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Driven-dissipative Ising model: Mean-field solution
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We study the fate of the Ising model and its universal properties when driven by a rapid periodic drive and
weakly coupled to a bath at equilibrium. The far-from-equilibrium steady-state regime is accessed by means
of a Floquet mean-field approach. We show that, depending on the details of the bath, the drive can strongly
renormalize the critical temperature to higher temperatures, modify the critical exponents, or even change the
nature of the phase transition from second to first order after the emergence of a tricritical point. Moreover, by
judiciously selecting the frequency of the field and by engineering the spectrum of the bath, one can drive a
ferromagnetic Hamiltonian to an antiferromagnetically ordered phase and vice versa.
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I. INTRODUCTION

The Ising model is undoubtedly the most studied model
of statistical mechanics. Besides its equilibrium properties, its
coarsening dynamics following a temperature quench from
the paramagnetic to the ordered phase is also quite well
understood [1,2], even in the presence of weak disorder [3–5].
Taking into account the dissipative mechanisms due to the
inevitable coupling of the spin system to an environment has
been successful in the description of important many-body
phenomena based on the Ising model such as the decay of
metastable phases [6–11], hysteretic responses [12–14], and
magnetization switching in mesoscale ferromagnets [15,16].
As it is becoming clear these days that driven-dissipative
physics, i.e., the balancing of nonequilibrium conditions and
dissipative mechanisms [17], is a promising route to achieve
a new type of control over matter, a burning question arises:
can the Ising model be driven to nonequilibrium steady states
(NESS) with enhanced or even novel properties?

This question has been approached in the context of slowly
oscillating drives (magnetic fields or electrochemical poten-
tials) by means of Monte Carlo simulations [12–14,18–21],
mean-field treatment [18,22–26], or other analytical tech-
niques [27–30]. One of the key results is the existence of a so-
called dynamical phase transition, where the cycle-averaged
magnetization becomes nonzero in a singular fashion. This
has recently been supported by experimental evidence in the
dynamics of thin ferromagnetic films [31].

In this paper we focus on the Ising model driven by
a rapidly oscillating magnetic field h cos(ωt). We depart
from the usual Floquet engineering of many-body states (the
Floquet Hamiltonian for this system is simply the unperturbed
Ising model and as such shows no new interesting phases)
which is mostly directed towards cold-atomic systems [32],
by including a dissipative mechanism, namely by weakly
coupling the system to an external bath at equilibrium. We
access the nonequilibrium steady states by means of a Floquet
mean-field approach. We derive the mean-field self-consistent
equation for the magnetization and use it to derive the
nonequilibrium phase diagram. Whenever analytical solutions
are beyond reach, we complete the picture with numerical
results. Our main results are to show how the combination of

drive (i.e., h and ω) and dissipation (mostly the low-energy
spectrum of the bath) can be used to increase the critical
temperature Tc, to modify the critical exponent βT , as well
as to change the order of the phase transition. Additionally,
we show that the drive can, in the presence of carefully
selected baths, convert a ferromagnetically ordered system to
an antiferromagnetic order, and vice versa.

II. MODEL

The total Hamiltonian is composed of the system, the bath,
and the system-bath Hamiltonians, H (t) = HS(t) + HB +
HSB with (we set � = kB = 1)

HS(t) = −J
∑
〈ij〉

σ z
i σ z

j − h cos(ωt)
∑

i

σ z
i , (1a)

HB =
∑
i,α

ωα b
†
i,α bi,α, (1b)

HSB =
∑
i,α

tα σ x
i (bi,α + b

†
i,α). (1c)

The S = 1/2 spins, represented at each site i of the bipartite
lattice by the usual Pauli operators σ

x,y,z

i , are interacting
through a nearest-neighbor interaction J . h is the strength
of the periodic drive with frequency ω ≡ 2π/τ (we choose
ω � 0). Equilibrium conditions are recovered for h = 0 or
ω = 0.

