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Magnetization plateaus of an easy-axis kagome antiferromagnet with extended interactions
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We investigate the properties in finite magnetic field of an extended anisotropic XXZ spin-1/2 model on
the kagome lattice, originally introduced by Balents, Fisher, and Girvin [Phys. Rev. B 65, 224412 (2002)]. The
magnetization curve displays plateaus at magnetization m = 1/6 and 1/3 when the anisotropy is large. Using
low-energy effective constrained models (quantum loop and quantum dimer models), we discuss the nature of
the plateau phases, found to be crystals that break discrete rotation and/or translation symmetries. Large-scale
quantum Monte Carlo simulations were carried out in particular for the m = 1/6 plateau. We first map out the
phase diagram of the effective quantum loop model with an additional loop-loop interaction to find stripe order
around the point relevant for the original model as well as a topological Z2 spin liquid. The existence of a stripe
crystalline phase is further evidenced by measuring both standard structure factor and entanglement entropy of
the original microscopic model.
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I. INTRODUCTION

The study of the disruption of the ordering tendency in
low-dimensional antiferromagnets at zero temperature and the
subsequent emergence of unconventional phases is an active
topic of research, on both theoretical or experimental fronts.
Frustrating interactions, quantum fluctuations, or imposition of
a magnetic field are among the main ingredients to destabilize
the antiferromagnetic long-range order [1]. Considerable ef-
forts have been devoted to studying and characterizing the
resulting phases of matter, which may assume another type
of nonmagnetic ordering (such as crystalline states of singlet
valence bonds), or may not exhibit any kind of local order at
all (quantum spin liquids [2]).

Two-dimensional nonbipartite lattice with antiferromag-
netic interactions between spin-1/2 moments are among the
most studied, as antiferromagnetic order is most severely chal-
lenged by quantum fluctuations there. The recent numerical
findings of topological spin liquid phases in the realistic SU(2)
kagome-lattice antiferromagnet [3–5], or its XXZ version [6]
provide examples of stabilization of such exotic phases of
matter. Previously, Z2 topological spin liquids were found
in toy models, such as constrained quantum dimer models
(QDM) [7] on the frustrated triangular [8] or kagome [9]
lattices. These simplified models advantageously allow for
a better analytical handle and understanding of the physics
of spin liquids, but their connection to SU(2) microscopic
Hamiltonians is not always direct.

Another route to realizing exotic phases of matter is
to start from a model with highly degenerate manifold of
ground states (ice manifold) obeying local constraints and
then derive an effective Hamiltonian describing the emergent
degrees of freedom in this manifold [10–12]. Following
this strategy, Balents, Fisher, and Girvin (BFG) introduced
a spin-1/2 XXZ model with extended interactions on the
kagome lattice [10]. Using a generalized QDM derived for
low energies, these authors argued that this system hosted
a topological gapped Z2 spin liquid phase [10], which was
further confirmed numerically in subsequent works [13–15].
One of the hallmarks of a Z2 liquid phase is the existence of

a topological correction to entanglement entropy, which was
shown to be present in the BFG model [16].

In considering the nature of the (gapped) phases resulting
from the destruction of antiferromagnetic order, one important
guiding principle is provided by a general statement about the
relation between the presence/absence of an excitation gap and
commensurability. For instance, it can be rigorously shown
[17,18] that a given spin system (in the absence of magnetic
field) is gapless when the value of total spin per unit cell is
an half-odd integer (this is the case for, e.g., the spin-1/2
Heisenberg model on the kagome lattice) and the ground state
is nondegenerate. That is, if we have a featureless liquidlike
ground state with an excitation gap, the state necessarily has a
hidden degeneracy (probably of topological origin). A simpler
version of this argument [19] applies to any spin-S systems
with U (1) symmetry and is of direct relevance to magnetization
plateaus (see [1] for a review): A unique ground state with
a gap is possible only when the number of spins q within
a lattice unit cell and the magnetization m per site satisfy
q(S − m) ∈ Z. Recently, a field-theoretical meaning was given
to this relation [20] and it was predicted that when the q(S − m)
is a simple (nonintegral) rational number, we may have gapped
featureless liquid phases (i.e., spin-liquid plateaus) as well
as more conventional plateaus with magnetic superstructures.
The search for microscopic models that potentially host these
spin-liquid plateaus formed in high magnetic fields is quite
intriguing in the light of both the field control of spin liquids
[21] and a recent theoretical report [22].

In this paper we will investigate the ground-state phases
of the BFG model in the presence of a magnetic field,
which, as we will see, exhibits large magnetization plateaus
at magnetization per site m = 1/6 and 1/3 as well as the one
at m = 0 (the gapped spin liquid reported in Ref. [10]). On
these plateaus, the low-energy physics is also well captured
by effective constrained models on a triangular lattice: a
generalized QDM for the m = 0 plateau [10], the usual QDM
for m = 1/3, and a quantum loop model (QLM) for m = 1/6.
While much is known already about the nature of the m = 1/3
plateau thanks to numerous extensive studies [8,23–29] done
for the QDM on the triangular lattice, the phase diagram of

1098-0121/2015/92(17)/174402(14) 174402-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.65.224412
http://dx.doi.org/10.1103/PhysRevB.65.224412
http://dx.doi.org/10.1103/PhysRevB.65.224412
http://dx.doi.org/10.1103/PhysRevB.65.224412
http://dx.doi.org/10.1103/PhysRevB.92.174402


X. PLAT, F. ALET, S. CAPPONI, AND K. TOTSUKA PHYSICAL REVIEW B 92, 174402 (2015)

the QLM, which is of direct relevance to the m = 1/6 plateau,
is not known to our best knowledge. We will investigate it
in details using simple analytical considerations and quantum
Monte Carlo (QMC) simulations.

The paper is organized as follows. In Sec. II we present
the spin-1/2 model considered in this study and provide
the low-energy mapping to constrained models valid for the
magnetization plateaus at m = 1/6 (QLM) and 1/3 (QDM).
We also review some key results obtained previously when no
magnetic field is present. Section III is devoted to a complete
mapping of the phase diagram of the QLM on the triangular
lattice. For the QLM with only the kinetic term, that is relevant
to the original spin model, we find that the ground state of
the QLM displays crystalline behavior with a spontaneous
breaking of sixfold rotation symmetry, but not of translation
symmetry. We will then turn, in Sec. IV, to large-scale
numerical simulations of the original microscopic spin model
at m = 1/6 using direct QMC simulations. Computation of
the diagonal spin structure factor confirms the existence of
a stripe ordering of the down spins with a moderately large
correlation length. The presence of this crystalline phase
is further corroborated using Rényi entanglement entropy.
Conclusions are given in Sec. V.

