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Vibrational contributions to the phase stability of PbS-PbTe alloys
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The thermoelectric figure of merit (ZT ) of semiconductors such as PbTe can be improved by forming
nanostructures within the bulk of these materials. Alloying PbTe with PbS causes PbS-rich nanostructures
to precipitate from the solid solution, scattering phonons and increasing ZT . Understanding the thermodynamics
of this process is crucial to optimizing the efficiency gains of this technique. Previous calculations of the
thermodynamics of PbS-PbTe alloys [(J. W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012)] found that
mixing energetics alone were not sufficient to quantitatively explain the thermodynamic driving force for phase
separation in these materials: first-principles calculations of the thermodynamics of phase separation overestimate
the thermodynamic driving force for precipitation of PbS-rich nanostructures from PbS-PbTe alloys. In this work,
we re-examine the thermodynamics of PbS-PbTe, including the effects of vibrational entropy in the free energy
through frozen-phonon calculations of special quasirandom structures (SQS) to explain this discrepancy between
first-principles and experimental phase stability. We find that vibrational entropy of mixing reduces the calculated
maximum miscibility gap temperature TG of PbS-PbTe by 470 K, bringing the error between calculated and
experimental TG down from 700 to 230 K. Our calculated vibrational spectra of PbS-PbTe SQS exhibit dynamic
instabilities of S ions that corroborate reports of low-T ferroelectriclike phase transitions in solid solutions of
PbS and PbTe, which are not present in either of the constituent compounds. We use our calculated vibrational
spectra to obtain phase transition temperatures, which are in qualitative agreement with experimental results for
PbTe-rich alloys, as well as to predict the existence of a low-T displacive phase transition in PbS-rich PbS-PbTe,
which has not yet been experimentally investigated.
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I. INTRODUCTION

Nanostructures formed within a bulk matrix material have
been used to improve the thermoelectric figure of merit,
ZT = T S2σ/(κl + κe), of a variety of semiconductor alloy
systems, including the prototypical system PbS-PbTe [1–8].
These nanostructures increase ZT by reducing the lattice
thermal conductivity κl of the alloy without overly affecting the
electronic thermal conductivity κe or other electronic transport
properties (electrical conductivity σ or Seebeck coefficient S)
[9,10]. In certain systems, such as PbSe-CdSe, PbSe-ZnSe
[5], SnTe-CdTe [7], or SnTe-HgTe [8], the alloying element
can play a ZT -enhancing role in the matrix phase in addition
to forming nanostructures; Cd and Zn in PbSe and Cd and
Hg in SnTe all reduce the energy separation between the two
highest-lying maxima in the valence band of the host phase
[at L and � in the rocksalt Brillouin zone (BZ), respectively],
increasing the Seebeck coefficient.

Optimizing the phase separation process, which gives rise
to nanostructures, requires understanding the thermodynamics
of phase separation in these systems: the free energy of mixing
as a function of composition and temperature. The exper-
imentally determined phase diagram of PbS-PbTe [11,12]
contains a miscibility gap—a region of compositions where
a solid solution of PbS and PbTe will thermodynamically
prefer separation into a PbS-rich phase and a PbTe-rich phase.
Nanostructures in PbS-PbTe are formed using this miscibility
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gap: cooling an alloy of PbS-PbTe from a temperature above
the miscibility gap (where the alloy is a solid solution) down to
a temperature within the gap causes a PbS-rich nanostructured
phase to form from the PbTe-rich matrix [1,9,10,13].

Previous first-principles calculations of the thermodynam-
ics of PbS-PbTe showed that while density functional theory
(DFT) energetics capture the asymmetry of the equilibrium
miscibility gap in composition, the calculated temperatures of
the miscibility gap are in poor agreement with experiment [14].
In particular, the maximum temperature of the miscibility gap
TG has been calculated to be 1770 K [14], approximately a 65%
error with respect to the measured maximum miscibility gap
temperature of 1070 K [11,12]. These thermodynamic calcula-
tions were based on a mean-field model of mixing that included
only a temperature-independent mixing energy (fit to DFT
energetics) and an ideal configurational entropy (for mixing S
and Te on the anion fcc sublattice of the rocksalt structure),

�Fmix(x,T ) = �Emix(x) − T �S ideal
mix (x). (1)

The failure of this free energy of mixing to capture the correct
solid-state phase diagram of PbS-PbTe suggests that important
physical contributions to the free energy are missing from the
above model.

There are several possible contributions to the free energy of
mixing which could be significant. These include the magnetic
entropy of mixing [15], electronic entropy of mixing [16],
nonideal configurational entropy [17], and vibrational entropy
of mixing [18]. Of these, the magnetic entropy of mixing
should be negligible because these systems are nonmagnetic,
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the electronic entropy of mixing should be small due to the
semiconducting nature of the pure compounds PbS and PbTe
as well as their solid solution, and the nonideal configurational
entropy should also play a small role due to the dominance of
the long-range strain interactions [19] in previously calculated
mixing energetics [14]. In contrast, the vibrational entropy of
mixing can have a potentially significant effect on the phase
stability of an alloy system [17,18,20–24].

In alloy systems where the constituent compounds have a
large lattice mismatch (PbS and PbTe have a lattice mismatch
of 8.5% [25,26]), the vibrational entropy of mixing has
been attributed to a size-mismatch effect [21,23]. The size-
mismatch effect posits that when the constituent atoms of an
alloy have large size differences, the disordered alloy will, by
necessity, contain regions that are locally in compression or
tension resulting in stiffer or weaker bonds, respectively. The
magnitude and sign of the size-mismatch effect (i.e., stabilizing
versus destabilizing the disordered phase relative to the phase-
separated constituents) then depends on the details of the
atomic relaxations in the disordered alloy. This size-mismatch
effect may be heightened by the inherently anharmonic nature
of the bonds in the lead chalcogenides [27–36], whose anhar-
monicity is due to the resonant, half-filled p states shared by the
six nearest-neighbor (NN) chalcogen anions of each Pb cation
[37]. Finally, there is some experimental evidence that PbS-
PbTe alloys undergo a ferroelectric-like phase transition at very
low temperatures, even though neither constituent compound
is a ferroelectric [38–42]. This transition has been attributed to
off-center S ions in the PbS-PbTe solid solution forming local
dipole moments which undergo order-disorder and/or dis-
placive transitions depending on S concentration [38,39,42],
similar to other off-center ions [43,44], dipole glasses [45], and
possibly relaxors [46]. The physics of S-ion dipole-moment
ordering falls within the lattice dynamics of PbS-PbTe and so
could play a role in the vibrational entropy of mixing, even at
temperatures above a ferroelectric phase transition.