The environment is composed of local baths expressed in
terms of a collection of noninteracting bosonic modes labeled
by α, with energy ωα , and with creation and annihilation
operators b

†
i,α and bi,α . Each bath is in equilibrium at

temperature T ≡ 1/β and we assume it is a “good bath,”
i.e., it has a very large number of degrees of freedom
and it remains in thermal equilibrium. Below we replace∑

α by
∫

dε ρ(ε), where ρ(ε) is the bath density of states.
Without loss of generality, the chemical potential is set to
0 and ρ(ε < 0) = 0. tα sets the strength of the spin-bath
interactions. After integrating out the bath degrees of freedom,
the bath will enter the reduced problem via the hybridization
function ν(ε) ≡ |t(ε)|2ρ(ε). The low-energy behavior of the
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hybridization ν(ε)[0 < ε → 0]∼ε1+s characterizes whether
the bath is Ohmic (s = 0), sub-Ohmic (s < 0), or super-Ohmic
(s > 0). We do not consider additional system-bath coupling
terms such as σ

y,z

i (bi,α + b
†
i,α) because they do not induce any

qualitative change in the nonequilibrium dynamics.
We stress that it is the system-bath coupling which generates

the quantum dynamics, via the noncommutation of σx
i with

the rest of the model. In the absence of a finite coupling to the
environment, our drive would indeed have a rather marginal
impact since [σ z

i ,H (t)] = 0 at all times, implying that all
the degrees of freedom would be conserved quantities. It is
therefore the interplay between the bath-induced spin flips and
the magnetic-field driven time-dependent phases of the wave
vectors [see, e.g., Eq. (3) below] which will result in nontrivial
dynamics.

III. NONEQUILIBRIUM STEADY-STATE DESCRIPTION

A. Floquet mean-field picture

The time-dependent mean-field Hamiltonian corresponding
to H (t) in Eq. (1) is the one of a single spin coupled to its local
bath, and reads H̄ (t) = H̄S(t) + H̄B + H̄SB , with

H̄S(t) = −zJϕ(t)σ z − hσ z cos(ωt), (2a)

H̄B =
∑

α

ωα b†α bα, (2b)

H̄SB =
∑

α

tα σ x(bα + b†α). (2c)

Here ϕ(t) is the expectation value of σ z(t) which serves as
the order parameter, and z is the coordination number of the
bipartite lattice (this approach becomes exact in the limit of
infinite dimensions z → ∞). When the coupling to the bath
is weak (see the discussion below), the spin subsystem can be
seen as quasi-isolated during many periods of the drive. There
the Floquet theorem states that the instantaneous eigenstates
of the time-periodic Hamiltonian H̄S(t) can be written in the
form |ψα(t)〉 = e−iEαt |ψP

α (t)〉, where Eα is a so-called Floquet
quasienergy and |ψP

α (t)〉 is periodic: |ψP
α (t + τ )〉 = |ψP

α (t)〉.
Owing to the fact that σ z is a conserved quantity, we may
choose our Floquet eigenstates to simultaneously diagonalize
σ z. Note that this also implies that ϕ(t) is a constant (at least
between two events induced by the weakly coupled bath).
Altogether, the instantaneous eigenstates of H̄S(t) are simply
given by

|↑ (t)〉 = e+i[zJϕ t+ h
ω

sin (ωt)] |↑〉 = e−iε↑t | ↑P (t)〉, (3)

|↓ (t)〉 = e−i[zJϕ t+ h
ω

sin (ωt)] |↓〉 = e−iε↓t | ↓P (t)〉, (4)

from which one identifies the Floquet quasienergies and the
periodic states, reading

ε↑ ≡ −zJϕ, | ↑P (t)〉 =
∑

n

Jn(h/ω)e−inωt |↑〉, (5)

ε↓ ≡ zJϕ, | ↓P (t)〉 =
∑

n

Jn(h/ω)e+inωt |↓〉, (6)

where Jn are the Bessel functions of the first kind.

