
PHYSICAL REVIEW B 92, 174405 (2015)

Skyrmion dynamics in chiral ferromagnets under spin-transfer torque
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We study the dynamics of skyrmions under spin-transfer torque in Dzyaloshinskii-Moriya materials with
easy-axis anisotropy. In particular, we study the motion of a topological skyrmion with skyrmion number Q = 1
and a nontopological skyrmionium with Q = 0 using their linear momentum, virial relations, and numerical
simulations. The nontopological Q = 0 skyrmionium is accelerated in the direction of the current flow and it
either reaches a steady state with constant velocity, or it is elongated to infinity. The steady-state velocity is
given by a balance between current and dissipation and has an upper limit. In contrast, the topological Q = 1
skyrmion converges to a steady state with constant velocity at an angle to the current flow. When the spin current
stops the Q = 1 skyrmion is spontaneously pinned, whereas the Q = 0 skyrmionium continues propagation.
Exact solutions for the propagating skyrmionium are identified as solutions of equations given numerically in a
previous work. Further exact results for propagating skyrmions are given in the case of the pure exchange model.
The traveling solutions provide arguments that a spin-polarized current will cause rigid motion of a skyrmion or
a skyrmionium.
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I. INTRODUCTION

Soliton structures are found in ferromagnets and they can
be considered as an encoding of magnetic information which
is robust both under temperature and external probes. Stable
topological solitons with the structure of a skyrmion had been
predicted in the presence of the Dzyaloshinskii-Moriya (DM)
interaction [1,2] and they were observed in recent years as iso-
lated structures [3,4] or forming lattices [5–7]. In the presence
of easy-axis anisotropy there are topological skyrmions with
skyrmion number Q = 1 as well as nontopological Q = 0
solitons (2π vortices) [8] and related equilibrium states in
confined magnetic elements [9].

Skyrmions could be the stable and robust entities that
are needed for the technology of recording and transferring
information, currently mainly obtained in magnetic media
using domain walls [10]. The propagation of magnetic infor-
mation is done most conveniently by the injection of electrical
spin-polarized current. Single skyrmions and skyrmion lattices
can be set in motion suggesting a promising technique for the
manipulation of magnetic information [11–17]. Propagation of
skyrmions by spin current or the related spin-Hall effect may
be a promising strategy for the implementation of racetrack
memories [18].

The existence of two species of skyrmions (Q = 0 and
Q �= 0) has allowed theoretical predictions for dramatically
different dynamical behaviors [19]. We show here that spin
torque accelerates a Q = 0 skyrmionium and we describe
the process theoretically, while the study is complemented by
numerical simulations. The skyrmionium may reach a steady
state or it may absorb energy from the current and expand
without limit. A skyrmionium propagating even when the
external probe is switched off can be obtained. The situation is
contrasted to the more well-studied case of a Q = 1 skyrmion
under spin torque.

The outline of the paper is the following. Section II gives a
description of the Landau-Lifshitz model including damping
and spin-transfer torques and provides the main theoretical

tools. Section III is on the dynamics of a Q = 0 skyrmionium
and Sec. IV is on the dynamics of a Q = 1 skyrmion.
Section V contains our concluding remarks. An Appendix
gives analytical results on the pure exchange model.

II. MAGNETIZATION DYNAMICS UNDER
SPIN-TRANSFER TORQUE

We assume a thin ferromagnetic film with a Dzyaloshinksii-
Moriya (DM) interaction. Let M(x,y,t) be the magnetization
vector with Ms the saturation magnetization and define the
normalized magnetization m = M/Ms , so that m2 = 1. The
conservative Landau-Lifshitz (LL) equation for the statics and
dynamics of the magnetization is