In this work, we investigate the effect of vibrational entropy
on the thermodynamics of mixing in PbS-PbTe using first-
principles DFT [47,48] calculations of the vibrational spectra
of special quasirandom structures (SQS) [49,50]—structures,
which approximate the random alloy of PbS-PbTe. DFT
calculations have been used to study the vibrational properties
[29,30,32,35,36,51–55] and phase stability of thermoelectric
systems [14,56–60]. DFT calculations have also been used
to study phase separation processes in a variety of materials
systems [17,61–63], in some cases including the effects of
vibrational entropy [20,64–66]. In Sec. II, we describe the the-
oretical framework for our calculations and the computational
methodology used to carry them out. In Sec. III, we discuss the
vibrational and thermodynamic properties of PbS-PbTe SQS,
the effect of local relaxations on the atomic-scale structural
properties of PbS-PbTe SQS, and construct a solid-state
phase diagram of PbS-PbTe, which incorporates the effects
of vibrational entropy.

We find that PbTe-rich PbS-PbTe alloys have complex
energy landscapes with shallow barriers, giving rise to soft
phonon modes. These phonon modes correspond to displace-
ments of S ions, supporting the hypothesis of off-center S ions
in the random alloy at low temperatures. We also find that
Pb ions are statically displaced from their ideal lattice sites

to accommodate the lattice mismatch between PbS and PbTe
in the solid solution, in contrast to the anion sublattice which
largely retains its ideal lattice arrangement. Using a mean-field
model of phase transitions in a soft-mode ferroelectric [67], we
calculate the displacive transition temperatures of PbS-PbTe
SQS and find them to be in good qualitative agreement
with experimentally measured phase-transition temperatures.
Finally, we find that the vibrational entropy of mixing reduces
the temperatures of the previously-calculated miscibility gap
in PbS-PbTe by 470 K, bringing the DFT-calculated phase
diagram into much better agreement with the experimentally
measured diagram and reducing the percent error relative to
experiment to 21%.

II. METHODOLOGY

A. Atomic-scale model of random alloys

To study the composition and temperature dependence of a
solid solution of PbS and PbTe with atomistic computational
techniques, we need a model of the atomic-scale structure
of a random alloy within the periodic boundary conditions
employed by plane-wave electronic structure calculations.
Because we expect the effects of local atomic relaxations due
to differing nearest-neighbor coordination to play a large role
in the vibrational spectra of an alloy [21], capturing these
effects in our atomic model of the random alloy is important.
The method of SQS [49,50] provides an approximate model
of the random alloy that allows for atomic relaxations and is
well suited to our needs.

A special quasirandom structure is a small supercell of the
parent lattice with mixing atoms placed on each lattice site
in such a way that the correlation functions of the supercell
closely approximate the short-range correlation functions of
a perfectly random alloy at the same composition. Typically
considered correlation functions are pairs out to some distance
and triplets out to a smaller distance.

In this work, we consider mixing on the anion sublattice
of the rocksalt crystal structure. The anion sublattice is an fcc
lattice, so we can take existing fcc SQS-16 structures [68] and
add in the spectator cation sublattice, which gives us 32-atom
rocksalt SQS. In addition, we have created 27-mixing-atom
SQS (54-atoms total) at compositions x = 1/3 and 2/3 with
unit cells shaped like 3 × 3 × 3 supercells of the rocksalt
primitive cell, which are described in more detail in the
appendix. Finally, to model dilute additions of S to PbTe or
Te to PbS, we consider 54-atom 3 × 3 × 3 supercells of PbS
or PbTe with one anion replaced with Te or S, respectively.
With these supercells, we can approximate the structure of a
random alloy of PbS-PbTe at various compositions, which we
use to calculate the composition and temperature dependence
of the free energy of mixing as described in Secs. II B and II C.

B. Free energy of mixing

The free energy of mixing in a (pseudo)binary random alloy
�Fmix(x,T ) can be written as

�Fmix(x,T )=�Emix(x,T )−T
[
�S ideal

mix (x)+�Sxs
mix(x,T )

]
,

(2)
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where �S ideal
mix (x) is the ideal, mean-field configurational

entropy,

�S ideal
mix (x) = −kB[x ln x + (1 − x)ln(1 − x)], (3)

�Emix(x,T ) is a mixing energy, and �Sxs
mix(x,T ) is an excess

mixing entropy. The mixing energy and excess mixing entropy
terms can be composed of several different contributions: (i) a
concentration-dependent zero Kelvin mixing energy �E0K

mix(x)
and associated with it a nonideal configurational entropy
�Sxs

config(x), (ii) the energy and entropy of electronic excitations
�Eel

mix(x,T ) and �Sel
mix(x,T ), (iii) the energy and entropy

of magnetic configurations �E
mag
mix (x,T ) and �S

mag
mix (x,T ),

and (iv) the energy and entropy of vibrational excitations
�Evib

mix(x,T ) and �Svib
mix(x,T ). Of these four contributions to

the excess free energy of mixing, we expect terms (i) and (iv) to
play the largest role in PbS-PbTe. Terms (ii) and (iii) should be
negligible due to the semiconducting and nonmagnetic nature
of the material. In addition, the dominant contributions to
�E0K

mix(x) come from long-range strain effects [14], which
tend to make the excess configurational entropy less important
than the ideal configurational entropy [19]. Finally, as will
be discussed in Sec. II C, the vibrational energy of mixing
is approximately zero above room temperature and all of the
effects of vibrations on the thermodynamics of mixing are
due to a largely T -independent vibrational entropy of mixing.
Based on these considerations, we can approximate the free
energy of mixing as

�Fmix(x,T ) ≈ �E0K
mix(x) − T

[
�S ideal

mix (x) + �Svib
mix(x)

]
. (4)

To model the composition dependence of �E0K
mix(x) and

�Svib
mix(x), we continue to use the mean-field approach and

approximate each function as a solution model based on
Redlich-Kister (RK) polynomials [69]. These solution models
take the form

�Qk
mix(x) = x(1 − x)

[
k∑

i=0

Li(1 − 2x)i
]
, (5)

where �Qk
mix is an excess-mixing quantity, k is the order

of the solution model (k = 0, 1, and 2 are called regular,
subregular, and subsubregular solution models, respectively),
and Li are quantity-dependent parameters, which are fit to
DFT-calculated data as described in Sec. III B. Assuming
a subregular solution model form for both �E0K

mix(x) and
�Svib

mix(x), this approach gives us an analytical free energy
of mixing which can be expressed as

�Fmix(x,T ) = x(1 − x)
[(

L0K
0 − T Lvib

0

)
+(

L0K
1 − T Lvib

1

)
(1 − 2x)

]
+kBT [x ln x + (1 − x)ln(1 − x)], (6)

and from this free energy we can calculate the solvus
boundaries of PbS-PbTe.