II. EXTENDED X X Z MODEL IN A MAGNETIC FIELD ON
THE KAGOME LATTICE

A. Microscopic model

In the search for simple microscopic models (e.g., with two-
spin interactions) hosting quantum spin liquid phases, BFG
introduced a spin-1/2 XXZ model on the kagome lattice [10]
with the aim to reproduce, in a certain regime of parameters,
the physics of a (generalized) quantum dimer model, known for
hosting a Z2 topological spin liquid phase. We reproduce here
their construction for completeness and obtain the effective
Hamiltonians for the plateaus. The Hamiltonian is defined on
the hexagonal plaquettes of the kagome lattice (see Fig. 1) and
reads

H =H0 + Hxy,

H0 =
∑

⎡
⎢⎣Jz

∑

〈i,j〉∈
Sz

i S
z
j − h

∑

i∈
Sz

i

⎤
⎥⎦, (1)

Hxy =
∑

Jxy

∑

〈i,j〉∈
(S+

i S−
j + S−

i S+
j ),

where Si is the spin-1/2 operator. H0 is the diagonal part of the
Hamiltonian made up of the Ising interactions between first,
second, and third neighbors within each plaquette (see Fig. 1
for all the corresponding links) as well as the Zeeman term for a
magnetic field h along the z axis. Note that the third-neighbor
interactions between sites belonging to different hexagons,
shown by the green dashed lines in Fig. 1, are not included
(see Sec. II B for the effect of these neglected interactions).
The second part Hxy contains the spin-flip terms between sites
within the same hexagon. Originally, BFG considered all such
terms on each plaquette, but, as will be clear below, setting
Jxy = 0 for the second and third neighbors does not alter

FIG. 1. (Color online) Kagome lattice with the interactions be-
tween the first (black), second (red), and third (blue) neighbors within
the same hexagonal plaquettes, as included in the model (1). Typical
examples of the third-nearest-neighbor interaction between different
hexagons [that are not included in the Hamiltonian (1)] are shown by
green dashed lines. Others are obtained by space-group operations.

the physical behavior [see Eq. (4)]. Compared to the original
Hamiltonian defined in Ref. [10], we added the magnetic field
term and the coefficient of the Jz terms is modified by a
factor 1/2. The model can also be reformulated in terms of
hardcore bosons, with the boson density playing the role of the
magnetization. In this language, the plateaus at m = 1/6 and
m = 1/3 that we will investigate correspond to 1/3 and 1/6
filling, respectively (and their respective particle-hole values).

In the following we will be interested in the strongly
anisotropic limit Jz � |Jxy | where we will see that the dimer
physics emerges. Since the diagonal part in (1) can be written
as

H0 = 1

2
Jz

∑
(Sz )2 − h

∑
Sz − 3

4
N Jz, (2)

with N the number of hexagons, every state satisfying the

constraint Sz = 0,1,2,3 (depending on the value of h) on

all the plaquettes is a ground state of the classical part H0.
First excited states are separated by a gap of magnitude
Jz. As a consequence, the magnetization curve m(h) (with
normalization m = ∑

i S
z
i /N) displays plateaus of width Jz

at the values m = 0,1/6,1/3 (see the inset of Fig. 2) and
saturation at 1/2 [m = (3 − n↓)/6, where n↓ = 3,2,1,0 is the
number of down spins per hexagon] which are expected to
survive for a finite value of Jxy . As an illustration, we present
in Fig. 2 the magnetization curve in the ground state for a
moderate system size L = 6 and finite small values of Jxy , as
obtained from QMC simulations (see Sec. IV for details and a
finite-size scaling analysis of the size of the m = 1/6 plateau).

The above construction leads to magnetization plateaus
where the ground-states degeneracies scale exponentially with
the system size [10]. Dynamics induced by the off-diagonal
terms will lift this degeneracy, as presented below.
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FIG. 2. (Color online) Ground-state magnetization curves for a
system of size L = 6 and different values of Jxy , in the ground state
(Jz = 1 is taken as the unit of energy). Inset: Magnetization curve
for Jz = 0 (Ising limit). The three plateaus at magnetizations m =
0,1/6,1/3 are clearly visible for the lowest value of the off-diagonal
coupling constant Jxy = −0.06, and gradually disappear as |Jxy | gets
larger.

B. Mapping to generalized quantum dimer models

A simple way to visualize the local constraints Sz =
0,1,2,3 (for all hexagons) in the Ising limit is to faithfully
map the ground-state configurations to those of dimers: draw
a dimer on a link of the triangular lattice formed by the
centers of hexagons when the middle of the link is occupied
by a down spin, and leave the same link empty for an up
spin. The magnetization plateaus m = (3 − n↓)/6 are then
reproduced by having a constraint such that every triangular
lattice site must be touched by n↓ dimers. This procedure is
illustrated in Fig. 3 for the m = 1/6 (n↓ = 2) plateau with two
dimers per site, which allows us to visualize the ground-state
spin configurations of the diagonal part H0 as fully packed
self-avoiding loops on the triangular lattice.

FIG. 3. (Color online) Representation of one of the ground states
of model (1) for Jxy = 0 and m = 1/6 in terms of dimers (red) on the
underlying triangular lattice (blue). Loop configurations are formed
due to the constraint of two dimers per triangular lattice site.

FIG. 4. (Color online) Off-diagonal second-order process of Hxy

on a flippable bow-tie plaquette (green) for n↓ = 3. The antiparallel
spins of two flippable pairs are exchanged, corresponding to a flip of
two parallel dimers on the underlying triangular lattice (blue).

The generalized quantum dimer models appear when
treating Hxy in degenerate perturbation theory. Clearly, first-
order processes do not contribute, since applying the spin-flip
term only once produces configurations with two excited
hexagons, thus outside of the ground-state manifold. At second
order, two types of processes are allowed. The first process
simply flips the same pair of spins twice, merely shifting the
total energy by �E

(2)
diag = −9(1 − m2)N J 2

xy/Jz. The second

process involves a flippable bow-tie plaquette, as pictured in
green in Fig. 4. The two pairs of antiparallel spins are flipped,
generating another state fulfilling the ground-state constraint.
The second-order effective Hamiltonian is thus given by the
ring-exchange Hamiltonian [10]:

H
(2)
eff = −Jring

∑
��

(S+
1 S−

2 S+
3 S−

4 + H.c.), (3)

where the sum runs over all flippable bow-tie plaquettes (labels
1, 2, 3, and 4 denote the exterior sites of the bow ties)
and the ring-exchange amplitude is given by Jring = 4J 2

xy/Jz.
Quite importantly, the sign of Jxy is immaterial which allows
numerical simulations of the original microscopic Hamiltonian
(1) with QMC techniques, by considering the model with
a ferromagnetic Jxy < 0 coupling. Also in order to obtain
the ring-exchange Hamiltonian (3), only the XY interactions
on the nearest-neighbor (J NN

xy ) and the next-nearest-neighbor
(J NNN

xy ) bonds are crucial:

Jring = 2
{(

J NN
xy

)2 + (
J NNN

xy

)2}

Jz

. (4)

From this, one can see, as stated previously, that suppressing
the further-neighbor XY interactions in Hxy [Eq. (1)] does not
alter physics qualitatively and simply rescales Jring by a factor
1/2. We exploit this property in Sec. IV.