B. Transition rates

The bath induces incoherent transitions between the Floquet
states. Assuming that the bath correlation functions relax
in a time much shorter than the driving period (Markov
approximation), the transition rate R↑↓ from | ↑〉 to | ↓〉 can
be obtained by means of a Floquet-Fermi golden rule [33,34]:

R↑↓(ϕ) = 2π
∑
m∈Z

|Am
↑↓|2 g(ε↑ − ε↓ + mω), (7)

with g(ε) ≡ ν(ε)[1 + nB(ε)] + ν(−ε)nB(−ε), where the
Bose-Einstein distribution nB(ε) ≡ 1/(eβε − 1) and

Am
↑↓ ≡

∫ τ

0

dt

τ
〈↓P(t)|σx | ↑P(t)〉eimωt = Jm(2h/ω). (8)

A similar expression can be obtained for the rate R↓↑(ϕ) with
Am

↑↓ = A−m
↓↑ . Importantly, these rates do not satisfy detailed

balance, contrary to equilibrium dynamics this would hold
even in situations in which the spin relaxation is much faster
than the drive. Note that the integration over the degrees of
freedom of the bath also contributes to a small renormalization
of the spin Hamiltonian (so-called Lamb shift) that we neglect.

C. Steady-state populations

We stress that the previous analysis is valid only in the
case when the bath is weakly coupled to the system, i.e., the
rate at which it induces spin flips is much smaller than the
frequency of the drive: R↑↓,R↓↑ � ω. Under these conditions,
ϕ(t) is indeed constant over many periods of the drive and a
time-translational invariant nonequilibrium steady state can
settle. Once it is reached, the probabilities of being in the | ↑〉
and | ↓〉 states are simply given by

P NESS
↑ = 1

1 + R↑↓/R↓↑
and P NESS

↓ = 1 − P NESS
↑ . (9)

D. Self-consistency condition

The probabilities in Eq. (9) allow us to compute the
steady-state average magnetization as |ϕ| = |P NESS

↑ − P NESS
↓ |.

Therefore we obtain the self-consistency condition for the
mean-field order parameter

± ϕ = R↓↑(ϕ) − R↑↓(ϕ)

R↓↑(ϕ) + R↑↓(ϕ)
. (10)

Here the + sign corresponds to a ferromagnetic order while
the − sign corresponds to an antiferromagnetic order. Making
use of the expression for the rates given in Eq. (7), we obtain

R↓↑(ϕ) − R↑↓(ϕ)

= 2π |J0(2h/ω)|2ν(|2zJϕ|) sgn(Jϕ)

+ 2π
∑
n>0

∑
a,b=±

|Jn(2h/ω)|2 b ν(anω + 2bzJϕ), (11a)

R↓↑(ϕ) + R↑↓(ϕ)

= 2π |J0(2h/ω)|2ν(|2zJϕ|) coth (β|zJϕ|)
+ 2π

∑
n>0

∑
a,b=±

|Jn(2h/ω)|2 ν(anω + 2bzJϕ)

× coth[β(anω + 2bzJϕ)/2]. (11b)
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In case the ac drive is switched off, h = 0, one naturally
recovers

±ϕ = R↓↑(ϕ) − R↑↓(ϕ)

R↓↑(ϕ) + R↑↓(ϕ)
−−→
h=0

tanh βzJϕ, (12)

which is the familiar self-consistent condition for the Ising
model in thermal equilibrium. In this case, it is well known
that there is a second-order phase transition at the critical
temperature T

eq
c = zJ , below which ferromagnetic solutions

are possible for J > 0 and antiferromagnetic ones for J < 0.

IV. NONEQUILIBRIUM STEADY-STATE
PHASE DIAGRAM

The self-consistency equation (10) together with Eqs.
(11a) and (11b) allow us to explore the complete mean-field
phase diagram far from the equilibrium regime. Let us first
investigate the fate of the well-known second-order phase
transition in this out-of-equilibrium context. In order to access
its locus in parameter space, we expand and solve Eq. (10)
around ϕ = 0. To start lets assume a power law density
of states for the bath more precisely using the low-energy
parametrization of the bath hybridization ν(ε) �

[ε→0+ ]
η ε1+s , we

obtain

±ϕ = R↓↑(ϕ) − R↑↓(ϕ)

R↓↑(ϕ) + R↑↓(ϕ)
= βzJϕ

K |2zJϕ|s + A

K |2zJϕ|s + B
, (13)

where

K ≡ η |J0(2h/ω)|2,
A ≡ 2

∑
n>0

|Jn(2h/ω)|2 ν ′(nω),

B(T ) ≡ β
∑
n>0

∣∣∣∣Jn

(
2h

ω

)∣∣∣∣
2

ν(nω) coth

(
βnω

2

)
.