∂t m = −m × f (1)

and is valid in the absence of damping and external probes.
We consider an effective field f which includes an exchange
interaction with constant A, an easy-axis anisotropy perpen-
dicular to the (x1,x2) plane of the film with constant K , and a
DM interaction with constant D [2]. If the energy is W then
the effective field f = −δW/δm is

f = �m + κ m3ê3

− 2λ [∂2m3 ê1 − ∂1m3 ê2 + (∂1m2 − ∂2m1) ê3], (2)

where we have used �D = 2A/|D| as the unit of length. The
parameter

κ ≡ K

K0
, K0 = D2

4A
(3)

is the rationalized (dimensionless) anisotropy constant and λ =
D/|D| = ±1 will be referred to as the chirality. We choose
chirality λ = 1 in all of our numerical calculations, while κ

is taken to be positive (easy-axis anisotropy). We have not
included the demagnetizing field in Eq. (2) because it does not
affect skyrmion configurations in a qualitatively significant
way [20]; it introduces a dependence of the skyrmion size
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on the film thickness [21]. The time variable t in Eq. (4)
is measured in units of τ0 = 2AMs/(γD2), where γ is the
gyromagnetic ratio.

When a spin-polarized current is flowing in the plane of
the film, say, in the x1 direction, and we also include damping
effects, the magnetization obeys the Landau-Lifshitz-Gilbert
equation with two additional terms for the spin-transfer
torque [22–24]:

(∂t + u ∂1)m = −m × f + m × (α∂t + βu ∂1)m. (4)

The dissipation constant is α, while u is the effective spin
velocity parallel to the spin current and β is the nonadiabatic
spin-transfer torque parameter.

In the absence of spin torque, that is, for u = 0 the ground
state of the model is the spiral state for sufficiently small
anisotropy. For κ > κc = π2/4 ≈ 2.4674 the ground state is
either of the two uniform ferromagnetic states m = (0,0,±1).
In the latter case, skyrmions are excited states and they are
classified by the skyrmion number defined as

Q = 1

4π

∫
q d2x, q = 1

2
εμνm · (∂νm × ∂μm), (5)

where q is called the topological density. The skyrmion
number Q is integer-valued (Q = 0,±1,±2, . . .) for all
magnetic configurations such that m = (0,0,±1) at spatial
infinity. For definiteness we will assume m = (0,0,1) in all
our calculations.

Axially symmetric skyrmion configurations are con-
veniently described in terms of the standard spherical
parametrization given by

m1 = sin � cos �, m2 = sin � sin �, m3 = cos � (6)

with the ansatz

� = θ (ρ), � = φ + π/2, (7)

where (ρ,φ) are polar coordinates. Solving Eq. (1) with
boundary conditions θ (ρ = 0) = π and θ (ρ → ∞) = 0 leads
to a static skyrmion with Q = 1 shown in Fig. 1. If the
boundary conditions are θ (ρ = 0) = 2π,θ (ρ → ∞) = 0 a
Q = 0 configuration is found [8], which has been called a
“skyrmionium” [19,25] and is shown in Fig. 2.

Equation (4) can be written in the form

∂t m = −m × g,

g = 1

1 + α2
[ f + α m × f − (β − α)u ∂1m

−α(β − α)u m × ∂1m]. (8)

The time derivative of the topological density is

q̇ = −εμν ∂μ(g · ∂νm) (9)

as can be found by a straightforward calculation. We now
define the moments of the topological density

Iμ =
∫

xμq d2x, μ = 1,2 (10)

and we have the fundamental result that these are conserved
quantities, i.e., İμ = 0, within the conservative Eq. (1) in an
infinite film [26,27]. For the proof we set g = f in Eq. (9) and
the details for the specific f of Eq. (2) are given in Ref. [19].

FIG. 1. Axially symmetric (Q = 1) skyrmion represented
through the projection (m1,m2) of the magnetization vector on the
plane. It is calculated as a static solution of Eq. (1) for anisotropy
κ = 3.

The moments Iμ are no longer conserved within Eq. (8) due
to the damping and spin torque terms and we find

(1 + α2)İ1 = −(β − α)u d12 + α D2 + (1 + αβ)u (4πQ),

(11)
(1 + α2)İ2 = (β − α)u d11 − α D1,

where we have used the notation

dμν =
∫

(∂μm · ∂νm) d2x, μ,ν = 1,2,

(12)
Dμ =

∫
(m × f ) · ∂μm d2x.

