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Chemical potential for light by parametric coupling
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Usually photons are not conserved in their interaction with matter. Consequently, for the thermodynamics of
photons, while we have a concept of temperature for energy conservation, there is no equivalent chemical potential
for particle number conservation. However, the notion of a chemical potential is crucial in understanding a wide
variety of single- and many-body effects, from transport in conductors and semiconductors to phase transitions
in electronic and atomic systems. Here we show how a direct modification of the system-bath coupling via
parametric oscillation creates an effective chemical potential for photons even in the thermodynamic limit. In
particular, we show that the photonic system equilibrates to the temperature of the bath, with a tunable chemical
potential that is set by the frequency of the parametric coupler. Specific implementations, using circuit-QED
or optomechanics, are feasible using current technologies, and we show a detailed example demonstrating the
emergence of Mott insulator–superfluid transition in a lattice of nonlinear oscillators. Our approach paves the
way for quantum simulation, quantum sources, and even electronlike circuits with light.
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I. INTRODUCTION

The study of the thermodynamics of photons dates back
to Planck [1]. Investigating blackbody radiation, he realized
photons decay due to absorption into walls of their container,
and therefore, no chemical potential appeared in his expres-
sion, in contrast to Gibbs’s thermodynamic expressions for
other particles using the grand canonical ensemble. Later,
it was understood that in the absence of absorbing walls,
photon can acquire nonzero chemical potential, e.g., photon
emission in semiconductors (LED) [2], and thus the useful
concept of chemical potential can start to be applied to these
systems [3–5]. Moreover, if photons are confined in a cavity
and coupled to excitons, they form polaritons which also can
thermalize [6–8]. More recently, it was shown that photons
can thermalize with a nonzero chemical potential and form
a Bose-Einstein condensate [9–12] when interacting with
a nonlinear medium. However, finding a general solution
to creating a chemical potential for light remains an open
problem [13].

At the same time, photons provide an intriguing quantum
degree of freedom for implementing quantum simulators
[14–19] and observing quantum phases of matter [8]. In
quantum simulation, one develops a quantum system with a
controlled, known Hamiltonian, enabling simulation of prob-
lems that are exponentially difficult on a classical computer.
This new paradigm covers a wide range of problems from
chemistry [20] and quantum field theories [21] to strongly cor-
related electron systems, such as high-Tc superconductors [22].
Recently, several theoretical works have shown that photonic
systems can have nontrivial photonic states [23,24] and even
many-body effects with zero chemical potential [25–28]. In the
presence of strong nonlinearity photonic system can exhibit
blockade effect [29–31], which can fix the number of photons
in the steady state. In particular, it was recently shown that
under specific conditions (flat-band models and with an in-
compressibility at a certain particle number), photonic systems
can be stabilized by single-photon pumping and parametric
drive [32]. However, many phenomena that are interesting

from a quantum simulation perspective involve thermalization
in systems with a controllable chemical potential, as a key
parameter in phase diagrams. Both are absent for photons.

Here, we propose a parametric scheme to address the
issue of chemical potential and thermalization in photonic
systems, extending preliminary concepts [33] and developing
simpler approaches than current theory [34–36]. In particular,
by parametrically coupling a photonic system to a thermal
bath, we show that a photonic system can equilibrate to the
temperature of the bath, with a tunable chemical potential
given by the frequency of the parametric coupler. Therefore,
this scheme makes it possible to control both the temperature
and the chemical potential of a photonic system. We apply our
scheme to two platforms, circuit-QED and optomechanical
systems, where recent and spectacular progress has been
made in controlling and using them in a few quanta regime.
Finally, we conclude by considering how a photonic lattice
implementing a Bose-Hubbard model can be driven through
the Mott insulator–superfluid (MI-SF) transition [37] using
this approach even in the presence of finite dissipation.

II. PARAMETRIC THERMALIZATION

We can understand thermalization via a system-bath pic-
ture, where the system of choice with Hamiltonian HS is
coupled via λHSB to a bath with Hamiltonian HB and initial
state ρB ∝ exp(−βHB ) [38,39]. Our scheme will follow this
approach with one small modification: replace the coupling
with a parametric coupling via λ → 2λ cos(ωpt), where ωp

is the angular frequency at which the coupling is modu-
lated. Therefore, the system-bath Hamiltonian takes the form
(� = 1),

H = HS + 2λ cos(ωpt)HSB + HB, (1)

again with initial conditions ρB ∝ exp(−βHB). We assume
that parametric drive can be characterized by a classical field
which cannot be depleted. The parametric coupling will enable
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up- and down-conversion of bath excitations to photons, which
will lead to controlled chemical potentials.