In the dimer language, the ring move on a bow tie of the
original lattice corresponds to the flip of two parallel dimers
on a diamond of the dual triangular lattice (Fig. 4). This is
nothing but the off-diagonal term of the quantum dimer model
[7] on a triangular lattice [8], which, as usual, is conveniently
extended with a diagonal potential (V ) term which counts the
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TABLE I. Three plateaus of S = 1/2 BFG model and the
corresponding effective models.

Plateaus q(S − m) Number of dimers/site Effective model

m = 0 3/2 three generalized QDM
m = 1/6 1 two QLM
m = 1/3 1/2 one QDM

number of flippable plaquettes (diamonds):

H
(2)
eff = − t | | + | |

+ V | | + | | .
(5)

In the Ising limit Jz � Jxy , low-energy physics of the BFG
model is expected to be described by this Hamiltonian for
V = 0. The following four-spin interaction [10,13]:

Q4

∑
��

{(
1/2 − Sz

1

)(
1/2 + Sz

2

)(
1/2 − Sz

3

)(
1/2 + Sz

4

)

+ (
1/2 + Sz

1

)(
1/2 − Sz

2

)(
1/2 + Sz

3

)(
1/2 − Sz

4

)}
(6)

(1,2,3,4 label the four spins on a bow tie in a anticlockwise
way) reduces, in the same limit, to the V term (V = Q) as it
counts the number of flippable plaquettes. For the m = 1/3
plateau corresponding to one dimer (or, one ↓ spin) per
hexagon, one may use instead the interhexagon (two-spin)
third-neighbor interaction

J (3)
z

∑
〈i,j〉

interhexagon

Sz
i S

z
j (7)

that is not contained in model (1) to realize the dimer
interaction V = J (3)

z .
Thus, one sees that the effective model is identical for the

three magnetization plateaus, the only difference coming from
the constraint on the Hilbert space. For the constraint of one
dimer per site (corresponding to the plateau m = 1/3), we
have the usual QDM [8], while in the case with two dimers per
site (the plateau at m = 1/6), a QLM is obtained as announced
in the Introduction. The original model derived by BFG [10]
describing the m = 0 plateau corresponds to three dimers per
site. Table I summarizes the nature of the effective models for
the different plateaus.

The mapping to dimer models [including the diagonal V

term in Eq. (5)] allows us to benefit from the accumulated
knowledge on this family of models [7–9,23–30]. QDMs
generically admit a Rokhsar-Kivelson (RK) [7] point V = t ,
where the ground-state wave function is exactly known. For
the QDM on the triangular lattice, the ground state is exactly
shown to be a topological gapped Z2 liquid phase [8,30,31],
which furthermore extends in the region V/t < 1.

In the three-dimer model, BFG confirmed the presence of a
topological phase at the RK point [10], showing in particular
that visons are gapped, implying the presence of deconfined
fractionalized spinons [32]. The authors of Ref. [10] also
speculated that the Z2 liquid phase could extend beyond
the V = 0 point corresponding to the original microscopic

spin model, in contrast to the one-dimer case [8,25] for
which the liquid phase ends at (V/t)c � 0.8 [25]. An exact
diagonalization study [13] of the Hamiltonian (3) showed the
presence of a vison gap in a regime including the BFG point
(V = 0), thereby supporting the above suggestion. However,
the presence of the spin liquid was only firmly established
using QMC simulations on large systems. First, a complete
numerical phase diagram of the model (1) with ferromagnetic
Jxy and h = 0 was obtained [14]: at strongly negative Jxy/Jz,
a planar (i.e., superfluid in the bosonic language) phase
accompanied by the breaking of the U (1) symmetry is found,
as expected. When the magnitude of the spin-flip term was
increased, a continuous phase transition to an apparently
featureless insulating phase was observed. The phase diagram
was also extended to finite temperature [33]. Finally, a direct
evidence of the topological nature of the insulator is obtained
by computing the topological entanglement (Rényi) entropy
[16], which was evaluated as log 2 as expected for a Z2

spin liquid phase. As a consequence of the condensation of
fractionalized excitations, the transition between the planar
phase and the featureless insulator is an exotic 3D XY ∗
quantum critical point [15,34].

While the nature of the phases encountered at the m = 0
and m = 1/3 plateaus is well understood from this previous
set of study, the ground-state physics on the m = 1/6 plateau
has never been investigated to our best knowledge. In the
following, we focus on this situation by performing numerical
simulations first on the effective QLM (Sec. III), and then on
the microscopic spin model (Sec. IV).

III. PHASE DIAGRAM OF THE QUANTUM LOOP MODEL

We consider here the effective model (5) in the case of two
dimers per site, where allowed states are represented by con-
figurations of self-avoiding loops such as represented in Fig. 3.
Motivated by the original spin model Eq. (1) at the m = 1/6
plateau, we are primarily interested in the nature of the ground
state of the effective QLM at V/t = 0, however we will also
investigate the nature of the surrounding phases in the phase
diagram. We first give, in Sec. III A, general arguments on the
structure of the phase diagram as well as on the topological
properties of the loop configurations, before complementing
this analysis in Sec. III B with QMC simulations of the loop
model. Anticipating the results obtained, we present in Fig. 5
the ground-state phase diagram of the QLM on the triangular
lattice to illustrate the following discussion.

A. General considerations of the phase diagram of the quantum
loop model

When V/t → −∞, the ground-state energy is minimized
by configurations where loops form straight lines along one of
the three lattice directions, as shown in the left part of the phase
diagram presented in Fig. 5. As aligned up and down spins
form alternating stripes in the corresponding configurations of
the original spin models (see the right panel of Fig. 12), we
call this a stripe phase. In this gapped ordered phase, some
of the rotations and reflections of the triangular lattice are
spontaneously broken (i.e., the point group changes from C6v

to C2v), leading to the threefold degenerate ground states (in
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V/t1

Non-flippable phase

~ 0.70

Stripe phase Z2 phase

FIG. 5. (Color online) Phase diagram of the QLM Eq. (5) as a function of V/t , containing the three different phases discussed in Sec. III A.
The boundary between stripe phase and Z2 spin liquid is determined using topological degeneracy and the stripe structure factor.

the QDM, the corresponding columnar phase further breaks
translation symmetry).

At the RK point V/t = 1, the ground state is given by the
equal-weighted sum of all fully packed loop configurations
on the triangular lattice. To our best knowledge, the equivalent
classical problem has not been studied before. As the triangular
lattice is nonbipartite, we expect that the loop segment corre-
lations are short ranged, indicating a liquid phase presumably
gapped, as also found for the RK point of the QDM [8].