FIG. 2. Axially symmetric (Q = 0) skyrmionium represented
through the projection (m1,m2) of the magnetization vector on the
plane It is calculated as a static solution of Eq. (1) for anisotropy
κ = 3.
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Equations (11) give an explicit result since they may be applied
for any magnetic configuration.

Let us consider a skyrmion which is initially static within
the conservative LL Eq. (1) and we suddenly apply an electrical
current according to Eq. (4). This will start to move and the
overall motion is given by Eqs. (11). As a next step we will
assume that it will eventually reach a steady state with velocity
v = (v1,v2). We may then write the traveling wave ansatz for
the magnetization

m(x1,x2,t) = m0(ξ1,ξ2; v1,v2),
(13)

ξ1 ≡ x1 − v1t, ξ2 = x2 − v2t

so that ∂t m = −vν∂νm with ν = 1,2. Inserting this in Eq. (4)
we obtain

u ∂1m − vν∂νm = −m × f + m × (β u ∂1m − αvν ∂νm).

(14)

We will assume that ∂1,∂2 in the above equation denote
derivatives with respect to ξ1,ξ2.

We may now take the cross product of both sides in Eq. (14)
with ∂μm for μ = 1 or 2 and then contract with m. In the
result, the term containing the effective field f (i.e., the term
due to the conservative part of the equation) is written as a
total derivative [26,27]:

− f · ∂μm = ∂νσμν, (15)

where the explicit form of the tensor σμν for the effective
field (2) is given in Ref. [19]. Upon integrating over all space
the total derivative (15) vanishes and we obtain the pair of
virial relations [28,29]

(−4πQ + αd21)v1 + αd22v2 = βu d21 − u (4πQ),
(16)

αd11v1 + (4πQ + αd12)v2 = βu d11.

Some general conclusions can be drawn from Eqs. (11)
and (16). The dynamics and the steady-state velocity (v1,v2)
can be obtained in particular cases as will be discussed in the
next sections for the cases of a skyrmionium and a skyrmion.

III. TRAVELING Q = 0 SKYRMIONIUM

Let us consider the Q = 0 skyrmionium of Fig. 2 which
is a static solution of Eq. (1) and we suddenly apply a
spin-polarized current. In order to follow how the initial
skyrmionium will be accelerated we will follow its linear
momentum which is defined via the conserved Iμ of Eq. (10)
as [26,27]

Pμ = εμνIν, μ,ν = 1 or 2. (17)

To be sure, the above quantities have the meaning of a linear
momentum within the Hamiltonian equations (1). We will
though extend their use in the full model (4). The time
derivatives of the components of the linear momentum are
given by Eqs. (11) applied for Q = 0:

(1 + α2)Ṗ1 = (β − α)u d11 − α D1,
(18)

(1 + α2)Ṗ2 = (β − α)u d12 − α D2.

These relations give a simple result when we apply them for
the initial skyrmionium which is a static solution of Eq. (1)

(thus Dμ = 0) and is axially symmetric (thus d12 = 0). We
obtain

Ṗ1 = β − α

1 + α2
u d11, Ṗ2 = 0. (19)

The skyrmionium is accelerated acquiring a linear momentum
component along the x1 direction only. The acceleration is zero
when β = α and this point will be clarified in the following
when we present solutions of Eq. (4).

If the skyrmionium eventually reaches a traveling steady
state then the virial relations (16) apply. For Q = 0 they reduce
to a simple form and give the velocity of the steady state:(

d11 d12

d21 d22

)(
αv1 − βu

αv2

)
=

(
0
0

)
⇒

{
v1 = β

α
u,

v2 = 0,
(20)

provided det(dμν) �= 0. Therefore, the skyrmionium in steady
state moves in the direction of the current. The presence of
dissipation is crucial as there is apparently no steady state for
α = 0. The acceleration process along the axis of the current
described by Eqs. (19) is compatible with the steady-state
velocity in Eq. (20).