The equilibrium phase diagram of an alloy system can be
determined from a common-tangent construction, where the
chemical potentials of each chemical species are the same
in every phase coexisting in equilibrium. We treat PbS and
PbTe as the chemical species in the pseudobinary system
PbS-PbTe. For a system that thermodynamically separates

into two different phases α and β, we can write the free
energy of each phase �Fα

mix and �F
β
mix as the free energy

in Eq. (6) with different compositions, xα and xβ . We can then
determine the equilibrium values of these compositions at a
given temperature T by solving the system of equations

∂

∂xα

�Fα
mix(xα,T ) = ∂

∂xβ

�Fβ
mix(xβ,T )

= �F
β
mix(xβ,T ) − �Fα

mix(xα,T )

xβ − xα

. (7)

The miscibility gap calculated from Eq. (7) has a chemical
spinodal Tsp(x), defined by ∂2

∂x2 �Fmix(x,T ) = 0. The maxi-
mum miscibility gap temperature TG occurs where d

dx
Tsp = 0.

For the functional form given by Eq. (6), Tsp can be written as

Tsp = x(1 − x)
[
2L0K

0 + 6L0K
1 (1 − 2x)

]
kB + x(1 − x)

[
2Lvib

0 + 6Lvib
1 (1 − 2x)

] . (8)

C. Vibrational thermodynamics

The vibrational free energy of a compound in the harmonic
approximation can be obtained from the phonon density of
states (DOS) g(ν) by [20,70]

F vib = kBT

∫ ∞

0
g(ν)ln

(
2 sinh

hν

2kBT

)
dν. (9)

At high temperatures (above the Debye temperature of the
material), the vibrational energy of a compound Evib is equal
to 3kBT . The vibrational free energy of mixing at high
temperatures is therefore only due to the vibrational entropy of
mixing. In the high-T limit, the vibrational entropy of mixing
�Svib

mix is temperature independent and given by

�Svib
mix(x) = −kB

∫ ∞

0
�g(ν,x)ln(ν)dν, (10)

where the phonon DOS of mixing �g(ν,x) is

�g(ν,x) = gA(B1−xCx )(ν) − (1 − x)gAB(ν) − xgAC(ν), (11)

and gA(B1−xCx ), gAB , and gAC are the phonon densities of states
for a pseudobinary solid solution and constituent compounds,
respectively.

D. Low-T phase transitions

To model the low-T thermodynamics of a soft-mode
ferroelectric system (as has been proposed for the PbS-PbTe
solid solution [38,39]), we follow Ref. [67] and consider a
system with an unstable phonon mode leading to a double-well
potential energy, V (φ) = − 1

2κ2φ
2 + 1

4κ4φ
4, as a function of

the soft-mode normal coordinate φ. The high-T phase exists
at φ = 0, while the low-T phase exists at nonzero φ. We can
define a Hamiltonian for the high-T phase with a potential
energy contribution composed of (i) the soft-mode potential
energy, (ii) a summation over the stable phonon modes, and
(iii) an anharmonic coupling between the stable phonon modes
and the soft-mode normal coordinate [67]:

H = V (φ) + 1

2

∑
i

ν2
i Q

2
i + 1

4

∑
i

αiφ
2Q2

i , (12)
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where Qi is the normal coordinate of phonon mode i, νi is
the frequency of mode i, and αi is the anharmonic coupling
constant for mode i. This Hamiltonian can be rewritten as
a pseudoharmonic Hamiltonian to renormalize the phonon
frequencies in the low-T phase. These renormalized phonon
frequencies are given by [67]

ν̃2
i (φ) = ν2

i + 1
2αiφ

2. (13)

We can use Eq. (13) along with DFT-calculated �-point
phonon frequencies of the dynamically-unstable high-T phase
and stabilized low-T phase to determine, at least qualitatively,
the anharmonic coupling parameters αi . The bare frequencies
νi come directly from the harmonic frequencies of the
dynamically-unstable high-T phase. At the maximum value
of the unstable mode displacement φmax, the system is in
the geometric configuration of the low-T phase. We find
the renormalized harmonic frequencies at this value of the
soft-mode displacement ν̃i(φmax) using the dynamical matrix
of the system in the low-T phase, DLT. Because the normal
modes of the low-T and high-T phases do not correspond
exactly to one another, we approximate ν̃2

i (φmax) as the
effective squared phonon frequencies of the low-T phase along
directions corresponding to the normal mode displacements of
the high-T phase, |ei〉:

ν̃2
i (φmax) ≈ 〈ei |DLT|ei〉. (14)

Inserting Eq. (14) into Eq. (13) at φ = φmax and solving for
αi , we find

αi = 2

φ2
max

(〈ei |DLT|ei〉 − ν2
i

)
. (15)

Once the anharmonic coupling constants have been deter-
mined using Eq. (15), we can use the Hamiltonian defined in
Eq. (12) to define a vibrational free energy for the system [67],

F (φ,T ) = V (φ) + kBT
∑

i

ln

[
2 sinh

hν̃i(φ)

2kBT

]
, (16)

which we can minimize with respect to φ as a function of
T to find φ(T ) and Tc, the temperature at which φ → 0 and
the system undergoes a phase transition between the low- and
high-T phases.

E. Computational methodology

Structural relaxations and finite-displacement phonon cal-
culations were performed within DFT using the Vienna
ab-initio simulation package (VASP) [71–74]. All calculations
were performed with projector augmented wave (PAW)[75,76]
potentials and the generalized gradient approximation (GGA)
of Perdew, Burke, and Ernzerhof (PBE) [77] for the exchange-
correlation functional. The potentials used had the 6s26p2,
3s23p4, and 5s25p4 electrons as valence for Pb, S, and
Te, respectively. Spin-orbit interactions have been found to
have minimal effect (∼0.1%) on the lattice constants of the
lead chalcogenides [52] and require significant computational
expense, therefore we do not include them in our calculations.

Structural relaxations were carried out on 54-atom, 3 × 3 ×
3 supercells of pure PbS and PbTe as well as the SQS described
in Sec. II A using 500 eV energy cutoffs, Monkhorst-Pack
(MP) k-point meshes [78] with 5000 k points per reciprocal

atom (KPPRA) (8 × 6 × 4 meshes for SQS-16 cells and 6 ×
6 × 6 meshes for SQS-27, dilute-impurity, and pure 3 × 3 × 3
supercells), and Gaussian smearing of electronic occupations
with a 0.1 eV smearing width. To ensure accurate forces
during the relaxation, calculations were performed with “high”
precision, an additional support grid was added to increase the
accuracy of the calculation of augmentation charges, and self-
consistent cycles were iterated until changes in the electronic
energy were less than 10−8 eV. Ionic relaxations were carried
out with a quasi-Newton algorithm [79] to minimize the forces
and stresses on each structure, with the relaxations occurring
until forces were less than 10−3 eV/Å. To ensure accurate
relaxations and energies, for each structure two relaxations
were performed, followed by a static calculation.