When V/t > 1, the ground states are readily found to
have zero energy and correspond to nonflippable loop con-
figurations (i.e., for which the kinetic term vanishes), which
is again similar to the staggered phase of the QDM. While
the construction of those states is quite straightforward in the
QDM, we have found that for L × L systems, the QLM accepts
two different families of nonflippable configurations, both of
which are shown in the right part of the phase diagram of Fig. 5.
The first family is obtained by starting from the staggered states
of the QDM [8,23], which are 12-fold degenerate. On the left,
one of those 12 states is represented in red, with only two
of the three types of links (corresponding to the three lattice
directions 0, 1, and 2 in Fig. 6) occupied. A nonflippable loop
configuration can then be generated by adding parallel (blue)
dimers on half of the remaining type of links, for which there
are two possibilities (a one-step translation in the direction
of these parallel dimers also creates a different nonflippable
state). The same prescription can be applied starting from the

Γ
A

M

K

b1

b2

i

ni,2

ni,0

ni,1

FIG. 6. (Color online) Top left: Triangular clusters used in the
QLM study. Bottom left: notations for the loop segment occupation
number. Right: First Brillouin zone of the triangular lattice, with
the reciprocal space vectors b1 and b2. The high symmetry points
K = (4π/3,0), M = (π,π/

√
3), and A = (π,0) required for the

nonflippable states are represented.

other QDM staggered states, leading to a total degeneracy of
2 × 12 = 24. The second family is obtained by tiling the lattice
with the shortest possible triangular loops, as depicted on the
right part of Fig. 5. The degeneracy of this family is readily
found to be 6. Considering the Brillouin zone drawn in the right
panel of Fig. 6, the first family of nonflippable states requires
the cluster to have both A and M points (i.e., L multiple of
4), while the second one needs the K point (i.e., L multiple
of 3). We finally remark that the nature of nonflippable states
(or absence thereof) can be different for other types of clusters
(rectangular clusters for instance).

From these considerations, the point V = 0 lies between
the two limiting cases V/t → −∞ (stripe) and V/t → 1−
(liquid). As both the stripe and liquid phases are gapped, they
should extend in a finite region of phase space close to these
limits, and it is not clear a priori in which phase the point V =
0 is located. Of course, it is also possible that one or several in-
tervening crystalline phases arise: natural candidates are equiv-
alent of plaquette, or

√
12 × √

12 phases observed in QDMs
[8,23,25,35]. This can only be determined by exact numerical
calculations, which will be presented below in Sec. III B.

It is interesting to note at this stage that on a manifold with
nonzero genus (cylinder, torus, etc), the QLM model possesses
topological sectors which can be defined in the same way as
in the QDM case. As illustrated in Fig. 7 for a torus, the parity
of the number of loop segments crossing a dashed line in
either the x or y directions of the torus is conserved by the
dynamics of the Hamiltonian. On the torus, this defines a pair
of Z2 invariants px = ±1 and py = ±1, and thus divides the
full Hilbert space into four distinct topological sectors, which
we label by (px,py). The existence of these four topological
sectors is the key to identify the Z2 spin liquid phase close
to V/t = 1, as, e.g., in the QDM on the triangular lattice [8].
One may wonder if the Z2 spin liquid found here is the same
as that in the usual triangular-lattice QDM since even (odd)
number of dimers exiting from each site in the QLM (QDM)
suggests a mapping to an even (odd) Ising gauge theory [36].
However, this difference is not important in considering the
underlying nature of the spin liquids. In fact, by explicitly
constructing the ground state of the toric code [37] on a
triangular lattice [38], one can show that both spin liquids
share the same quasiparticle (anyon) contents and exhibit the
same ground-state degeneracy originating from the Z2 flux,
which we will use in the following.

In the topological Z2 spin liquid phase, the four topological
sectors (on a torus) correspond to the four different ways of
threading the Z2 flux through the two periods of the system
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px = +1

py = −1

FIG. 7. (Color online) Drawing two lines on the triangular lattice
allows us to define two conserved Z2 invariants (px,py) associated
with the parity of the number of loop segments crossed by the
line. In this example, the number of loop segments pointing in the
vertical y (horizontal x) direction which cross the line is odd (even),
corresponding to py = −1 (px = 1). This number does not depend
on the precise location of the line (parallel lines shifted by one or
several lattice units result in the same parity). The flipping terms of
the Hamiltonian, acting for instance on the shaded plaquette (other
flips are possible in this configuration), do not change these two
parities. Note that a loop segment located on a diagonal bond of a
plaquette contributes to both px and py .

that cannot be eliminated by finite-order perturbations [39].
Therefore, the four sectors, in the topological spin liquid phase,
are separated from each other by exponentially small gaps
(topological gaps) and get degenerate in the thermodynamic
limit. As was previously observed for the QDM [23], we expect
the liquid phase to be detected by the closing of the above
topological gaps.

On the other hand, in the ordered stripe phase, topological
sectors which do not contain the pure stripe configurations
(shown in the left part of Fig. 5) cannot optimize the attractive
V term and should have a higher energy: correspondingly, the
topological gap should be finite even in the thermodynamic
limit, providing us with a practical method to distinguish the
two phases. One should however be careful in identifying the
sectors to which the stripe configurations belong. Indeed on
a torus with Lx = Ly = L, the QLM can be studied for even
and odd L (in contrast to the QDM that can only host even-L
samples). When L is odd, the three stripe configurations shown
in Fig. 5 are located in the three different sectors (−1,1),
(1,−1), and (−1,−1) which are strictly identical (the number
of configurations is the same and the corresponding blocks of
the Hamiltonian are identical): we define the topological gap
for odd-L samples as �odd

T = E0(1,1) − E0(−1,−1), where
E0(px,py) is the ground-state energy in the (px,py) sector.
For even L, the three stripe configurations belong to the (1,1)
sector, and all other sectors are identical, and we use �even

T =
E0(−1,−1) − E0(1,1).

B. Phase diagram: QMC results

We now turn to QMC simulations of the QLM on a torus
(for clusters with the geometry represented in Fig. 6, with
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FIG. 8. (Color online) Topological gap �T as a function of V/t ,
for different sample sizes L. The finite-size effects are different for
even (�even

T ; left panel) and odd (�odd
T ; right panel) values of L. In the

thermodynamic limit, we expect that in both cases, �T if finite for the
stripe phase V/t < (V/t)c, and vanishes for the Z2 spin liquid phase
(V/t)c � V � 1. Left inset: Finite-size scaling as a function of 1/L

for the even-L samples provides an estimate (V/t)c � 0.70(5) of the
value where the gap first vanishes. Right inset: Zoom close to the RK
point for odd-L samples.

Lx = Ly = L and N = L2 sites), as defined in Eq. (5). We
use the reptation QMC [40], which projects a given initial
configuration belonging to each topological sector onto the
ground state in the same sector. We use a formulation of
reptation QMC similar to the one presented in Ref. [35]: to
accelerate the convergence, we work in a continuous-time
formalism as well as with a guiding wave function that
provides a finite fugacity for each flippable plaquette of
the triangular lattice (an optimized value for the fugacity is
obtained from a short preliminary run). We simulated even-L
samples up to L = 10 (and one data point at L = 12), and
odd-L samples up to L = 9.