We can find exact traveling solutions for a skyrmionium
under spin-transfer torque. In order to show how this can be
achieved, we start by considering the special case β = α, for
which Eq. (4) becomes

(∂t + u ∂1)m = −m × f + α m × (∂t + u ∂1)m. (21)

We look for traveling wave solutions of the form (13) and we
choose v1 = u, v2 = 0. We have ∂t m = −u∂1m, which is used
to reduce Eq. (21) to m × f = 0. Thus, if we choose n(x1,x2)
to be a static solution of Eq. (1) then m(x1,x2,t) = n(ξ1,x2)
gives a configuration which satisfies Eq. (21) and is a traveling
solution with velocity (v1,v2) = (u,0). In conclusion, the static
skyrmionium solution of the conservative LL Eq. (1) (shown
in Fig. 2) is a traveling solution of the full equation (4) for the
case β = α. That also explains the vanishing acceleration in
Eqs. (19). This mathematical result has the following physical
content. If we apply spin-polarized current to an initially
static skyrmionium this is expected to be set into rigid motion
without significant deformations. The same can also be argued
for the traveling skyrmion in the next section.

Let us now generalize the above for β �= α. The traveling
wave ansatz (13) with the choice (v1,v2) = (v,0) is used to
reduce Eq. (4) to

(u − v)∂1m = −m × f + (βu − αv) m × ∂1m. (22)

We now choose v = βu/α and the equation is further reduced
to

v0 ∂1m = m × f , v0 = β − α

α
u. (23)

This equation is identical to that for a steady-state traveling
with a velocity v0 within the conservative LL Eq. (1). Such
states were numerically calculated and studied in Ref. [19].
A family of traveling skyrmioniums were found with ve-
locities up to a critical velocity vc ≈ 0.102. In conclusion,
if we denote the solutions of Eq. (23) by n(x1,x2; v0) then
the form m(x1,x2,t) = n(ξ1,x2; v0) with ξ1 = x1 − vt is a
traveling wave solution of Eq. (4) with velocity v = βu/α.
The condition v0 < vc for the skyrmionium configuration
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FIG. 3. Velocity components (v1,v2) = (Ẋ1,Ẋ2) for a skyrmio-
nium under spin torque with parameter values (25). The expected
velocity at the steady state is (v1,v2) = (0.167,0).

satisfying Eq. (23) becomes in the presence of spin-transfer
torque

v < u + vc. (24)

We have conducted a numerical simulation using the
parameter set

α = 0.06, u = 0.1, β = 0.1. (25)

We use as an initial condition the skyrmionium of Fig. 2 with
κ = 3 and apply the spin current. The expected velocity in the
steady state is given by Eq. (20) and is v1 = 0.167, v2 = 0.
The prediction is confirmed by the numerical simulation. We
define the position of the skyrmionium as (X1,X2) with

Xμ =
∫

xμ(1 − m3) d2x∫
(1 − m3) d2x

. (26)

Figure 3 shows the velocity (v1,v2) = (Ẋ1,Ẋ2) as a function
of time. The skyrmionium is accelerated and the change of
linear momentum at t = 0 verifies the prediction Ṗ1 = 0.34
calculated by Eq. (19) when we use the numerically calculated
value d11 = 57.1. The velocity at t = 0 is v1(t = 0) ≈ u =
0.1 and it increases to v1(t = 100) = 0.16 at the end of this
simulation. The component v2 acquires some small value at
the initial stages of the simulation and it later goes to zero. The
results have been confirmed also by a simulation in a moving
frame, running for times longer than those shown Fig. 3, where
it is seen that (v1,v2) converge to the expected values at the
steady state.