Frozen phonon calculations were performed for each fully
relaxed structure using the methodology of Ref. [80]. Each
inequivalent atom was displaced along symmetrically distinct
directions in a ballistic trajectory [using constant-velocity
molecular dynamics (MD)] consisting of five evenly dis-
tributed displacements from −0.6 Å to +0.6 Å centered around
the equilibrium position. The dynamical matrix was fit to the
resulting forces, which was then diagonalized to obtain phonon
mode eigenvectors and eigenvalues. Force constant matrices
were calculated by reverse Fourier transforming the dynamical
matrices, and phonon DOSs were obtained by extrapolating the
force constant matrix onto 10 × 10 × 10 q-point meshes and
calculating phonon frequencies, which were broadened using
Gaussian peaks with 1 cm−1 broadening widths.

Due to a relaxation criteria of zero forces instead of a
minimized energy, some SQS and dilute-defect calculations
relaxed to saddle points in their energy landscapes, resulting in
imaginary phonon modes. For these structures, energy versus
phonon mode displacement calculations were performed to
identify the minimum-energy wells neighboring the saddle
points. These structures were moved to these minimum-energy
configurations, and damped-MD relaxations were performed
to relax the structures within these wells. Once the structures
were re-relaxed, finite-displacement phonon calculations
were performed.

III. RESULTS AND DISCUSSION

A. Vibrational properties of PbS-PbTe solid solutions

We first present the results of our frozen-phonon calcula-
tions for PbS, PbTe, and PbS-PbTe SQS with compositions
xPbTe = 1/27, xPbTe = 1/4, xPbTe = 1/3, xPbTe = 1/2, xPbTe =
2/3, xPbTe = 3/4, and xPbTe = 26/27. Quasi-Newton force
relaxations of several SQS relaxed the structures to low-energy
saddle points of the energy landscape rather than energy
minima. �-point frozen phonon calculations of these systems
gave harmonic phonon modes with imaginary frequencies.
The systems with these dynamical instabilities, and their
imaginary-mode frequencies are shown in Table I. To better
understand the complexity of the energy landscapes of these
PbS-PbTe alloys, we plot the unstable phonon-mode trajecto-
ries of these “saddle-point” structures in Fig. 1. The energy
landscapes of these unstable phonon modes all correspond to
double-well structures with the relaxed structure lying at the
saddle point of the double well. The double-well structures
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TABLE I. List of SQS compositions of PbS-PbTe alloys with
unstable phonon modes. Imaginary mode frequencies are given as
positive numbers.

xPbTe ν × (−i) (cm−1)

1/3 51.11 48.16 46.88
42.97 41.40 35.68
33.43 31.81

1/2 14.21
2/3 33.08
3/4 35.05
26/27 24.01 24.01 24.01

have energy barriers of 1.6, 0.41, 0.40, and 0.11 meV/cation,
respectively.

Insets in each panel of Fig. 1 show the atomic displacements
corresponding to the energy wells of each structure. The
displacements of the xPbTe = 1/3 structure consist of eight
S ions (out of 27 anions) moving along their first NN Pb-S
bonds or in between two Pb-S bonds. The displacements of the
xPbTe = 2/3 structure consist of two S ions (out of 27 anions)
oriented linearly in chain moving along that line. Similarly, the
displacements of the xPbTe = 3/4 structure consist of one S ion
and one neighboring Pb ion moving in opposite directions
along their connecting bond. Finally, the displacements of
the xPbTe = 26/27 structure consist of a single S ion and two
opposing Pb NN ions moving along their connecting bonds.

Displacement of the xPbTe = 1/3 and xPbTe = 2/3 SQS
along their unstable mode trajectories and subsequent relax-
ations resulted in �-point harmonic phonon modes that were all
stable. The total phonon DOS (g) of these rerelaxed structures,
as well as the other systems with stable phonon modes are
presented in Fig. 2, along with the composition-weighted sum
of the phonon DOSs of PbS and PbTe [xgPbTe + (1 − x)gPbS]
and the phonon DOS of mixing �g. We also compare our
calculated phonon DOSs for PbS and PbTe with phonon DOSs
derived from experimental neutron diffraction data [81,82] in
Fig. 2 and find the DFT-calculated phonon DOSs give good
agreement with the experimentally derived DOSs.

To obtain the vibrational entropy of mixing, �Svib
mix, for

the dynamically stable PbS-PbTe SQS, we calculate the
logarithmic moment of the phonon DOS of mixing �g shown
in Fig. 2 using Eq. (10). The resulting vibrational entropies
of mixing are provided in Table II along with the values of
the ideal entropy of mixing at the same compositions. We find
the vibrational entropies of mixing to be positive, favoring
the solid solution over the phase-separated state. In Sec. III B,
we will consider the quantitative effects that the vibrational

TABLE II. Vibrational entropies of mixing, �Svib
mix of PbS-PbTe

solid solutions obtained from �g(ν) using Eq. (10). For comparison,
values of the ideal configurational entropy of mixing [Eq. (3)] are
shown at the same compositions.

xPbTe �Svib
mix (kB/cation) �S ideal

mix (kB/cation)

1/27 0.10 0.16
1/3 0.17 0.64
2/3 0.22 0.64

xPbTe 1 3a

2

1

0

1

2

3

E
m
eV
ca
tio
n

xPbTe 2 3

b

2

1

0

1

2

3

E
m
eV
ca
tio
n

xPbTe 3 4

c

2

1

0

1

2

3

E
m
eV
ca
tio
n

xPbTe 26 27

d

2

1

0

1

2

3

E
m
eV
ca
tio
n

6 4 2 0 2 4 6
Mode Displacement

FIG. 1. (Color online) Energy vs imaginary normal-mode coor-
dinate for PbS-PbTe SQS with compositions (a) xPbTe = 1/3, (b)
xPbTe = 2/3, and (c) xPbTe = 3/4, and (d) xPbTe = 26/27. Data points
are DFT-calculated energies and curves are polynomial fits to data.
Insets show atomistic models of SQS (Pb atoms in gray, S atoms in
yellow, and Te atoms in brown) with atomic displacement vectors
corresponding to each normal mode. These double-well potential
energy landscapes have barrier heights of 1.6, 0.41, 0.40, and
0.11 meV/cation, respectively.

entropy of mixing has on the free energy of mixing and phase
stability in PbS-PbTe alloys.