To see this explicitly, we will assume that HSB is bi-linear,
of the form

HSB =
∑

j

(âj + â
†
j )Bj , (2)

where B̂j is a bath operator and there exists âj , nj such that
[âj ,nj ] = âj , as occurs naturally for photons. This property
defines particle numbers nj and total particle number N̂ =∑

j nj .
Let us consider what happens when the energy scales of

the bath and system are small compared to ωp. Specifically,
we assume that the system has a low frequency cutoff, and
the bath has a low-high frequency cutoff νc. Furthermore, we
will decompose HS into H ′

S + HS,⊥ where HS,⊥ includes all
terms that do not commute with the total number of particles in
the photonic system, given by N̂ = ∑

j â
†
j âj . Therefore, H ′

S is
the part of the Hamiltonian that conserves the total number of
particles. In this regime, we move to a rotating frame with the
unitary transformation U = exp(−itωpN̂ ). The transformed
system Hamiltonian becomes

U †HSU − iU †U̇ ≈ H ′
S − ωpN̂, (3)

where we have neglected U †HS,⊥U by making the rotating
wave approximation (RWA), requiring ||HS,⊥|| � ωp.

Meanwhile, the bath Hamiltonian remains the same, while
the system bath coupling terms become

[âj + â
†
j + (e−2iωpt âj + e2iωpt â

†
j )]Bj ≈ [âj + â

†
j ]B̂j . (4)

The key approximation is again the RWA to neglect e2iωpt â
†
j -

type terms, consistent for a bath whose two-point bath
correlation function 〈Bi(t + τ )Bj (t)〉 has a cutoff frequency
νc < ωp. This provides our definition of a low frequency bath
for this paper, with H ′

SB ≡ ∑
j [âj + â

†
j ]B̂j the system-bath

coupling in the RWA.
Through this set of transformations, and the rotating wave

approximation, we have a new system-bath Hamiltonian which
takes the traditional form

H = H ′
S − μN̂ + λH ′

SB + HB, (5)

where we identity μ ≡ ωp as the chemical potential. For weak
coupling λ and an infinite bath at inverse temperature β, we
expect the system to thermalize in the long-time limit to a
density matrix

ρ ≈ exp[−β(H ′
S − μN̂ )], (6)

i.e., the distribution is exactly that of the grand canonical
ensemble.

The key idea of our approach is to parametrically couple a
low-temperature, low frequency bath to a set of high frequency
modes. The parametric coupler up-converts bath excitations
to photons and down-converts photons to bath excitations, as
shown in Fig. 1. This leads to thermalization of photons, as long
as the bath thermalization rate and the coupling rate between
the bath and photons is faster than other photonic decay rates.

SystemSystem

Parametric
Bath

γ

κ

ω

ωp

0

ωc

photon loss

−ωc

FIG. 1. (Color online) Thermal bath with modes b̂j and response
functions with a cutoff νc can be parametrically coupled to a higher
frequency (optical) system with modes âj near the frequency νp .
Additional loss via the high frequency bath can lead transport from
the parametric bath through the system to the high frequency bath.

III. IMPLEMENTATIONS

Now we show that such a scheme, which provides both
thermalization and a finite chemical potential for photons,
can be implemented in circuit-QED systems for microwave
domain photons and using optomechanics for optical domain
photons. Following the Caldeira-Leggett model, in the context
of circuits [40,41], we consider the bath to be a collection of
transmission lines which can be described by a quasicontinuum
of harmonic oscillators. The bath Hamiltonian is given by

HB =
∑

ν

ων

(
b̂†ν b̂ν + 1

2

)
, (7)

where b̂†ν is the creation operator of an electromagnetic field
quantum at mode ν with frequency ων . We assume that
the transmission lines are in thermal equilibrium, and thus,
〈b̂†ν b̂ν ′ 〉 = 1

eων /kB T −1δν,ν ′ . We consider that each mode of the
photonic system is coupled to the bath using nondegenerate
parametric amplifiers, through three-wave mixing. While
many configurations can implement this concept [42], we focus
on the conceptually cleanest case: a Josephson parametric
amplifier in a Wheatstone bridge configuration [43], as
depicted in Fig. 2.