Figure 4 shows two snapshots of the skyrmionium under
spin torque. At the initial time t = 0 we have the axially sym-
metric static solution of Eq. (1). The accelerated skyrmionium
at t = 40 has velocity v1 = 0.143 and has lost axial symmetry:
its central part has moved lower. It is very similar to the
propagating skyrmionium studied in Ref. [19]. We conclude
that the application of spin current is a method to obtain a
propagating skyrmionium in a steady state. We note that the
skyrmionium continues to travel at its acquired velocity when

FIG. 4. Contour plots of m3 for a skyrmionium under spin
torque with parameter values (25). (Left) The initial condition, at
t = 0, is a static skyrmionium solution of Eq. (1). (Right) The
skyrmionium at t = 40 when it has been accelerated. The inner part
has moved down relative to the outer part. The contour levels plotted
are m3 = 0.9,0.6,0.3,0.0 (solid lines) and m3 = −0.3,−0.6,−0.9
(dashed lines).

the spin current is switched off, irrespectively of whether a
steady state was reached or not. This is in stark contrast to the
dynamics of a skyrmion or to ordinary domain wall dynamics.

Let us now consider a second set of parameter values,

α = 0.04, u = 0.1, β = 0.1, (27)

which gives a velocity for the skyrmionium v = βu/α = 0.25
violating condition (24). In this case the skyrmionium is
accelerated until its velocity approaches the limiting value
u + vc while the configuration becomes elongated along
the x2 axis and eventually reaches the boundaries of our
numerical grid. Presumably, the process would continue until
the skyrmionium configuratiom is destroyed or until it turns to
a domain wall extending to infinity in the x2 direction.

IV. TRAVELING Q = 1 SKYRMION

Let us now consider topologically nontrivial solutions
(Q �= 0) such as the Q = 1 skyrmion of Fig. 1 which is a
static solution of Eq. (1), and suddenly apply a spin-polarized
current. In order to follow the skyrmion as it moves we will
follow the coordinates of its guiding center (R1,R2) defined as
the normalized moments in Eq. (10):

Rμ = Iμ

4πQ
= 1

4πQ

∫
xμq d2x. (28)

They give a measure of the position of a skyrmion and are
conserved quantities as explained in connection with Eqs. (10)
and (9).

The instantaneous velocity (Ṙ1,Ṙ2) is given through
Eqs. (11). For the initial axially symmetric skyrmion solution
of Eq. (1) we have Dμ = 0 and d12 = 0, d11 = d22 = Wex,
where Wex is the exchange energy. Equation (11) gives

Ṙ1 = u
1 + αβ

1 + α2
= u + α

d̄
Ṙ2, Ṙ2 = u

(β − α) d̄

1 + α2
, (29)

where we denoted d̄ = d11/(4πQ) = d22/(4πQ). Thus the
skyrmion will initially have a velocity component in the
direction of the current flow while its velocity component
perpendicular to it depends on the sign of β − α.
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If we now assume that the skyrmion will eventually reach a
propagating steady state then its velocity will satisfy the virial
relations (16). For Q �= 0 we define d̄μν = dμν/(4πQ) and
write the virial relations as

(1 − αd̄12)v1 − αd̄22v2 = (1 − βd̄12)u,
(30)

αd̄11v1 + (1 + αd̄12)v2 = βu d̄11.

These imply that, in general, both components of the velocity
are nonzero, v1,v2 �= 0; therefore, a propagating skyrmion will
move at an angle to the flow of the spin current. Unlike in the
case of a skyrmionium, dissipation is not necessary in order to
obtain a steady state in the case of the skyrmion and Eqs. (30)
give for α = 0 the velocity

v1 = u − βu d̄12, v2 = βu d̄11. (31)

In order to obtain more detailed information on the
propagating skyrmion configuration we study the case β = α

since it emerges again as a special case as seen in Eq. (29).
In a steady state Eq. (30) gives for the skyrmion a velocity
(v1,v2) = (u,0) collinear with the spin current. When we
substitute this in Eq. (14) we obtain the static LL equation
m × f = 0. Thus the argument employed in Sec. III for a
skyrmionium also applies for a skyrmion: a static skyrmion
solution of the conservative LL Eq. (1), which we denote
n(x1,x2), is a traveling solution of the full equation (4) with
m(x1,x2,t) = n(ξ1,x2) and ξ1 = x1 − ut .