B. Contributions to the free energy of mixing in PbS-PbTe

To quantify the terms in the free energy of mixing [Eq. (6)],
in Fig. 3, we plot the mixing energies �E0K

mix and vibrational
entropies of mixing −T �Svib

mix at T = 700 K for PbS-PbTe
SQS as green and red data points, respectively. The PbS-PbTe
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FIG. 2. (Color online) Phonon DOS of mixing for PbS-PbTe
SQS. Total phonon DOSs (g) for each SQS are shown as solid black
lines. Composition-weighted averages of the phonon DOS of PbS and
PbTe [xgPbTe + (1 − x)gPbS] are shown at each SQS composition as
dashed gray lines. The difference between these curves, the phonon
DOS of mixing (�g), defined in Eq. (11), are shown as solid colored
lines for 54-atom SQS with stable phonon modes. Phonon DOSs
derived from experimental neutron-diffraction data for PbS [82] and
PbTe [81] are shown as solid gray lines. Each phonon DOS is offset
along the vertical axis for clarity; dashed lines indicate the zero for
each phonon DOS.

SQS mixing energy is defined as

�E0K
mix(x) = ESQS(x) − xEPbTe − (1 − x)EPbS, (17)

where ESQS, EPbS, and EPbTe are the DFT total energies of
the SQS, PbS, and PbTe, respectively. The mixing energies
for xPbTe = 1/4, 1/2, and 3/4 are consistent with previously
calculated values [14]. In Fig. 3, we also show least-squares
fits of the RK polynomial solution model of Eq. (5) to the
SQS mixing energies and SQS vibrational entropies of mixing
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FIG. 3. (Color online) Contributions to the free energy of mixing
�Fmix [Eq. (4)] at 700 K: 0 K mixing energetics �E0K

mix (green),
vibrational entropy of mixing −T �Svib

mix (red), and ideal entropy of
mixing −T �S ideal

mix (blue). Green data points and solid line show DFT-
calculated energetics and a subregular solution model fit to this data,
respectively. Red data points and solid line show vibrational entropies
of mixing calculated from �g(ν) and a regular solution model fit to
this data, respectively. Shaded regions show 90% confidence intervals
for fits to �E0K

mix, �Svib
mix, and their summed contribution to �Fmix.

TABLE III. Subregular solution model parameters [Eq. (5)] for
the mixing energy and vibrational entropy of mixing of PbS-PbTe
solid solutions.

L0 L1

�E0K
mix (meV/cation) 301.13 53.16

�Svib
mix (kB/cation) 0.90 0

as green and red lines, respectively. Shaded regions around
each line are 90% confidence intervals for the least-squares
fits. Figure 3 also shows the ideal mixing entropy [Eq. (3)]
as −T �S ideal

mix at T = 700 K as a blue line and the combined
free energy of mixing �Fmix [Eq. (6)] as a black line with the
combined 90% confidence interval of �E0K

mix and �Svib
mix shown

as an estimate of the error of our free energy of mixing.
The least-squares fits to �E0K

mix and �Svib
mix give R2 values of

0.996 and 0.934, respectively. The solution model parameters
corresponding to these fits are shown in Table III. The order
of the solution model for each quantity is chosen based on
a leave-one-out cross-validation (CV) comparison. The CV
scores of solution models of order 0, 1, and 2 for �E0K

mix are
6.35, 5.22, and 6.12 meV/cation, respectively, and for �Svib

mix
are 0.06, 0.35, and 0.11 kB/cation, respectively. From this
analysis we conclude that (i) while all three solution models
are good predictors of PbS-PbTe SQS mixing energies, the
subregular solution model (order 1) provides more predictive
power than the other two models and (ii) the regular solution
model (order 0) provides the best predictive power for PbS-
PbTe SQS vibrational entropies of mixing. Thus we use RK
polynomials of order 1 (subregular) and 0 (regular) to model
�E0K

mix and �Svib
mix, respectively.

C. Structural properties of PbS-PbTe SQS

In Figs. 4 and 5, we show the average (cubic) lattice
parameter of PbS-PbTe SQS and various short-distance bond
lengths in the SQS as functions of xPbTe, respectively. From
Fig. 4, we see that the average lattice parameter of PbS-PbTe

5.9
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6.3

6.4

6.5

6.6

a

0.0 0.2 0.4 0.6 0.8 1.0
xPbTe

FIG. 4. Volume-averaged lattice parameters of PbS-PbTe SQS as
a function of xPbTe. Rocksalt lattice parameters are calculated for
each SQS by taking 3

√
8VSQS, where VSQS is the volume-per-atom of

an SQS. Solid circles show lattice parameters for SQS fully relaxed
to their energy minima, while open circles show lattice parameters
for SQS at saddle points in their energy landscape. The dashed line
is a linear interpolation between the lattice parameters of PbS and
PbTe.
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FIG. 5. (Color online) Average bond lengths in PbS-PbTe SQS
as functions of the alloy composition, xPbTe. Pb-S (green), Pb-Te
(orange), Pb-Pb (black), and anion-anion (purple) bond lengths are
shown, with average bond lengths of SQS at their energy minima
shown as closed circles and average bond lengths of SQS at saddle
points shown as open circles. Vertical bars show the standard
deviation of each average bond length. The green and orange dashed
lines indicate dPb-S and dPb-Te in pure PbS and PbTe, respectively.
The black dashed line indicates the composition-weighted average
of dPb-Pb (and equivalently dan-an) for PbS and PbTe. The variance in
dPb-S and dPb-Pb are much greater than the variance in dPb-Te and dan-an.
Experimental data for Pb-S and Pb-Te bond lengths at 30 K from Ref.
[42] are shown as blue and red squares, respectively.

solid solutions tends to be a composition-weighted average
of the lattice parameters of PbS and PbTe, in agreement with
Vegard’s law [83]. Figure 5 highlights several points relevant
to the observed low-T phase transitions in this alloy: (i) on
average, the Pb-S and Pb-Te NN bonds retain lengths close to
those of the constituent PbS and PbTe compounds, however,
(ii) there is considerable spread in the Pb-S bond lengths (as
indicated by vertical bars in Fig. 5), especially compared to
the Pb-Te bond lengths. (iii) The average cation-cation and
anion-anion bond lengths are identical and follow Vegard’s law
similarly to the lattice parameters shown in Fig. 4, however,
(iv) there is much more variation in the Pb-Pb bond lengths
than the anion-anion bond lengths. These data suggest that the

Pb and S ions are displaced significantly more from their ideal
lattice sites than are the Te ions.