Examining the details of the JJ-Wheatstone parametric
coupler, we assume that each junction has a large area,
and hence, a large capacitance, so that its charging energy
can be ignored. In this approximation, the energy U of the
JJ-Wheatstone bridge is [44]

− 4EJ

[
cos

(
	x

4ϕ0

)
cos

(
�X

2ϕ0

)
cos

(
�S

2ϕ0

)
cos

(
�Z

2ϕ0

)

+ sin

(
	x

4ϕ0

)
sin

(
�X

2ϕ0

)
sin

(
�S

2ϕ0

)
sin

(
�Z

2ϕ0

)]
,

where we have taken all four JJ’s to have the same EJ ,
and ϕ0 = 	0/(2π ), 	0 = h/(2e) being the superconducting
flux quantum. Setting 	x = 	0/2 by choice of flux bias,
and assuming the mode intensities �X,�S,�Z � 	0, consis-
tent with moderate to low characteristic impedance circuits,
we can expand U in ψi = �i/	0, i ∈ {X,S,Z} to third
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FIG. 2. (Color online) Coupled array of nonlinear microwave
cavities provides a potential quantum simulator, where individual
elements’ parametric coupling to a bath provides chemical potential.
The inset shows the bath coupler implementation suggested in the
text using circuit QED. Specifically, a transmission line is coupled to
the mode �X of the coupler. The system is connected to the mode �S .
The mode �Z = λ	0 cos ωpt is driven harmonically at frequency ωp

and provides the up- and down-conversion necessary for particle and
hole exchange with the bath.

order [45]:"

U = −2
√

2EJ + M
(
ψ2

X + ψ2
S + ψ2

Z

) + gψXψSψZ. (8)

Here M = √
2EJ π2 and g = −2

√
2EJ π3.

A transmission line is connected inductively to the coupler
mode �X = 	1 − 	2 through inductance L1. The modes,
assumed to be in thermal equilibrium at a temperature T ,
act as a bath. The (microwave) photonic system is coupled to
the mode �S = 	4 − 	3, while the mode �Z = 	1 − 	3 +
	2 − 	4 is externally modulated as �Z = λ	0 cos(ωpt + φ),
where λ is the dimensionless amplitude of the modulation and
controls the system-parametric bath coupling strength.

Let Cl = CL be the capacitance of the transmission line,
with C being its capacitance per unit length. Because of the

presence of the transmission line, �X = ∑
ν ψν

√
1

2Clν
(bν +

b†ν). Here, ψν is a dimensionless parameter that depends
on the boundary conditions at z = L. For our particular
coupling—current-flux—we expect ψν ∼ sin(kνL) and, in the
weak coupling limit, ψν ∝ ν. Ignoring coupling between
different transmission line modes, the system Hamiltonian is

HS + HB + λ cos(ωpt + φ)
∑

ν

hν(bν + b†ν)�S, (9)

where hν = g

	2
0
ψν

√
1

2Clν
. This then directly produces our

model Hamiltonian for generating a chemical potential, where
the density of states J (ν) = h(ν)2ρ(ν) ∝ ν, i.e., an Ohmic
bath [41].

For the optical domain, we need a different parametric
process. A convenient one is the optomechanical coupling
between motion of a mirror and the frequency of light in
a cavity formed by the mirror. This example case has been
worked in partial detail in Ref. [33]. The key idea is for a

pump field to take the radiation pressure coupling a†ax to
a fast oscillating coupling via a → a + αe−iωpt , producing a
parametric coupling to the phonon “bath” with frequency ωp.
The details and benefits of the optomechanical approach will
be considered in a separate work.

Note that in any experimental implementation, one needs
to filter out the pump photons from the signal system photons.
This can be easily achieved by using different polarization
or spatial modes of the photonic system on each site.
Alternatively, in certain schemes, one can reject the pump by
frequency filtering. For example, in the Mott insulator case,
discussed later in this article, the pump has higher frequency
than the prepared Mott state, and therefore, the pump can be
filtered out by frequency selection.