It is well known that there are no traveling skyrmion
solutions of Eq. (1), i.e., there are no Q �= 0 skyrmion solutions
of Eq. (23), and this can be rigorously established [26]. There-
fore, the arguments about traveling skyrmionium solutions
following Eq. (23) cannot be applied in the case of skyrmions.

For β �= α a traveling skyrmion should have v2 �= 0 as
shown by Eq. (30), that is, the skyrmion travels at an angle
with respect to the direction of the flow of the spin current.
In the case β �= α we could not find exact traveling wave
solutions of Eq. (4), for the effective field (2). Exact results
are though indeed obtained for the pure exchange model in the
Appendix.

For small deviations from the simple case β = α and
(v1,v2) = (u,0) we may assume that the skyrmion retains
approximately axial symmetry, and thus we have a diagonal
d̄μν = d̄ δμν , where d̄ is a constant. Equations (30) have now
a relatively simple solution:

v1 = u
1 + αβd̄2

1 + (αd̄)2
= u + αd̄ v2, v2 = u

(β − α) d̄

1 + (αd̄)2
. (32)

For the pure exchange model d̄ = 1 (see the Appendix), while
for other models such as in Eq. (2) we have d̄ > 1 calculated by
substituting the static skyrmion solution of Eq. (1) in Eq. (12).
Equation (32) gives the so-called mobility relation, i.e., a linear
relation between the velocity and the current.

In order to check the theoretical predictions we have
conducted a numerical simulation using the parameter
set

α = 0.2, u = 0.1, β = 0.5, (33)

with large values for α,β and β − α. We use as an initial
condition the skyrmion of Fig. 1 with κ = 3 and apply the
spin current. The numerically found velocity for the skyrmion

FIG. 5. Simulation results for the velocity components (v1,v2) =
Ṙ1,Ṙ2 as a function of time t for a skyrmion under spin torque with
parameter values (33).

is shown in Fig. 5. We initially have Ṙ1 = 0.106, Ṙ2 = 0.044;
the velocity presents oscillations and eventually converges
to constant values (v1,v2) = (0.1140,0.0436). The expected
initial velocity is found from Eqs. (29) and it is Ṙ1 =
0.106, Ṙ2 = 0.046, where we have used the numerically
calculated value for the exchange energy Wex = 20.08 ⇒
d̄ = 1.598. The final velocity is in excellent agreement with
the velocity at a steady state predicted by Eq. (32) which
gives (v1,v2) = (0.1139,0.0435), where we assume that the
initial skyrmion profile is not significantly changed. The
skyrmion configuration is indeed not visibly distorted during
the simulation compared to the initial axially symmetric
skyrmion.

We have also conducted a numerical simulation using
the parameter set (27) and the results are again in excellent
agreement with the predictions of Eqs. (29) and (32).

We finally note that the skyrmion is pinned at its final
position when the spin current is switched off. This is
contrasted with the dynamics of a skyrmionium which travels
at a constant velocity also in the absence of external forces
(and damping).

V. CONCLUDING REMARKS

We have studied the dynamics under spin torque of
nontopological (Q = 0) and topological (Q �= 0) skyrmions
in films of Dzyaloshinskii-Moriya materials with easy-axis
anisotropy. Analytical results are obtained using the equations
for the linear momentum (for Q = 0) or the guiding center
(for Q �= 0), and virial relations. The study is complemented
by a set of numerical simulations. Furthermore, we obtain
exact solutions of the Landau-Lifshitz equation including spin
torques, given in Eq. (4), for some particular cases. The
traveling solutions obtained provide arguments that a spin
polarized current will cause rigid motion of a skyrmion or a
skyrmionium. This result is applicable not only for the solitons
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studied in the present work but also for other models, e.g., for
driven motion of magnetic bubbles.