We first present the results for the topological gap �T,
as obtained by computing the ground-state energy in each
nonequivalent sector using the standard mixed estimator [40].
Figure 8 shows �T as a function of V/t for even (left panel)
and odd (right panel) L, for different system sizes. For even
samples, the topological gap �even

T has a monotonous behavior:
it is clearly finite for low values of V/t and vanishes with
system size close enough to the RK point V/t = 1. Finite-size
scaling as a function of 1/L (left inset of Fig. 8) indicates
that the gap vanishes around (V/t)c � 0.70(5), separating the
stripe phase for V/t < (V/t)c from the topological Z2 liquid
phase for (V/t)c < V/t � 1. For the largest samples, our
data at V/t = 0.8 and V/t = 0.9 show that the ground-state
energies in different topological sectors are identical within
error bars (we cannot resolve the exponentially small splitting
in the liquid phase).

The gap for the odd-L samples displays an apparently
different behavior, with the topological sector (1,1) having
a higher energy for low enough V/t , resulting in �odd

T > 0 as
the V -term favors the sectors (−1,1), (1,−1), and (−1,−1).
On the other hand, when the system is close enough to the RK
point, the sector (1,1) has lower energy (resulting in �odd

T < 0
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in our definition of �odd
T ) for finite-size samples. If we assume

that the ordering of the four levels in the spin liquid phase is the
same as that for the even-L samples, the sign change marks
the transition. The value of V/t at which �odd

T = 0 varies
with system size and appears to extrapolate to a consistent
value for the critical point (V/t)c � 0.70(5) (see right inset of
Fig. 8). Here again, for the largest odd-L samples, the energies
in all topological sectors are indistinguishable within error
bars for V/t = 0.8 and V/t = 0.9, indicating the topological
degeneracy.

The topological gap for both odd and even sample is clearly
finite for V/t = 0 (with a value �1.3t , as estimated from the
even-L data, for which there is almost no size dependence),
which indicates that this point is located in an ordered phase
(presumably, in the stripe phase). In order to confirm this, we
computed the loop segment occupations (using middle slices in
the reptile representation [40]) in the topological sector (1,1)
(which hosts all three stripe configurations) for the even-L
samples. This allows us to determine the stripe structure factor,
which we define as

Sstripe = 1

N

∑
i,j

α,β = 0,1,2

〈ni,αnj,β〉e 2iπ
3 (β−α)

= 1

N

⎛
⎝ ∑

α=0,1,2

〈
N2

α

〉 −
∑
α �=β

〈NαNβ〉
⎞
⎠, (8)

where ni,α = 1 if there is a loop segment at site i occupying
a link in the direction α (= 0,1,2; the three values taken by
α correspond to the three different directions as represented
in the left bottom part of Fig. 6) and ni,α = 0 otherwise. In
the second line of Eq. (8), we have introduced the notation
Nα = ∑

i nα for the total number of bonds in the direction α.
The structure factor divided by the sample size is expected to
converge to the square of the stripe order parameter mstripe in
the thermodynamic limit: Sstripe/N → m2

stripe, with a nonzero
mstripe if the ground state exhibits the long-range stripe order.

The stripe structure factor Sstripe/N is shown in Fig. 9 for
different values of the coupling V/t as a function of inverse
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FIG. 9. (Color online) The stripe structure factor Sstripe as a
function of inverse system size, for different values of V/t .

size 1/N (for L = 4,6,8). We expect that Sstripe/N should
saturate in an exponential way (due to the finite correlation
length) to m2

stripe > 0 in the stripe phase, and to 0 in a phase
with no stripe order (at the critical point, it should decay to
0 with a nontrivial power). Due to the moderate system sizes
accessible, we cannot expect to see the exponential decay: the
extrapolation to the thermodynamic limit is indeed delicate for
large values of V/t . Considering the data for V/t � 0.6 (see
Fig. 9), we observe that the structure factor extrapolates to a
nonzero value. From this data set, we obtained an estimate
for the critical point (V/t)c = 0.65(15), which is less precise,
though consistent, than the one determined above by the
topological gap.

Note that, in analogy with the situation in the QDM, one
may suspect that other types of symmetry-breaking order (such
as plaquette order) could also exhibit a nonzero value of
mstripe. To clarify this, it is useful to consider the histograms
of the occupations of loop segments appearing in the Monte
Carlo simulations, as was done in similar simulations for
valence bond crystals [41–45]. To have a two-dimensional
representation of the histograms for the loop segments oc-
cupying one of the three lattice directions, we introduce
Hx = 1

2N
(2N0 − N1 − N2) and Hy =

√
3

2N
(−N1 + N2) (with

Nα being the total number of bonds in the direction α). The
three line configurations shown in the left part of Fig. 5 (having,
respectively, N0,N1, or N2 equal to N ) occupy, in the (Hx,Hy)
representation, the three vertices (1,0),(−1/2,±√

3/2) of an
equilateral triangle in which the histogram is enclosed, as
represented in Fig. 10. The left inset of Fig. 10 presents the
histogram obtained for a moderate system size L = 6 and
V/t = −0.3, which is already located deep inside the stripe
phase: we clearly observe a Z3-symmetric feature with three
peaks (corresponding to high occupations) close to the corners
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FIG. 10. (Color online) Expectation value W3 of the quantifier
of Z3 anisotropy of histograms of loop occupations, as a function
of V/t for three even lattices sizes L = 4,6,8. Insets: Color-coded
normalized histograms of loop occupations numbers (using a color
interpolation scheme), deep in the stripe phase (left inset, L = 6,
V/t = −0.3) and closer to the critical point (right inset, L = 6,
V/t = 0.3). Vertical axis of histograms is Hy (ranging from −√

3/2
to

√
3/2), horizontal axis is Hx (from −1/2 to 1). The histograms are

enclosed in an equilateral triangle pictured close to the right inset.
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of the triangle corresponding to the three line configurations.
The distance of these peaks from the origin (0,0) gives a
measure of the order parameter mstripe.

On the other hand, the angles θ = arctan(Hy/Hx) associ-
ated with the three peaks in this two-dimensional representa-
tion also carry important information on the precise nature of
the phase. For instance, the angles associated with the three
stripe patterns are 0, 2π/3, and 4π/3. Other candidate phases
(such as the equivalent of plaquette phases) would show up
in the histograms as sharp peaks at different angles. We find
that, as V/t gets closer to the critical point (V/t)c, the typical
extents (radius) of the histograms get smaller (as expected
from the decrease of the order parameter), and that at the same
time the shape of the histograms change from a Z3-symmetric
one to a circular-symmetric one as is exemplified in the right
inset of Fig. 10. This is reminiscent of the U (1) valence bond
histograms observed in the vicinity of deconfined quantum
critical points [41,42,44,46] or even at moderate proximity of
the RK point of the QDM on the square lattice [47,48].