IV. BATH DISCUSSION

We now examine our assumption of a cutoff in the bath
degrees of freedom, as well as a strictly parametric system-bath
coupling. For simplicity, we divide the bath modes into three,
independent sets of modes, and consider coupling to a single
system mode a. Given a parametric coupling at frequency ν,
the low frequency modes of the bath, bj , are defined as those
with natural resonance frequencies ωj � ν/2. The “natural”
modes, cj , are those with frequencies ν/2 < ωj � 3ν/2. The
“doubly rotating” modes, dj , are those with frequencies ωj >

3ν/2. Thus the more general system-bath interaction is

HSB = [A + λ cos(νt)](a + a†)

×
∑

j

fj (bj + b
†
j ) + gj (cj + c

†
j ) + hj (dj + d

†
j ).

(10)

We now move to an appropriate rotating frame, with a →
ae−iνt , bj → bj , cj → cj e

−iνt , and dj → dj e
−2iνt . With the

assumption of weak coupling (A,λ small), we look at the
rotating wave approximation for the different couplings:

HSB,b = [A + λ cos(νt)](ae−iνt + a†eiνt )
∑

j

fj (bj + b
†
j )

→ 1

2
λ(a + a†)

∑
j

fj (bj + b
†
j ), (11)

HSB,c = [A + λ cos(νt)]

× (ae−iνt + a†eiνt )
∑

j

gj (cj e
−iνt + c

†
j e

iνt ) (12)

→ A
∑

j

gj (a†cj + c
†
j a), (13)

HSB,d = [A + λ cos(νt)](ae−iνt + a†eiνt )

×
∑

j

hj (dj e
−2iνt + d

†
j e

2iνt ) (14)

→ 1

2
λ

∑
j

hj (a†dj + d
†
j a). (15)

By breaking up the bath into three different frequency regions,
we see that the natural and doubly rotating frequency regions
both lead to a system-bath interaction of the quantum optics
type, i.e., that of a beam splitter interaction a†c + c†a. For these
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portions of the system-bath interaction, we may then proceed
in deriving the master equation in the usual way [46,47], and
find, in appropriate limits, a decay of excitations of a at a
rate κ ∼ A2|gj |2ρ(ν) + 1

4λ2|hj |2ρ(2ν), where ρ(ν) is the bath
density of states near the parametric modulation frequency ν.
We now investigate the remaining portion of the system-bath
to investigate this portion of the system-bath interaction in a
specific setting, to illustrate the emergence of a Mott insulator–
superfluid transition in a photonic lattice.

V. LATTICE MODEL AND MASTER EQUATION

We consider now what happens to a lattice of coupled,
interacting photonic resonators, coupled to both a parametric
bath at inverse temperature β and nominal coupling rate γ

and to a high frequency (loss) bath with loss rate κ . For
simplicity, we consider only strong on-site repulsion U , and
have for the conservative parts of the evolution a Bose-Hubbard
Hamiltonian [37] in the rotating frame:

HS =H0 + HJ ,

with

H0 =
∑

i

[
U

2
ni(ni − 1) − μni

]

and

HJ = − J
∑
〈ij〉

a
†
i aj ,

where J is the tunneling rate between adjacent sites.
We explicitly derive the master equation for the system,

using the usual prescription: first, move to the interaction
picture with respect to HS + HB , where HB is the bath
Hamiltonian and the λ prefactor in the system-bath coupling
will be a perturbative parameter. We can write the evolution
equation for short times τ as

ρ̇I (τ ) = −iλ[HSB (τ ),ρI (0)]

− λ2
∫ τ

0
[HSB (τ ),[HSB(t),ρI (t)]]dt,

with HSB(t) = ∑
j Bj (t)xj (t) the system-bath coupling in the

interaction picture, writing xj (t) = aj (t) + a
†
j (t).

Now we make the Born and Markov approximations.
That is, we replace ρI (t) with ρS(τ ) ⊗ ρB . Here ρB is the
bath density matrix which will be time-translation invariant
for an infinite bath, and is independent of ρS with 〈Bi〉 ≡
TrB[BiρB] = 0 for all bath operators coupled to the system.
From these two approximations, we can trace over the bath
and recover the master equation (in the interaction picture)

ρ̇S(τ ) = −
∑
ij

∫ ∞

0
Sij (t)[xi(τ )xj (τ − t)ρs

− xi(τ )ρSxj (τ − t)]

+ Sij (−t)[ρsxj (τ − t)xi(τ ) − xj (τ − t)ρSxi(τ )]dt,

(16)

with Sij (t) = λ2TrB[Bi(t)Bj (0)] the bath correlation function
and where, by taking the initial integration point to −∞, we
have assumed that bath correlations decay faster than the

effective damping they induce—consistent with the Markov
approximation.