Besides the trivial solution ϕ = 0, the self-consistent mean-
field equation (13) admits nonzero solutions

|ϕ| = 1

2 T
eq
c

[
B(T )

K

±sgn(J ) [A/B(T )] T
eq
c − T

T ∓ sgn(J ) T
eq
c

]1/s

. (14)

Equation (14) is quite rich and its analysis below will tell us
about (1) the critical temperature, (2) the nature of the ordered
phase (and the stability of the nontrivial solutions), (3) the
critical exponent, and (4) the nature of the phase transition.

Note that ϕ in Eq. (14) must vanish continuously when
crossing a second-order phase transition. For a bath with a
sub-Ohmic low-energy behavior, −1 � s < 0, this implies
that the corresponding critical temperature Tc is identical
to the equilibrium case: Tc = T

eq
c . Thereafter, unless stated

otherwise, we shall focus on baths with a super-Ohmic low-
energy behavior s > 0. In this case, the critical temperature
is the nontrivial solution of Tc = ±sgn(J ) [A/B(Tc)] T

eq
c .

Before solving explicitly for Tc, one can already remark
that Tc must be larger than T

eq
c so that the numerator and

denominator of Eq. (14) have the same sign for T
eq
c < T < Tc,

ensuring a well-defined nonzero magnetization solution in that
temperature range.

Let us now solve for Tc for a more general bath density of
states by considering the case when h � ω, for which only the
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5 10-4

FIG. 1. (Color online) Mean-field magnetization |ϕ| as a function
of the temperature T of the bath (super-Ohmic case, s = 1) for
different values of the drive h given by the key: h = 0 (equilibrium),
h � ω, h ∼ ω, and h > ω. The driving frequency is chosen to be
ω = zJ = T eq

c . The critical temperature for h � ω, Tc = (1 + s)T eq
c ,

is computed exactly in Eq. (16). In the temperature range T eq
c < T <

Tc, |ϕ| ∼ (h/ω)2/sω/zJ .

n = 1 mode contributes significantly (because of the stronger
power decay of the Bessel functions for larger n’s). In this
case, the critical temperature Tc is determined by

tanh

(
ω

2 Tc

)
= ±sgn(J )

1

2T
eq
c

ν(ω)

ν ′(ω)
. (15)

Note that Eq. (15) has a finite solution only if the norm of the
right-hand side is smaller than unity.

Importantly, when ν ′(ω) > 0, the type of order is dictated
by the sign of J in the ordinary way: J > 0 for a ferromagnet,
J < 0 for an antiferromagnet. However, it is noteworthy that
driving can turn a ferromagnet into an antiferromagnet and vice
versa when ν ′(ω) < 0. The choice of sign in Eq. (15) that yields
a positive transition in this case is the opposite of the common
Ising model: here when J > 0, there is an antiferromagnetic
solution, and when J < 0, there is a ferromagnetic solution.

Equation (15) can be solved analytically when the right-
hand side of the equation is much smaller than unity,
ν(ω)/|ν ′(ω)| � T

eq
c , yielding the critical temperature

Tc ≈ T eq
c |ω ν ′(ω)|/ν(ω). (16)

Equation (16) transparently elucidates that by judiciously
choosing the driving frequency or engineering the bath, or
both, one can achieve a rather large critical temperatures
Tc, much larger than the one for the undriven system T

eq
c .

To exemplify this point, let us assume that the low-energy
energy behavior of the hybridization ν(ε) ∼ ε1+s (s > 0)
holds up to the scale ω. This yields Tc ≈ (1 + s) T

eq
c > T

eq
c .

See also Fig. 1 where we plotted the magnetization as a
function of the temperature for different drive strengths. In
the temperature range T

eq
c < T < Tc, it can be seen from Eq.