To quantify this effect, we calculated a measure of the
Z3 symmetry of the histograms W3 = 〈cos(3θ )〉 using for-
mulations similar to those in Refs. [42,44–46,49]. For a pure
stripe phase, we have W3 = 1, while for a circular histogram
W3 = 0. The variation of W3 as a function V/t with different
system sizes displayed in the main panel of Fig. 10 confirms
the behavior observed visually in the histograms: for the region
V/t � 0.1, W3 tends to approach unity with increasing system
sizes, while in the region 0.1 � V/t � 1, W3 appears to vanish
within the system sizes available to us. While therefore we
cannot exclude an intermediate different crystalline phase, it
appears unlikely as there is no direct evidence either in the
energy or in the structure factor of a phase transition (see a
similar situation for the square lattice QDM [47,48]). Thus, we
expect that on larger systems W3 would also tend to approach
unity for V/t � (V/t)c. Note that the computations of W3

are difficult as we need long Monte Carlo runs to be fully
ergodic (i.e., in order not to get locked in one type of line
configurations, in particular in the stripe phase), and also
to ensure that statistical fluctuations are not too important
when the order parameter is small. We may speculate that
these circular histograms are indications of the Z3 anisotropy
being a dangerously irrelevant variable at the critical point
(V/t)c. Although the precise characterization of the transition
between theZ2 spin liquid and the stripe phase is an interesting
issue, it is beyond the scope of the present work. At the point
V/t = 0 of our main interest, our QMC data (see Figs. 9
and 10) clearly indicate that the ground state of the effective
Hamiltonian (3) is located in the stripe phase. The resulting
phase diagram obtained from these QMC results as well as the
general considerations in Sec. III A is given in Fig. 5.

IV. NUMERICAL SIMULATIONS OF THE
MICROSCOPIC MODEL

In this section we present the results of the QMC simu-
lations for the original spin-1/2 Hamiltonian (1) at the m =
1/6 plateau. We used the stochastic series expansion (SSE)
algorithm [50,51] combined with a plaquette generalization
[52] that is necessary to circumvent the freezing encountered
in the bond formulation of the SSE when Jz is large [53,54].
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FIG. 11. (Color online) Finite-size scaling of the m = 1/6
plateau width. The plateau is found to disappear around Jxy �
−0.081.

In addition to this difficulty, capturing ground-state physics
requires us to reach a very low temperature-range characterized
by the small energy scale T ∼ Jring ∼ J 2

xy/Jz of the effective
model. Nevertheless, we have been able to simulate L × L

systems, with N = 3L2 sites, up to L � 12, or slightly
beyond L � 18 for some observables. For numerical ease,
we restrict ourselves to the truncated model where only the
nearest-neighbor interactions (i.e., the black bonds in Fig. 1)
are retained in Hxy (see the discussions in Sec. II B).

In the following, we set Jz = 1 as the energy scale, and use
ferromagnetic values Jxy < 0 (for the QMC simulations to
have no sign problem) and h = 1.03 for the magnetic field
(corresponding to the middle of the m = 1/6 plateau; see
Fig. 2). In order to locate the transition point out of the plateau
phase as a function of Jxy , we performed a finite-size analysis
of its width. Resulting data are shown in Fig. 11, and the
transition point is estimated to be around Jxy � −0.081. For
values Jxy < −0.081, the system is thus in a planar phase
(superfluid in the bosonic language), and in the following we
focus on the plateau region −0.081 < Jxy < 0. In Sec. IV A
we examine the nature of the plateau phase, and discuss what
could be the scenarios for the transition to the planar phase.
Section IV B is devoted to an alternative characterization of
the phase using the Rényi entanglement entropy.

A. Nature of the m = 1/6 plateau

For magnetization plateaus, as has been mentioned in the
Introduction, it is useful to consider the quantity q(S − m),
where q is the number of sites per unit cell (q = 3 for the
kagome lattice). Indeed, it has been shown analytically [17,19]
that when this quantity is fractional, the ground state on this
plateau must be degenerate, i.e., either in a crystalline state
with magnetic superstructures or in a topological state, while
a nondegenerate featureless state with a gap is forbidden. If,
on the other hand, it takes an integer value, which is the case
here at the m = 1/6 plateau (see Table I), all these possibilities
are allowed.
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FIG. 12. (Color online) Left: Connected correlation function 〈Sz
i S

z
j 〉c = 〈Sz

i S
z
j 〉 − 〈Sz

i 〉〈Sz
j 〉 on the m = 1/6 plateau (for Jxy = −0.078,

T = Jring/8 on a L = 8 cluster with periodic boundary conditions). Reference site is indicated as a black circle. Blue (red) denote positive
(negative) values, and the radius is proportional to the absolute value of the correlation. Data close to the reference site have not been plotted
for readability. Right: Cartoon representation of the spin and dimer configurations in one state of the stripe phase, with the kagome lattice in
black and the underlying triangular lattice in blue.

Guided by the results of the effective QLM in Sec. III,
we expect the plateau phase to be in a ordered phase where
the down spins form stripes. This is indeed evident when
plotting the connected Sz-Sz spin correlation function in real
space, as shown in the left panel of Fig. 12, where one readily
sees the presence of stripes. The corresponding phase breaks
the sixfold rotation symmetry, and is threefold degenerate.
Cartoon pictures of the spin and dimer configurations in this
phase are drawn on the right panel of Fig. 12.

In order to confirm the long-range nature of this order,
we compute the Fourier transform of the above spin-spin
correlations, i.e., the diagonal spin structure factor:

S(q) = 1

N

∑
j,k

(〈
Sz

jS
z
k

〉 − 〈
Sz

j

〉〈
Sz

k

〉)
eiq·(rj −rk ), (9)

where rj is the position of spin j , N = 3L2, q = (qx,qy),
and the average local magnetization is 〈Sz

j 〉 = m = 1/6. For
an ordered phase at wave-vector Q, S(Q) diverges as N , and
for the threefold degenerate solid, the three Bragg peaks are
located at wave vectors Q1 = (0,4π/

√
3), Q2 = (2π,2π/

√
3),

and Q3 = (2π,−2π/
√

3). Note that this solid can be accom-
modated on any cluster used for the simulations. Finite-size
scaling of S(Q)/N as a function of 1/L for several values of
Jxy in the plateau phase clearly indicates the presence of the
stripe phase (see Fig. 13). In agreement with the QLM study
at V/t = 0, the order develops already for small system sizes.

Two comments are in order here. First, S(Q) used in Fig. 13
is the average of the values at the three wave-vectors Qα , which
is valid when the simulation is perfectly ergodic. However,
as mentioned earlier, the large anisotropy Jz/Jxy ∼ 13 in
the parameter range of interest can create difficulties in the
QMC simulations [54]. By monitoring the three values S(Qα)
separately, we have checked that the simulations are ergodic
for the sizes L � 9 considered here. However, for smaller
values of |Jxy |/Jz or larger L, we indeed noticed a quick loss
of ergodicity, even with the plaquette algorithm, translating
into very different values at the three wave vectors. The same
behavior was observed in Ref. [53] which used a similar QMC

algorithm. Second, we sometimes found a nonmonotonic
behavior of the structure factor S(Q)/N for larger sizes (see
Fig. 13). Again, a similar behavior was reported in Ref. [53]
where the increase of the order parameter was interpreted as
the threshold where stripes start developing in the system. In
practice, this complicates a proper extrapolation of the order
parameter to its thermodynamic limit value. We can however
compare the order of magnitude obtained with the value for
a perfectly equal superposition of the three ordered states, for
which a straightforward calculation yields S(Q)/N = 8/81 �
0.0987.