At this point, we wish to develop a time-local master
equation. We express xj (t) in the energy eigenbasis of HS ,
with states |k〉 and energies εk and an ordering in energy such
that k′ > k → ωk′k ≡ εk′ − εk � 0. Then

cj (t) =
∑
l>k

e−iωlk t xj,kl|k〉〈l|, (17)

formally defines an operator that reduces or keeps constant the
energy, and xj (t) = cj (t) + c

†
j (t) + x0, with the last term time

independent and neglected in what follows.
Taking independent, Ohmic baths for each coupling term,

we have

Sij (t) = δij

π

∫ ∞

0
dν J (ν)[(Nth(ν) + 1)e−iνt + Nth(ν)eiνt ],

(18)

with the effective spectral density J (ν) = ν e−ν/νc , Nth(ν) =
1/[exp(βν) − 1], where β is the inverse temperature of the
parametric bath and νc � U is a high frequency cutoff that is
irrelevant to the rest of our calculation. At this point, we get
terms in the master equation of the form Sij (t)(ci(τ )cj (τ −
t)ρS) and terms of the form Sij (t)(ci(τ )c†j (τ − t)ρS). The
former will have phase evolution at a finite frequency as
a function of τ , and will be neglected in a rotating wave
approximation. The latter will also have such terms, except
for those with ωkl = ωk′l′ , i.e., energy-degenerate transitions.
Keeping only these transitions immediately takes us to the
usual golden rule result: transitions with a positive energy
difference ν occur with a rate J (ν)Nth(ν) and transitions with
a negative energy difference have the rate J (ν)[Nth(ν) + 1].

Thus, when the energy levels of the system are well
resolved, we can derive a super operator describing both
photon loss and coupling to the parametric bath. Using the
commutation of HS with N (the total photon number), we get
transitions from k to l with rates that depend on whether the
total photon number of the two states differs by +1 or −1 as

�+
k→l = γ (Nth(|εk − εl|) + �(εk − εl))

∑
i

|〈l|a†
i |k〉|2, (19)

�−
k→l = [γ (Nth(|εk − εl|) + �(εk − εl)) + κ]

∑
i

|〈l|ai |k〉|2,

(20)

where γ = γ0
|εk−εl |

U
for the Ohmic bath case, γ0 represents

the overall strength of the coupling, and � is the Heaviside
step function. We have gone back to the physical couplings
ai rather than the many-body energy lowering operator cj in
order to make clear the special role loss via the high frequency
bath plays in Eq. (20).

The superoperator takes Lindblad form with these rates
leading to a rate equation in the energy eigenbasis. Solving this
numerically for a case of four coupled sites (Fig. 3), we can
immediately see an intuitive understanding of the two types
of decay processes. The first type, which increases photon
number, corresponds to the decay of holes (if the energy
of the higher photon number state is lower in the rotating
frame) or the creation of particles (if otherwise). The second
type decreases photon number, and includes both creation of
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(μ, J) = (0.4, 0.1)U
E

(N
)
−

μ
N

4

2

-2
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J
U

μ

κ
γNth

γ(Nth + 1)

κ

γNth

γ(Nth + 1)

FIG. 3. (Color online) Energy eigenstates plotted as a function
of energy and total photon number N for a numerical solution of
a four site Bose-Hubbard model (shown in the upper inset) with
(J,μ,γ,κ) = (0.1,0.4,0.01,0.003)U and β = 1/10U . The opacity of
the blue dots represent the probability, in steady state, of being in the
associated energy eigenstate. The lower inset shows the region near
the ground state in the rotating frame; holelike excitations (lower
N ) are preferentially filled due to optical loss processes κ only
reducing particle number. The relatively high temperature leads to
some thermal filling of the first particle excited state.

holes via loss and via the parametric bath; consequently, we
expect a greater rate for the second process, which will lead
to a particle-hole temperature asymmetry as shown below.
The simulations themselves correspond to fixing a maximum
total particle number per site, finding the eigenenergies of
the dissipation-free model, calculating the decay rates in
Eqs. (19) and (20), determining the steady state of the master
equation, and for that steady state, finding the probability of
each state (shown in the inset to Fig. 3), and estimating the
Mandel Q = 〈n2〉−〈n〉2−〈n〉

〈n〉 parameter and the average hopping

〈a〉 ≡
√

|〈a†
i aj 〉| (shown in Fig. 4).