(14) that the drive is responsible for a finite magnetization
on the order of |ϕ| ∼ (h/ω)2/sω/zJ . This explains why in
the limit 0 ← h � ω the equilibrium results are recovered. In
Appendix A we show the stability of this nontrivial mean-field
solution below Tc. In Fig. 2 we summarized the nonequilibrium
phase diagram in the temperature-drive plane by numerically
solving for the critical temperatures in all the regimes of h

and ω. Beyond the super-Ohmic case, Eq. (15) suggests that
one can engineer very high critical temperatures by using the
edges of the bath spectrum to realize very large |ν ′(ω)| or by
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FIG. 2. (Color online) Nonequilibrium phase diagram in the
drive vs temperature plane for different values of ω given in the
key, for the case of the super-Ohmic bath (s = 1).

embedding the spins in optical cavities with a finely tunable
sharply peaked spectrum.

Equation (14) also readily provides the mean-field critical
exponent for the order parameter as function of temperature
βT = 1/s to be contrasted with the undriven case where the
mean-field exponent is β

eq
T = 1/2. This means that, even at

the mean-field level, driving changes the nature the phase
transition.

Finally, Eq. (14) predicts a diverging magnetization at
T = T

eq
c . Although it was derived under the assumption that

ϕ is small, this suggests that the original self-consistency
Eq. (10) may have nontrivial solutions ϕ �= 0 which are not
connected continuously to ϕ = 0 and signaling the presence
of a first-order phase transition. For example, in the case
of baths with a sub-Ohmic low-energy behavior (−1 � s <

0), the denominator of Eq. (10) given in Eq. (11b) has
1/(ϕ − ϕn) divergences located at every ϕn ≡ nω/2zJ for
n = 1, . . . ,�2zJ/ω�. In turn, this implies the presence of a
collection of nontrivial solutions of the self-consistent Eq.
(10) close to these ϕn’s. For baths with a super-Ohmic
low-energy behavior, the denominator Eq. (11b) is well
behaved and we investigate the possibility of a first-order
phase transition by solving Eq. (10) numerically. In Fig. 3

 0

 1

1+s

 0  2  4  6  8  10

T
/T

ceq

ω/zJ

Ferro/AF

h/ω =  0.1

Paramagnet

2nd order
1st order

FIG. 3. (Color online) Nonequilibrium phase diagram in temper-
ature vs drive frequency for fixed h/ω = 0.1 and for the case of a
super-Ohmic bath (s = 1). The red circle indicates the location of the
tricritical point separating a second order (plain) line from first-order
(dashed) line.

we show the nonequilibrium phase diagram in the T -ω plane
for a fixed h/ω. Starting from small drive frequencies, the
line of second-order phase transitions reaches a tricritical
point located at [ω∗(h/ω),T ∗

c = T
eq
c ] and turns into a line of

first-order transitions for larger ω.

V. DISCUSSION

Besides the demonstration that driven-dissipative condi-
tions can strongly reshape the phase diagram of the Ising
model, this study allows us to shine a new light on the fate
of the universal properties of this model and, by extension,
other similar models when driven to nonequilibrium steady
states. When the drive is finite, we have found that the critical
exponents (and the critical temperature) are strongly dependent
on the details of the bath, thus losing much of their universality.
However, a certain universality still subsists in the fact that
only the low-energy behavior of the bath determines those new
critical exponents. In Appendix B we consolidate the validity
of our mean-field results in finite dimensions by means of a
numerical Monte Carlo approach.
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APPENDIX A: STABILITY OF THE
MEAN-FIELD SOLUTIONS

Here we check whether the nonzero mean-field solutions
in Eq. (19) are stable. We start with a master equation for the
probabilities P↑ and P↓ in terms of the rates R↓↑ and R↑↓:

Ṗ↑ = − R↑↓ P↑ + R↓↑ P↓,

Ṗ↓ = + R↑↓ P↑ − R↓↑ P↓.

Using P↑ = (1 ± ϕ)/2 and P↓ = (1 ∓ ϕ)/2 for the ferromag-
netic and antiferromagnetic cases, respectively, yields

±ϕ̇ =[R↓↑(ϕ) − R↑↓(ϕ)] − [R↓↑(ϕ) + R↑↓(ϕ)] (±ϕ)

or, equivalently,

ϕ̇ = − [R↓↑(ϕ) + R↑↓(ϕ)]

{
ϕ ∓ R↓↑(ϕ) − R↑↓(ϕ)

R↓↑(ϕ) + R↑↓(ϕ)

}
.