The calculated bond-length data are also in good agreement
with experimental x-ray absorption fine structure (XAFS)
measurements made at 30 K on PbS-PbTe alloys [42],
which show two distinct Pb-S bond lengths and one Pb-Te
bond length (shown as blue and red squares in Fig. 5,
respectively). The experimental Pb-S bond lengths lie within
the standard deviations of Pb-S bond lengths of SQS with
nearby compositions. The experimental Pb-Te bond lengths
also lie within a standard deviation of the calculated Pb-Te
average bond length.

To investigate these deviations in first and second NN bond
lengths from their ideal lengths in more detail, in Figs. 6(a)–
6(d), we plot the distribution of Pb-S, Pb-Te, Pb-Pb, and anion-
anion bonds for each PbS-PbTe SQS, respectively [panels (a)
and (b) have the same horizontal plot range, as do panels
(c) and (d)]. Bond-length distributions were obtained from
the bond lengths of each SQS by fitting them to a Gaussian
kernel [84]. The bond-length distributions for each SQS are
shown off-set from one another along the y axis for clarity,
and distributions of structures fully relaxed to their minimum
energy are shown as solid lines while distributions of structures
at saddle points in their energy landscape are shown as dashed
lines. For comparison, the corresponding bond lengths of bulk
PbS and PbTe are shown in each panel of Fig. 6.

From Fig. 6, we can make several observations. First, the
Pb-S and Pb-Te distributions are bimodal at concentrations
close to xPbTe = 0.5, with the peaks in the Pb-S bond-length
distribution occurring near the bulk PbS and PbTe bond
lengths. Second, the Pb-Pb bond lengths are very broad,
spanning a range of values from the bulk PbS Pb-Pb bond
length to the bulk PbTe Pb-Pb bond length. Finally, while
the anion-anion bond-length distributions are broader than the
Pb-Te bond-length distributions, they are considerably more
peaked than the Pb-Pb distributions, and their peaks follow
the composition-weighted average of the S-S and Te-Te bond
lengths of PbS and PbTe. From these data, we conclude
that the large lattice mismatch between PbS and PbTe is
accommodated in the solid solution by distortions of the Pb
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FIG. 6. (Color online) Distribution of bond lengths in PbS-PbTe SQS. Bond lengths shown are 1NN (a) Pb-S (dPb-S) and (b) Pb-Te (dPb-Te)
bonds, and 2NN (c) Pb-Pb (dPb-Pb) and (d) anion-anion (dan-an) bonds. Bond-length distributions of SQS in their energy minima are shown as
solid lines and bond-length distributions of SQS at saddle points in their energy landscapes are shown as dashed lines. Arrows indicate the
corresponding bond lengths in bulk PbS and PbTe. Distributions are offset along the y axis for clarity (with corresponding x axes shows as
horizontal dashed lines).
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cation sublattice, with some smaller distortions of the S ions
as well.

D. Low-T phase transitions

The low-energy double-well potentials of the PbS-PbTe
SQS shown in Fig. 1 provide support for the idea that there
exists a phase transition in these alloys at low temperatures:
the double-well structures of the energy landscapes suggest
a Landau-type phase transition [67,70] may be occurring,
similar to displacive ferroelectric phase transitions in other
IV–VI compounds and alloys such as SnTe [85,86], GeTe
[87,88], PbTe-SnTe [89], SnTe-GeTe [90], and PbTe-GeTe
[91–93]. The imaginary, or “soft,” modes correspond primarily
to displacements of S ions suggesting that the phase transition
is due to the off-centering of these ions, as has been observed in
the alkali halides [43,44,94] and has been suggested to be the
cause of the observed low-temperature behavior in PbS-PbTe
alloys [38–42].

We use our calculated phonon normal-mode frequencies in
both the stable, “well-bottom” configuration and the unstable
“saddle-point” configuration of the xPbTe = 1/3 and xPbTe =
2/3 SQS to model low temperature behavior of the PbS-PbTe
alloys, following Ref. [67], as discussed in Sec. II D. We
determine anharmonic coupling constants between the phonon
modes of the “well-bottom” and “saddle-point” configurations
via Eq. (15). These anharmonic coupling constants are used
to obtain a set of renormalized phonon frequencies for the
low-T phase which depend on the magnitude of the unstable
mode displacement φ as in Eq. (13). Using these renormalized
phonon frequencies, we minimize the vibrational free energy
of the system F [Eq. (16)] with respect to φ as a function
of T to determine the equilibrium values of the soft-mode
displacement as a function of temperature and find the
transition temperature Tc where φ goes to zero.

In Fig. 7, we show the free energy in Eq. (16) as
�F (φ,T ) = F (φ,T ) − F (0,T ) as a function of φ at various
temperatures for the (a) xPbTe = 1/3 and (b) xPbTe = 2/3
PbS-PbTe SQS. Closed circles connected by dashed lines
indicate the values of φ that minimize the free energy at
each temperature. Insets in each panel of Fig. 7 show the
minimum-free-energy values of φ as functions of temperature,
with dashed vertical lines indicating the T at which φ = 0. By
the construction of the model, the phase transitions in Fig. 7 are
continuous [67], with critical transition temperatures Tc of 46
K for xPbTe = 1/3 and 104 K for xPbTe = 2/3. The calculated
transition temperatures are compared with experimentally
observed transition temperatures in Sec. III E.

E. PbS-PbTe phase diagram

In Sec. III B, we quantified the contributions to the
free energy of mixing in PbS-PbTe solid solutions at high
temperatures, and in Sec. III D, we semiquantitatively modeled
the low-temperature displacive behavior of S ions in PbS-PbTe
solid solutions. In this section, we construct the high- and
low-temperature phase diagrams of PbS-PbTe based on these
free energies and compare them to experimental data. Using
Eqs. (6) and (7) we construct a miscibility gap for PbS-PbTe
from �Fmix, shown in Fig. 3. This calculated miscibility gap
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FIG. 7. (Color online) Difference in free energy between F (φ,T )
and F (0,T ) as a function of φ at various T between (a) 0 and 60 K
for xPbTe = 1/3 and (b) 0 and 120 K for xPbTe = 2/3. Closed circles
connected by dashed lines indicate the values of φ which minimize
F (φ,T ) at each T . Insets in each panel show φ(T ) as closed circles
and Tc as vertical dashed lines for each system.

is shown as a solid black line in Fig. 8. Using Eq. (7), we also
calculate miscibility gaps corresponding to the bounds of the
90% confidence interval of Fig. 3, which is shown as a shaded
region in Fig. 8. In Fig. 8, we also show a previously calculated
miscibility gap for PbS-PbTe that neglects �Svib

mix as a dashed,
blue line [14]. Experimental data for the miscibility gap of
PbS-PbTe are shown as open [11] and closed [12] circles. Our
calculated low-T phase-transition temperatures for PbS-PbTe
with compositions xPbTe = 1/3 and 2/3 are shown as red
squares in Fig. 8. Finally, experimental data for low-T phase
transitions in PbTe-rich PbS-PbTe alloys are shown as open
squares in Fig. 8 [38].