VI. STRONG INTERACTION EXPANSION

We now take a simpler form of the superoperator describing
both photon loss and coupling in the case of a single resonator
site (J = 0) to get an analytical handle on the process.
That is, we evaluate Eqs. (19) and (20) in the single site
case. Specifically, defining E0(n) = U

2 n(n − 1) − μn, the sign
of �E(n) = E0(n + 1) − E0(n) = nU − μ determines both
the direction of decay and the thermal bosonic enhance-
ment factor Nth(|�E(n)|). Thus �+

n→n+1 = γf+(n),�−
n+1→n =

(n + 1)κ + γf−(n) with

f+(n) = (n + 1)[Nth(|�E(n)|) + �(−�E(n))], (21)

f−(n) = (n + 1)[Nth(|�E(n)|) + �(�E(n))], (22)

0.0
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2.0

-0.5
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0.10.0 0.30.2 0.1 0.30.2

FIG. 4. (Color online) Numerical results for Mandel Q (left)

and coherence 〈a〉 ≡
√

|〈a†
i aj 〉| (right) using the four-site (top) and

a six-site (bottom) Bose-Hubbard model with periodic boundary
conditions. We assume an Ohmic parametric bath and a flat high
frequency (loss) bath. The Mandel Q ≈ −1 regions (dark blue,
left plot) are the Mott insulator states; at the same time, the finite
coherence between sites on the right indicates the emergence of
superfluid order (right plot) outside the Mott lobes. Finite size
effects prevent observation of sharp transitions. Here γ0 = 0.07U

and κ = γ0/30. Overlaid are the critical values for finite occupation
of particles and holes (solid black lines), with the dotted line for a
higher value of κ = γ0/3. The asymmetry of particles and holes arises
due to preferential hole creation from optical loss.

and γ = γ0|�E(n)|/U for the Ohmic bath case. The change
from Nth to Nth + 1 that occurs in these two factors with the
change in sign of �E(n) arises from having both co- and
counter-rotating terms in the system bath coupling.

One consequence of the strong interaction (sometimes
called strong coupling in the Mott insulator literature) limit
(J → 0) is an analytical form for the steady state. Specifically,
we recover a form of detailed balance, where the probability
of a transition on a site from photon number n to n + 1
is given by γf+(n), while the transition from n + 1 to n is
γf−(n) + (n + 1)κ . This gives, in steady state, a set of ratios

p1

p0
= f+(0)

f−(0) + κ/γ
, (23)

p2

p1
= f+(1)

f−(1) + κ/γ
, (24)

. . . (25)

where the correction from a thermal distribution arises from
the term κ/γ , which depends on the energy difference via γ .
We can characterize this for two regimes. First, when �E(n)
is positive (it costs energy to add a photon), we expect the
ratio pn+1/pn = N

(p)
eff /(N (p)

eff + 1). This defines the bosonic
occupation as seen by particle addition as

N
(p)
eff = Nth(|�E(n)|)

1 + κ/γ
.

Thus, when particles cost energy, photon loss reduces the
effective temperature of the system.
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Similarly, when �E(n) is negative, we expect pn+1/pn =
(N (h)

eff + 1)/N (h)
eff , which defines the bosonic occupation as seen

by hole addition:

N
(h)
eff = [Nth(|�E(n)|) + κ/γ ]

1 − κ/γ
.

Here, photon loss increases the energy, and thus increases the
effective temperature of the system. Furthermore, any hope of
a thermal description will necessarily break down for κ/γ � 1.

Having established that a Mott insulator–like phase emerges
from the single site picture, we can ask how the asymmetry
of particles and holes changes the standard picture of the
edges of the Mott lobes, by using a picture of free particles
and holes above the n0 particle-per-site Mott state |�M〉 ∝∏

i(a
†
i )n0 |vac〉, i.e., using small J perturbation theory in the

strong interaction limit. A crucial difference from the standard
treatment [48] is the use of an implicit finite lifetime to such
excitations due to the coupling to both parametric and high
frequency baths.