The quantity in curly brackets vanishes at the stationary
point, and gives precisely the condition in Eq. (14). Let ϕ̄

be this stationary point solution. To consider the stability of
fluctuations, we expand ϕ = ϕ̄ + δϕ. The expansion of the
terms in curly brackets start at order δϕ (because ϕ̄ is where it
vanishes); so to lowest order, the term in square brackets does
not need to be expanded. The linearized stability equation
becomes

˙δϕ = − [R↓↑(ϕ̄) + R↑↓(ϕ̄)][1 ∓ C(ϕ̄)] δϕ,

where

C(ϕ̄) = d

dϕ

(
R↓↑(ϕ) − R↑↓(ϕ)

R↓↑(ϕ) + R↑↓(ϕ)

)∣∣∣∣
ϕ̄

.
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Notice that R↓↑(ϕ̄) + R↑↓(ϕ̄) > 0, so the stability of the
solution rests upon whether [1 ∓ C(ϕ̄)] > 0.

Using Eq. (18) we find

1 ∓ C(ϕ̄) = ∓ βzJ
d

dϕ

K |2zJϕ|s + A

K |2zJϕ|s + B

∣∣∣∣
ϕ̄

= ∓ βzJ (A − B)

[
d

dϕ

1

K |2zJϕ|s + B

∣∣∣∣
ϕ̄

]
.

The quantity in the square bracket above is always negative.
Therefore, the sign of 1 ∓ C(ϕ̄) is that of ±sgn(J ) (A − B).
Now recall that Tc = ±sgn(J ) [A/B(Tc)] T

eq
c is larger than

T
eq
c for the nontrivial magnetization to be well defined;

therefore ±sgn(J ) A > B. Thus, ±sgn(J ) (A − B) > B[1 ∓
sgn(J )] � 0. Hence, we conclude that the sign of 1 ∓ C(ϕ̄) is
positive and the solutions we found are stable.

APPENDIX B: NONEQUILIBRIUM
STEADY-STATE MONTE CARLO

The results presented in this paper are strictly exact in the
limit of infinite coordination number (infinite dimensions). To
check that these are not artifacts of the mean-field approxi-
mation, we computed exact numerical solutions by means of
the Monte Carlo algorithm that we adapted to nonequilibrium
steady states. In finite dimension, once the steady state is
reached, the rate at which spins are flipped are still given
by Eq. (11), but now with ε↑ = −J (n↑ − n↓) = −ε↓, where
n↑ (n↓) is the number of spin up (down) neighbors. In practice,
we initialize the lattice with a random spin configuration
and update the configuration by randomly selecting spins and
flipping them with probabilities governed by Eq. (11). Once a

 0
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 0  0.5  1  1.5  2
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|
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FIG. 4. (Color online) 2d Monte Carlo results of the magnetiza-
tion |ϕ| as a function of the temperature T of the bath (super-Ohmic
case, s = 1) at ω = zJ (z = 4) and for different values of the drive
h given in the key (L = 200). Here T c

eq = 2.2691J is the well know
exact 2d critical temperature.

steady state is reached, we measure the averaged magnetization
in the lattice. We then repeat this procedure with different
temperatures and drive strengths.

In Fig. 4 we present the results of such computations on a
2d lattice of size L × L with L = 200 that were averaged over
100 realizations of the nonthermal noise. The bath was taken
to be super-Ohmic with simply ν(ε) ∝ ε1+s and s = 1. Note
that the main qualitative features (i.e., the change of critical
temperature, its trend as a function of h, and the decrease of the
zero-temperature magnetization as a function of h) compare
very well with the mean-field results presented in Fig. 1 of
the paper. The precise value of Tc, as well as the critical
behavior |ϕ| ∼ (Tc − T )s , cannot be accessed reliably within
this numerical approach because of the finite-size effects that
alter the small values of magnetization.
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