Our calculated miscibility gap has a maximum temperature
TG of 1300 K, 470 K lower than the previously calculated
TG (without vibrational contributions) of 1770 K [14]. Both
of these temperatures are higher than the experimental TG

which is 1070 K [11,12]. However, we see that the effect of
the vibrational entropy of mixing in PbS-PbTe is to stabilize
the solid solution relative to phase-separated PbS and PbTe,
lowering the miscibility gap temperatures and improving
the agreement of our calculated values to experiment. Our
calculated low-T soft-mode phase-transition temperatures of
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FIG. 8. (Color online) Calculated high- and low-T solid-state
phase diagrams of PbS-PbTe. The solid black line shows the
miscibility gap calculated using Eq. (6), with gaps calculated from
the 90% confidence interval of the free energy fit shown as the gray
shaded region. The dashed blue line shows a previously calculated
miscibility gap for PbS-PbTe that neglects �Svib

mix [14]. Red squares
show calculated low-T phase transition temperatures. Open [11] and
closed [12] circles show the experimentally measured miscibility
gap of PbS-PbTe, and open squares [38] show the experimentally
measured low-T phase transition temperatures of PbS-PbTe.

46 and 104 K compare favorably with the experimentally
measured temperatures, which show a maximum Tc of 92 K
at xPbTe of 0.8. The experimental work only investigated
PbTe-rich compositions, however our calculations predict the
existence of low-T phase transitions at PbS-rich compositions
as well.

IV. CONCLUSIONS

In this work, we used first-principles DFT calculations to
investigate the role that vibrations play in the thermodynamics
of PbS-PbTe alloys. We used special quasirandom structures
(SQS) to approximate the atomic structure of the solid solution
of PbS-PbTe alloys. These SQS were then relaxed within
DFT and their vibrational spectra were calculated with the
frozen-phonon method. We found that several of these SQS
had relaxed to saddle points in their energy landscapes,
leading to unstable phonon modes with double-well energy
versus phonon mode displacement curves. These phonon
modes corresponded to motion of S ions within the rocksalt
lattice, providing theoretical support for the experimental
observations of phase transitions in PbS-PbTe alloys at low
temperatures. In addition to the dynamic displacements of S
ions, structural analysis of the PbS-PbTe SQS showed that the

TABLE IV. Description of the 27-atom SQS supercells for x = 1/3 and x = 2/3.

SQS-27 (x = 1/3) A3BC2

Lattice vectors
a1 = (0.0,1.5,1.5) a2 = (1.5,0.0,1.5) a3 = (1.5,1.5,0.0)

Atomic Positions
rocksalt spectator

fcc-mixing atoms cation atoms
B—(0.0,0.0,0.0) A—(0.5,0.5,0.5)
B—(0.0,0.5,0.5) A—(0.5,1.0,1.0)
B—(0.0, − 0.5, − 0.5) A—(0.5,0.0,0.0)
B—(0.5,0.0,0.5) A—(1.0,0.5,1.0)
B—(−0.5,0.5,0.0) A—(0.0,1.0,0.0)
B—(−0.5,0.5, − 1.0) A—(0.0,1.0, − 0.5)
B—(−0.5,0.0,0.5) A—(0.0,0.5,1.0)
B—(0.0, − 0.5,0.5) A—(0.5,0.0,1.0)
B—(0.5,0.5, − 1.0) A—(1.0,1.0, − 0.5)
C—(0.5, − 1.0, − 0.5) A—(1.0, − 0.5,0.0)
C—(0.5, − 0.5,0.0) A—(1.0,0.0,0.5)
C—(−0.5,0.0, − 0.5) A—(0.0,0.5,0.0)
C—(−0.5, − 0.5, − 1.0) A—(0.0,0.0, − 0.5)
C—(0.5,0.5,0.0) A—(1.0,1.0,0.5)
C—(0.5, − 0.5, − 1.0) A—(1.0,0.0, − 0.5)
C—(0.5,0.0, − 0.5) A—(1.0,0.5,0.0)
C—(1.0, − 0.5, − 0.5) A—(1.5,0.0,0.0)
C—(1.0,0.0,0.0) A—(1.5,0.5,0.5)
C—(0.0,0.5, − 0.5) A—(0.5,1.0,0.0)
C—(0.0,1.0,0.0) A—(0.5,1.5,0.5)
C—(0.0,0.0, − 1.0) A—(0.5,0.5, − 0.5)
C—(−0.5, − 0.5,0.0) A—(0.0,0.0,0.5)
C—(−0.5, − 1.0, − 0.5) A—(0.0, − 0.5,0.0)
C—(0.0,0.0,1.0) A—(0.5,0.5,1.5)
C—(0.0, − 1.0,0.0) A—(0.5, − 0.5,0.5)
C—(−1.0, − 0.5, − 0.5) A—(−0.5,0.0,0.0)
C—(−1.0,0.0,0.0) A—(−0.5,0.5,0.5)
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TABLE V. Composition and geometry of Pb NN coordination. For each SQS, the number of Pb ions with 0–6 Pb-Te NN bonds are reported
along with statistics of Pb-S and Pb-Te bond lengths for Pb ions with that Te coordination. Numbers listed without standard deviations are
either single bond lengths or bond lengths equivalent by symmetry.