When J exceeds damping and dephasing, we can no longer
use a master equation appropriate to a single site. Specifically,
as we want the parametric bath to resolve the kinetic terms
in the Hamiltonian, we require γ [= γ0(J/U )] � J . We can,
however, characterize the particle or hole occupation for a
wave vector k in the dilute limit (where particle hole collisions
are neglected) by using our N

(p[h])
eff , and we can ask over what

domain of parameter space is the combined occupation of
particles and holes small compared to one per site. Here we
rely upon the standard picture of particle and hole energies to
order J 2/U , neglecting loss-induced changes to the energy
differences, consistent with κ � γ � J . The energy of a
particle(hole) of wave vector k = 0 above the Mott state is
given by Ref. [48] and reproduced here to order J 2/U :

�E(p) = − zJ (n0 + 1) + n0U

− μ + zJ 2

2U
n0(5n0 + 4) − z2J 2

U
n0(n0 + 1), (26)

�E(h) = − zJ (n0) − (n0 − 1)U + μ

+ zJ 2

2U
(n0 + 1)(5n0 + 1) − z2J 2

U
n0(n0 + 1), (27)

where z is the number of nearest neighbors.
We can then calculate the average particle and hole

expectation values including both the parametric bath and
the high frequency (photon loss) bath, and find that these
lowest energy modes have just N

(p)
eff and N

(h)
eff with the above

�E(p[h]). The boundary of the phase would then correspond
to this effective occupation approaching unity (at which point
we may expect a macroscopic occupation of particles and/or
holes in the system, taking us far from the Mott state). This
boundary is shown for two different values of κ/γ0 in Fig. 4;
as κ increases, the lobes become asymmetric, consistent with
additional hole creation via particle losses.

We now consider what near equilibrium picture can emerge,
and in particular focus on a picture with two reservoirs
(particles and holes) at different temperatures due to loss into
the high frequency bath. In the limit of κ → 0, we recover
the usual picture of an equilibrium system, and get a critical

temperature defined as

T (0)
c = 1

kB log 2
min[�E(h),�E(p)].

However, including the nonequilibrium effects, we instead
have for the parametric bath temperature the requirement

T � T (ne)
c = 1

kB

min

⎡
⎣ �E(h)

log
(

2(γ h−κ)
γ h−2κ

) ,
�E(p)

log
(

2γ p+κ

γ p+κ

)
⎤
⎦, (28)

where γ h[p] depends on �E(h[p]) via J (ν).
Further analysis of the particle-hole picture at finite

temperature will no doubt elucidate additional physics for
this nonequilibrium system, following perhaps the efforts of
Refs. [49,50]. In addition, an appropriate mean field theory
including modifications of the system-bath coupling could
provide insight into the applicability of such theories for
describing nonequilibrium systems.

VII. CONCLUSION

Providing a robust chemical potential for light allows
for classical and quantum systems to access a wide variety
of heretofore forbidden domains. Crucially, our approach
allows one to build from well established theoretical tools for
nonequilibrium problems with chemical potential imbalances,
such as occurs in circuits and cold atom systems, rather than the
thornier problems associated with driven steady-state systems
more typical to the quantum optical domain. From a quantum
simulation perspective, this simplification makes the state
preparation problem much more straightforward than existing
approaches, and yields a mechanism for robust quantum
simulation of condensed matter and chemistry problems with
light. In addition, our parametric coupling scheme has a wide
range of potential implementations, all of which are accessible
with current technology, and enables a variety of practical
applications in the context of nonclassical sources in the
microwave and optical domain that operate more in analogy
to a diode than to a pumped dissipative steady-state system.
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APPENDIX

As a simple test of these concepts, we implement nu-
merically a model for the intermediate time behavior of a
two-level system (qubit) coupled to a bosonic bath via a
parametric coupling. The usual picture of quantum Brownian
motion [51] has a set of bath modes coupled linearly through
their position variables xω with constant g̃ω and mass mω.

This leads to the effective spectral density J (ω) = ρ(ω)g̃2
ω

mωω
,

where ρ(ω) is the density of states. Our goal will be to
well approximate such a bath with a discrete set of modes.
Before engaging in that, we mention some rescaling of
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the problem appropriate to simulation. First, we rewrite the
system-bath coupling g̃ωxω(a + a†) in terms of bath creation

and annihilation operators with xω =
√

1
2mω

(bω + b†ω). This

defines gω = g̃ω

√
1

2mω
and J (ω) = 2ρ(ω)g2

ω.
Our goal is to approximate the bath such that the correlation

function and the commutation relation of the bath are as close
to the desired approximate bath as possible. Specifically, for
our quantum Brownian motion bath with a cutoff function
f (ω) considered in this work, we assume the time-ordered
spectral function used in Sec. V:

