (Sec. II). With small
but finite J2, the transition at the small � regime (� < �QTCP)
becomes discontinuous, while the transition at the large �

regime remains continuous. It is simply expected that �QTCP

becomes larger and converges into the critical end point of
J1 = 0 with increasing J2. Meanwhile, the saturation field
H ∗(� = 0)/J2 = 4J1/J2 becomes small.

Furthermore, we examine the temperature dependence
of the antiferromagnetic and ferromagnetic fluctuations around
the QTCP and confirm that the concomitant divergence of
the ferromagnetic fluctuation occurs at the antiferromagnetic
QTCP. We show that this divergence induces the characteristic
crossover in the paramagnetic region around the QTCP; the
ferromagnetic susceptibility has a peak at T ∗

0 [see Fig. 7].
We note that the peak structures, which are remnants of the
QTCP, survive for the conventional QCP as shown in Fig 7,
although the ferromagnetic susceptibility does not diverge
at the QCP. We note that the appearance of peak structures
of the ferromagnetic susceptibility are observed around the
antiferromagnetic QCP in YbRh2(Si0.95Ge0.05)2 [17], and the
peak structures may be the remnant of the QTCP.

Lastly, we discuss the experimental identification of
the QTCP. Recently, anomalous divergent behaviors of the
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ferromagnetic fluctuations have been found in several materi-
als. For example, in YbRh2Si2, the diverging behaviors of the
ferromagnetic fluctuations [4,17] have been observed around
the antiferromagnetic QCP. Furthermore, unconventional di-
vergent behaviors of the ferromagnetic fluctuations have also
been observed in β-YbAlB4 [43,44] and in a quasicrystal
Au51Al34Yb15 [45], although no clear symmetry breaking
phase transition or QCP has been found in these materials. Sev-
eral theories such as the valence quantum criticalities [46] and
the critical nodal metal [47] have been proposed for explaining
the unconventional divergent behaviors of the ferromagnetic
fluctuations. In these theories, although the mechanism of
the diverging behaviors of the ferromagnetic fluctuation are
different, it is common that the diverging fluctuations are the
critical fluctuations, i.e., the ordering fluctuations. In contrast
to them, the quantum tricriticality induces the divergence of
the concomitant fluctuation whose momentum dependence
is different from that of the ordering fluctuation as shown
in Fig. 5. Therefore, by examining whether the momentum
dependence of the dynamical and static spin-structure factors
near q = 0 show χzz(q) ∼ 1/|q| and Szz(q) ∼ −1/ log |q| or
not, it is possible to conclude whether the quantum tricriticality
governs those unconventional quantum criticalities or not.
Further experimental investigation along this direction will
reveal the nature of the unconventional quantum criticalities.

It is also an intriguing issue how the divergence of the concomi-
tant susceptibility affects the nature of the superconductivity
observed in β-YbAlB4 [43] and URh1−xCoxGe [22].
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APPENDIX: FINITE-SIZE SCALING ANALYSIS FOR QTCP

In the main text, we show the results of the finite-size scaling
at � = 4.1 and conclude that �QTCP = 4.10(5). Figures 9(a)–
9(f) show the results of the finite-size scaling analysis at � =
4.0 and � = 4.2. The finite-size scaling plot of χzz is sensitive
to the deviation from the QTCP while those of χ s

zz and B4 are
insensitive. In both cases, the data do not show the monotonic
convergence with increasing L.

FIG. 9. (Color online) Finite-size scaling analysis at (a),(c),(e) � = 4.0 and (b),(d),(f) � = 4.2 of (a),(b) the staggered magnetic
susceptibility χ s

zz, (c),(d) a Binder ratio B4, and (e),(f) the uniform magnetic susceptibility χzz, using the critical exponents for the QTCP,
ν = 1/2, η = 0, and α = 1/2. We fix J1 = J2 = 1 and the inverse temperature as β/L = 1/4 assuming z = 1. The tuning variables H ′ = 3.295
and H ′ = 3.225 give the best scaling plot at � = 4.0 and � = 4.2, respectively.
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