We conclude this section by a discussion on the possible
scenarios for the quantum phase transition between the plateau
(stripe) crystal and planar phases. Since the stripe crystal
breaks discrete lattice symmetries, one expects, on general
grounds, that the transition will be of first order type, or that
both phases coexist (in a small region of the phase diagram).
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FIG. 13. (Color online) Finite-size scaling of the (scaled) struc-
ture factor S(Q)/N inside the magnetization plateau. Despite the
relatively small available sizes, we can reach the regime of saturation,
confirming the striped solid anticipated from the QLM.

174402-9



X. PLAT, F. ALET, S. CAPPONI, AND K. TOTSUKA PHYSICAL REVIEW B 92, 174402 (2015)

This latter scenario implies the existence of an intervening
supersolid phase, whose presence was found in several similar
models on other frustrated lattices [55–57]. Due to the limited
system sizes available to us, we have not been able to favor
one of these two scenarios. We observed (data not shown) an
apparent crossing in the spin stiffness, with critical exponents
compatible with a continuous phase transition, and no sign
of a double peak structure in the kinetic energy histograms.
However, it has been shown in similar situations that the correct
nature of the phase transition may be difficult to capture. In the
(Jxy,h) plane, varying the XY interaction Jxy at the constant
field h = 1.03 corresponds to a transition point located close
to the tip of plateau phase (i.e., the tip of the insulator lobe in
the bosonic picture), for which previous studies have revealed
that such a crystal-planar phase transition may appear to be
continuous while it is in fact weakly first order [58–60]. We
believe that such a picture should also apply here, although
proving this definitively would imply simulations on very large
samples, which is currently out of reach for the present model.

B. Rényi entropy in the crystalline phase

We have shown, using a conventional approach (i.e.,
by guessing a broken symmetry and then measuring the
corresponding structure factor), that the m = 1/6 plateau
corresponds to a stripe crystal shown in Fig. 12. It is interesting
to check whether other means could detect the nature of
the ground state without a priori knowledge on the broken
symmetry. An elegant approach to obtain the dominant order
parameter in an unbiased way is provided by the correlation
density matrix [61], but it is not easily accessible within
QMC simulations. Instead, we will focus here on using the
entanglement entropy as a mean to access the nature of the
ground state.

Indeed, in recent years, a large number of studies have
shown how the scaling behavior of a block entanglement
entropy can give access to some ground-state properties, such
as the central charge in one dimension [62] or the topological
order underlying a given ground-state wave function [63,64].
Generically, any entanglement entropy (whether Rényi or von
Neumann) will scale with the “area” of the boundary between
the block and the rest of the system (the so-called “area law”;
see Ref. [65] for a review), possibly with interesting (universal)
subleading terms:

Sq(A) = aq�A + dq, (10)

where q is the Rényi index, �A is the length of the boundary of
block A, and dq is a constant for instance. Topological phases
can be detected using the constructions of Levin-Wen [63] or
Kitaev-Preskill [64] (see also Ref. [66]), that enables one to
extract a negative constant term dq = −γ < 0, independent of
q [67], where γ is the topological entanglement entropy. This
was used for instance to conclude that the ground state of the
BFG model at m = 0 is indeed a Z2 spin liquid with γ = log 2
[16].

The constructions of Refs. [63,64] use a subtraction
of terms which all scale like the area of the subsystems
considered, which can be troublesome in QMC simulations
which inevitably exhibit finite error bars. Computing the
scaling of Sq (A) for a single block A (without using subtraction
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FIG. 14. (Color online) Rényi block entanglement entropies
Sq (A) (q = 2,3) on the m = 1/6 plateau, as a function of L, on
various systems with N = 3L2 sites. Simulation parameters are
Jxy = −0.078, T = Jring/4, and h = 1.03. In each case, the A block
corresponds to a half-system cylinder containing (L/2) × L unit cells
(see inset). The positive correction log(3) is shown by a star.

schemes) is in general computationally simpler. This is what
we performed for the case of our discrete symmetry breaking
(C6v �→ C2v) on the m = 1/6 plateau, taking for A the
geometry of a cylinder block embedded in a torus sample
(see the inset of Fig. 14).

We expect that for such a symmetry-broken state, the
subleading term will be a positive constant dq = log g, where
g is the number of degenerate ground states (note the sign of
dq ; see the Appendix). We first remark that, for the simple type
of order on the m = 1/6 plateau, the precise block geometry is
not very important, which allows us to consider the convenient
cylinder block geometry. Second, it is quite important for this
result to hold that all g degenerate states (quasidegenerate on
a finite system but with an exponentially small splitting) are
observed in the QMC simulations. Hence, ergodicity must be
ensured to extract the degeneracy, which we observe is the
case if we are not too deep inside the stripe phase and system
sizes are not too large. Note that such a positive correction
gives a vanishing contribution to the previously mentioned
geometric constructions [63,64], as they are precisely built to
solely capture long-range entanglement.

Our numerical data are presented in Fig. 14. We have
computed the Rényi entropies S2 and S3 on the m = 1/6
plateau at low temperatures using the QMC extended ensemble
method proposed in Ref. [68] (with a small modification where
the size of A is dynamically varied during the simulation).

An important first observation is that if one considers only
the smallest (four or five) system sizes, a naive fit leads
to a negative intercept and thus to an apparent topological
phase. One could perhaps interpret this unexpected finite-size
effect in the following way: close enough to the transition
to the superfluid phase, the superfluid correlation length
can be of the order of, or larger than, the system size for
small enough samples. Effectively, the system acquires a
superfluid component, which we expect to contribute to Sq

as a′
q�A + b log(�A) + d ′

q . This form is derived in Ref. [69] for
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a system that spontaneously breaks a continuous symmetry,
in which case the logarithm prefactor b is universal (positive
and related to the number of Goldstone modes), and d ′

q is a
nonuniversal constant. Assuming such a form is also valid in
a system which has effectively both superfluid and crystalline
correlations (i.e., supersolid), it could result in fits that display
a nonuniversal, possibly negative [for small enough systems,
since otherwise b log(�A) � |d ′

q | for large enough L], constant
intercept. Note that it would be interesting to check this
behavior using simpler bosonic models that exhibit supersolid
behavior.

However, when the system is large enough (beyond L = 7
in our simulations), we observe a qualitative change of behav-
ior in Sq as a function of L. Note that this length scale coincides
with the one where the stripe structure factor starts saturating,
as observed in Fig. 13. For these larger systems, entanglement
entropies are compatible with a positive intercept dq � log(3),
although the accuracy is not excellent. For instance, fitting our
S2 data using (10) and sizes with 7 � L � 10, we get dq � 0.9,
which deviates quite significantly from log(3). Indeed, as
already advocated, a precise determination of dq is rather
difficult due to the need of excellent ergodicity and the
autocorrelation times for this quantity. Typically, we need more
than 108 measurements to get reliable data.