System # Pb-Te NN Bonds
0 1 2 3 4 5 6

xPbTe = 1/27
# Pb ions 21 6
〈dPb-S〉 (Å) 3.004 ± 0.012 3.000 ± 0.042
〈dPb-Te〉 (Å) 3.150

xPbTe = 1/4
# Pb ions 4 3 6 3
〈dPb-S〉 (Å) 3.038 ± 0.087 3.050 ± 0.128 3.042 ± 0.143 3.045 ± 0.163
〈dPb-Te〉 (Å) 3.182 ± 0.041 3.220 ± 0.042 3.204 ± 0.030

xPbTe = 1/3 well
# Pb ions 2 8 8 7 1 1
〈dPb-S〉 (Å) 3.056 ± 0.127 3.075 ± 0.191 3.073 ± 0.188 3.084 ± 0.196 2.950 ± 0.023 2.962
〈dPb-Te〉 (Å) 3.267 ± 0.072 3.225 ± 0.060 3.207 ± 0.061 3.196 ± 0.062 3.219 ± 0.067

xPbTe = 1/3 saddle point
# Pb ions 2 8 8 7 1 1
〈dPb-S〉 (Å) 3.046 ± 0.027 3.056 ± 0.071 3.049 ± 0.079 3.060 ± 0.103 2.921 ± 0.006 2.966
〈dPb-Te〉 (Å) 3.241 ± 0.034 3.210 ± 0.036 3.193 ± 0.054 3.186 ± 0.069 3.201 ± 0.062

xPbTe = 1/2
# Pb ions 2 4 4 4 2
〈dPb-S〉 (Å) 3.050 ± 0.054 3.036 ± 0.060 3.048 ± 0.047 3.090 ± 0.052 3.059
〈dPb-Te〉 (Å) 3.211 3.248 ± 0.018 3.238 ± 0.033 3.233 ± 0.027 3.243 ± 0.029

xPbTe = 2/3 well
# Pb ions 1 1 7 8 8 2
〈dPb-S〉 (Å) 3.141 ± 0.262 3.070 ± 0.333 3.115 ± 0.263 3.137 ± 0.208 3.055 ± 0.119
〈dPb-Te〉 (Å) 3.260 3.438 ± 0.018 3.277 ± 0.065 3.260 ± 0.073 3.253 ± 0.062 3.243 ± 0.035

xPbTe = 2/3 saddle point
# Pb ions 1 1 7 8 8 2
〈dPb-S〉 (Å) 3.107 ± 0.182 3.073 ± 0.316 3.111 ± 0.246 3.144 ± 0.235 3.045 ± 0.113
〈dPb-Te〉 (Å) 3.266 3.455 ± 0.038 3.275 ± 0.070 3.260 ± 0.073 3.253 ± 0.065 3.242 ± 0.039

xPbTe = 3/4 saddle point
# Pb ions 3 6 3 4
〈dPb-S〉 (Å) 3.139 ± 0.278 3.077 ± 0.118 3.098 ± 0.147
〈dPb-Te〉 (Å) 3.266 ± 0.095 3.283 ± 0.074 3.264 ± 0.067 3.253 ± 0.037

xPbTe = 26/27 saddle point
# Pb ions 6 21
〈dPb-S〉 (Å) 3.102
〈dPb-Te〉 (Å) 3.292 ± 0.046 3.274 ± 0.013

Pb cations are statically displaced from their ideal lattice sites
due to the size mismatch between PbS and PbTe. These obser-
vations may relate to the proposed off-centering of Pb ions in
pure PbS and PbTe with increasing T [27,29,31,34], though
anharmonic effects seem to account for the experimentally
observed phenomena in the pure compounds [28,35,36].

From the calculated vibrational spectra of dynamically
stable PbS-PbTe SQS, we obtained phonon DOSs and used
them to determine the high-temperature vibrational entropy
of mixing in PbS-PbTe solid solutions. We combined these
entropies with the zero Kelvin SQS mixing energies to obtain
the Helmholtz free energy of mixing for PbS-PbTe. We used
this free energy to calculate the solid-solid phase diagram
for PbS-PbTe, which we found to have a miscibility gap in
agreement with experiment. We found that the inclusion of
the vibrational entropy of mixing in the free energy brought
the calculated miscibility gap into better agreement with

experiment. We also used the calculated vibrational spectra of
the SQS at xPbTe = 1/3 and 2/3 to determine low-T displacive
phase transition temperatures, which we found to be in good
qualitative agreement with experimental data at compositions
near xPbTe = 1/3. Based on our calculation of a transition at
xPbTe = 2/3, we predict that PbS-PbTe alloys should undergo
displacive phase transitions at PbS-rich compositions as well.
We find the vibrational properties of PbS-PbTe alloys to play
an important role in the thermodynamics of these materials,
and their inclusion in the free energy of mixing is crucial to a
quantitative description of the phase transitions in these alloys.
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APPENDIX A: DESCRIPTION OF 27-ATOM SQS

Table IV contains the unit-cell parameters and atomic
positions of the mixing atoms for the fcc SQS-27 supercells, as

well as the atomic positions of the spectator cation atoms for
the rocksalt SQS-54 supercells at a composition of x = 1/3.
The structure for x = 2/3 can be obtained by switching B and
C atoms. Table V contains local composition and geometric
information for each Pb cation in the PbS-PbTe SQS in their
low-T , well-bottom configurations and/or high-T saddle-point
configurations.

APPENDIX B: HEAT CAPACITY OF PBS-PBTE ALLOYS

Figure 9 shows both calculated and experimental heat ca-
pacites at constant volume for the PbS-PbTe alloys. Calculated
heat capacities are shown as solid lines and experimental heat
capacities as points. The calculated heat capacities for PbTe
and PbS (black, solid lines in Fig. 9) are in good agreement
with the experimentally measured heat capacities. The heat
capacities of the PbS-PbTe alloys all lie within the heat
capacities of PbTe and PbS. The inset of Fig. 9 shows the
heat capacities of mixing, defined by

�Cvib
V,mix(x,T ) = Cvib

V (x,T ) − (1 − x)Cvib
V (PbS,T )

−xCvib
V (PbTe,T ), (B1)

where Cvib
V (x,T ) is the heat capacity of an alloy with

composition x, Cvib
V (PbS,T ) is the heat capacity of PbS, and

Cvib
V (PbTe,T ) is the heat capacity of PbTe. The heat capacities

of mixing for PbS-PbTe are all very small and decrease
with increasing temperature, approaching zero around room
temperature. This negligible heat capacity of mixing gives
credence to the use of Eq. (10).
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[13] H. Lin, E. S. Božin, S. J. L. Billinge, J. Androulakis, C. D.

Malliakas, C. H. Lin, and M. G. Kanatzidis, Phys. Rev. B 80,
045204 (2009).

[14] J. W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012).
[15] Y. Wang, S. L. Shang, L. Q. Chen, and Z. K. Liu, Int. J. Quantum

Chem. 111, 3565 (2011).
[16] C. Wolverton and A. Zunger, Phys. Rev. B 52, 8813 (1995).
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[20] V. Ozoliņš, C. Wolverton, and A. Zunger, Phys. Rev. B 58,

R5897 (1998).
[21] D. Morgan, A. van de Walle, G. Ceder, J. D. Althoff, and

D. de Fontaine, Model. Simul. Mater. Sci. Eng. 8, 295 (2000).
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[75] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[76] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[77] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[78] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[79] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
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