The Q = 0 skyrmionium is accelerated by the spin torque
and it continues moving after switching off the current.
This Newtonian dynamics was also observed in the case of
the skyrmionium under an external field gradient [19]. It is
dramatically different than the more well-studied dynamics
of a skyrmion [12,15,16], which is spontaneously pinned
in the absence of external torques. On the other hand, the
skyrmionium motion presents some similarities with the
skyrmion motion in a stripe geometry [16].

Model (1) has more solutions, beyond the skyrmion and the
skyrmionium studied in the present paper. Axially symmetric
static solutions exist where � in Eq. (7) takes the values nπ ,
with n an integer, at spatial infinity: θ (ρ → ∞) = nπ [8].
Their dynamical properties depend crucially on their skyrmion
number as our results, by example of the skyrmion and the
skyrmionium, have shown. The skyrmion number of an nπ -
skyrmion is easily found to be Q = 0 for n even and Q = 1
for n odd [19]. The formal discussion for the dynamics of a
skyrmion in Sec. IV remains valid for all nπ -skyrmions with
Q = 1, while those with Q = 0 should follow the dynamics
discussed for a skyrmionium in Sec. III.

Our methods can be also applied to simpler one-
dimensional models (wires) provided static domain wall
solutions of Eq. (1) exist.

APPENDIX: PURE EXCHANGE MODEL

If we set f = �m we have the so-called pure exchange
model and we will present analytic results which elucidate
the discussion in Sec. IV. In the pure exchange model the
Bogomol’nyi relations [30,31]

∂1m = m × ∂2m, ∂2m = −m × ∂1m, (A1)

which contain only first order derivatives, are sufficient
for obtaining static solutions of Eq. (1), i.e., solutions for

m × f = 0. A large class of Q �= 0 skyrmion solutions can
be found by solving (A1). Of those, the axially symmetric
Q = 1 skyrmion configuration of the form (7) will be denoted
m = n(x1,x2) and reads

n1 = − 2ax2

ρ2 + a2
, n2 = 2ax1

ρ2 + a2
, n3 = ρ2 − a2

ρ2 + a2
, (A2)

where a is a arbitrary positive constant giving the skyrmion
radius and ρ2 = x2

1 + x2
2 . Configuration (A2) is similar in its

gross features to that shown in Fig. 1.
We turn to Eq. (14) for a traveling steady state with velocity

(v1,v2) and we require{
u − v1 = −αv2

v2 = βu − αv1
⇒

{
v1 = 1+αβ

1+α2 u,

v2 = β−α

1+α2 u.
(A3)

Then, Eq. (14) simplifies to

(αv2 ∂1 + v2∂2)m = m × f + m × (αv2∂2 − v2 ∂1)m. (A4)

Under the Bogomol’nyi relations (A1) the terms on the
left-hand side cancel with the last terms on the right-hand
side, which originate in the damping and the nonadiabatic spin
torque. Since the same Bogomol’nyi relations are sufficient
for the vanishing of the first term on the right-hand side,
we conclude that relations (A1) are sufficient conditions for
solutions of Eq. (A4).

Therefore, any solution m = n(x1,x2) of Eqs. (A1), such as
the skyrmion in Eq. (A2), is a traveling solution m(x1,x2,t) =
n(ξ1,ξ2) of the full Eq. (4) with spin current and damping, with
a velocity given by Eq. (A3).

Regarding calculations presented in Sec. IV it is useful to
note that skyrmion solutions with Q �= 0 which satisfy (A1)
have exchange energy Wex = 4πQ [31]. Thus, for axially
symmetric skyrmions, such as (A2), the tensor dμν , defined
in Eq. (12), is diagonal with d̄μν = δμν . We then see that the
velocity in Eq. (A3) coincides with that given in Eq. (32)
applied for d̄ = 1.
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