V. CONCLUSION

In search for magnetization plateaus of spin-liquid nature,
we have considered the effect of a magnetic field on an
anisotropic spin-1/2 model on the kagome lattice that was
introduced in Ref. [10]. In the easy-axis limit, this model
is designed to exhibit several magnetization plateaus, at
magnetization per site m = 0,1/6,1/3 (plus saturation 1/2).
The properties of these plateaus have been investigated first by
mapping the original spin model to simpler constrained models
on the triangular lattice. Focusing on the m = 1/6 plateau, we
have investigated in detail the effective quantum loop model
and mapped out its phase diagram using a reptation quantum
Monte Carlo algorithm. From this, we predict a threefold
degenerate stripe phase, that breaks rotation symmetry, to
appear on this magnetization plateau. We have also observed
that the m = 1/6 plateau with the stripe order turns into
a topological Z2 spin-liquid plateau when an additional
repulsion among the dimer segments is added.

Then, we have performed large-scale numerical simulations
using the SSE quantum Monte Carlo algorithm on the original
microscopic model. This has confirmed the existence of a
stripe phase found in the effective loop model, using both
standard structure-factor measurements and its signature in
entanglement entropies. In particular, we have observed that,
for length scales shorter than L � 6, the scaling of the block
entanglement entropy may be misleadingly interpreted as
giving a negative intercept dq , while it becomes clearly positive
for larger systems. This should be used as a caveat in other
situations.

When the XY -interaction |Jxy | increases, there is a quantum
phase transition to a planar phase (superfluid of the equivalent
hardcore bosons). While it appears to be continuous in our
simulations, we believe that it should appear weakly first order

on larger lattices, as observed for instance in similar physical
situations [58–60].

We have not investigated in details the m = 1/3 plateau,
where the effective model is given by the standard quantum
dimer model (i.e., a single dimer per site) on the triangular
lattice, that has been widely studied in the past [8,23–29].
In fact, the expected crystal in this phase would have a√

12 × √
12 unit cell and an extremely small order parameter

[25]. Given that numerical simulations of the microscopic
spin model are more involved (larger systems, many different
energy scales, etc.), it remains challenging to detect such a
weak order in the direct simulations for the original BFG spin
model.

Before concluding, let us mention possible extensions of
the model (1). In Sec. III we have seen that there exists a
gapped Z2 spin liquid phase around the RK point of the QLM
(see Fig. 7). Therefore, it would be interesting to drive the
system toward the spin-liquid phase. In fact, it is possible
to consider additional interactions which would result in a
nonzero interaction term V in the effective constrained model
(5). The four-spin interaction Q [Eq. (6)] or the interhexagon
third-neighbor interaction J (3)

z [Eq. (7)], which is not included
in the model (1), should do the job. This could allow us
to reach the Z2 liquid state at both m = 1/3 and m = 1/6
magnetization plateaus when Q,J (3)

z ∼ 2J 2
xy/Jz, while the

transition between the crystalline and topological phases
could in principle be monitored by examining the Rényi
entropy behavior. This extension of the BFG model would
certainly be a very interesting playground to investigate such
topological phases, their detections and their transitions to
conventional symmetry-breaking states. Also our construction
is not restricted to spin-1/2 systems (or to the equivalent
hardcore-boson systems) and applies to higher-spin systems as
well. In fact, we can obtain the same effective models (QDM
and QLM) for the spin-1 version of the model (1) with an
additional single-ion anisotropy D

∑
i(S

z
i )2.

As a final remark, let us briefly comment on possible
experimental realization of the BFG model. Because of the
artificial interactions required to build the ice manifold of the
BFG model, it is difficult to make direct connections between
the model we considered and the existing kagome compounds
[70]. However, it remains an interesting prospect to investigate
whether such toy models could be realized experimentally
in tunable artificial systems. Indeed, it was suggested very
recently that the BFG interactions and hexagonal plaquettes
could be reproduced using a 2D cold ion crystal, with an
example given for one and two hexagons [71].

Note added: While finishing this paper, we became aware of
the recent preprint by Roychowdhury et al. [72] who recently
derived the same loop model for the equivalent hardcore-boson
Hamiltonian, and further studied the phase diagram of the
loop model with a potential term. While we agree on the
phase diagram structure of the loop model, the position of
the critical point separating the stripe from the Z2 liquid phase
is noticeably different [(V/t)c ∼ −0.3 versus (V/t)c ∼ 0.7 ].
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APPENDIX: RÉNYI ENTROPY IN A DISCRETE
SYMMETRY BREAKING PHASE

Let us consider g states ψi , each corresponding to one
of the degenerate states in the thermodynamic limit. This
would be for instance |↑↓↑↓ · · · 〉 and |↓↑↓↑ · · · 〉 in an Ising
phase, or the three states with down spins occupying one
of the three kagome sublattices (and up spins on the other
sites, see Fig. 12), in the stripe crystal phase discussed in
the main text. These g states are always orthogonal in the
thermodynamic limit. Since they are simple product states,
one can readily show, for any block A of the system which
complement scales with system size, that the reduced density
matrix corresponding to a cat superposition of these states,
|ψcat〉 = (1/

√
g)

∑
i |ψi〉, is given by

ρ̂A
cat = 1

g

∑
i

ρA
i . (A1)

Note that this equality only holds for the reduced density
matrix, and not the whole density matrix.

On any finite system, since these g states are exponentially
close in energy, and a QMC simulation would sample each

|ψi〉 with equal probabilities. Hence, one would compute a
reduced density matrix corresponding to a mixed state:

ρ̂QMC = 1

g

∑
i

ρi =⇒ ρ̂A
QMC = 1

g

∑
i

ρA
i , (A2)

which is precisely the same object as Eq. (A1). So our QMC
simulation is able to access the reduced density matrix of the
cat state, provided it is ergodic.

Now, each ρA
i is excessively simple for each product

state, as its spectrum contains only one nonzero eigenvalue
λ = 1 since they are not entangled. Moreover, they can be
diagonalized simultaneously (they are diagonal in the Sz basis
in our example), which leads to an entanglement spectrum
with nonzero eigenvalues 1/g with degeneracy g. From it,
the entanglement entropy (von Neumann or Renyi) is simply
log g.

This results looks quite intuitive indeed and was conjectured
in Ref. [66]. It was already noticed in Ref. [74] for a cat state
made of g degenerate Ising ground states. We emphasize that
the same result holds for the mixed state obtained in our QMC
simulation. For more realistic wave functions, the fluctuations
around the ideal product state gives and area law, but the
constant term will be unchanged:

Sq(A) = aq�A + log g + · · · . (A3)

As a last remark, we would like to emphasize that in other
more complex cases (e.g., for states which are not one-site
product states, such as valence-bond columnar states), the
discussion is more involved as the constant term can now
depend explicitly on the form of the cut as well as on the
Rényi index q.
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of entanglement Rényi entropies for generic quantum systems,
Phys. Rev. B 86, 235116 (2012).

[69] M. A. Metlitski and T. Grover, Entanglement entropy of
systems with spontaneously broken continuous symmetry,
arXiv:1112.5166.

[70] P. Mendels and A. S. Wills, Kagomé Antiferromagnets: Ma-
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