S(τ ) = 1

π

∫ ∞

0
dν J (ν)[(Nth(ν) + 1)e−iνt + Nth(ν)eiνt ]

≈
N∑

j=1

wj J (ωj )

πf (ωj )
[(Nth(ωj ) + 1)e−iωj t + Nth(ωj )eiωj t ],

(A1)

where the approximation of the integral as a finite sum arises
from Gaussian quadrature over N orthogonal polynomials
under the function f (ω) to find the set {ωj } and the associated
weights wj , and Nth(ν) = 1/[exp(βν) − 1]. We remark that in
the case of the Ohmic bath with exponential cutoff function,
the appropriate choice is the Laguerre polynomials.

A simple reinterpretation of this formula is that of a discrete
harmonic oscillator (quantum Brownian motion) bath with
frequencies ωj and a coupling constant

gj =
√

wj J (ωj )

f (ωj )
.

This approximation is immediately amenable to numerical
techniques via direct integration of the Schrödinger equation.

In practice, exponential cutoffs at the relevant frequencies
are unlikely as the superconductors work well into the
GHz domain for our implementation. Thus we consider a
polynomial cutoff function induced by filtering the Ohmic
bath with a low-pass filter, such as a capacitor in parallel
with the resistor forming the Ohmic bath for our circuit case.
The impedance of this system becomes Z = R/(1 + iτRCω),
where τRC = RC is the characteristic time of the RC circuit.
Therefore, the real part of the impedance, which appears in
the spectral noise [41], leads to a natural modification of the
effective spectral density: J (ω) → J (ω) 1

1+ω2τ 2
RC

. We neglect

imaginary contributions to the circuit by assuming they are
renormalized in the system Hamiltonian. We note that for an
optomechanical implementation such cutoff functions arise
from the cavity Lorentzian and can have a similar functional
form—quadratic suppression at high frequency.

We simulate the following simple case numerically to
illustrate our system. Working with the discrete bath approxi-
mation and a photon-blockade-regime cavity with an effective
two-level system description with Pauli matrices σz, etc., we
write

H = ω0σz/2 + [A + λ cos(μt)]
∑

j

gjσx(bj + b
†
j ) + ωjb

†
j bj ,

(A2)

with gj =
√

wj ωj

1+ω2
j τ

2
RC

. The parameters A and λ represent the

relative strength of the regular exponential decay bath and the
additional parametric bath terms oscillating at frequency μ.

We take τRC = 4/ω0 and ωcutoff = 2.5ω0, and find that
decreasing or increasing ωcutoff by even a factor of two does
not appreciably change the results presented below. We also
work in units of time given by 1/ω0. For improved computation
speed, we truncate the bath Hilbert space to a maximum of two
bosonic excitations, and confirm post-facto that simulations
produce only slightly more than one bath excitation, consistent
with the truncation.

We first test the purely Ohmic case, taking τRC → 0,A =
0.5/

√
17, and λ = 0 (no parametric bath). We find exponential

decay with a time scale γ −1
a = 16.8(4). Furthermore, this

decay is well approximated (with around <1% errors) up
to times t � {30,50,65,100} for N = {35,50,70,100}. The
fitted decay rate is independent of N in this range of values,
consistent with our approximation scheme.

We then consider A = 0.5 with the filter on (τRC → 4),
leading to a slightly reduced decay rate due to the non-
Ohmic nature of the bath near ω0 from the cutoff filter.
Still, exponential decay is observed over two decades with
γ −1

a = 18.7(5), and residuals are at the 3% level or less, largely
due to corrections to exponential decay at long times from
non-Ohmic bath behavior. The decay from an initially excited
state | ↑〉 into the zero temperature bath is shown in red in
Fig. 5.

After these simple tests of our model system, we move
to the more complicated regime of a parametrically coupled
bath. Taking A = 0 and λ = 0.5, we start the system in the
lower-energy spin state, | ↓〉. We calculate over 100 time units
three different values of our chemical potential parameter, μ =
{0.9,1.0,1.1}, and plot the resulting 〈σz〉 as a function of time.

0 20 40 60 80 100
1.0

0.5

0.0

0.5

1.0

t 1 0

z

FIG. 5. (Color online) Time-dependent simulation of a two level
system with natural frequency ω0 interacting normally (red) and
parametrically (green, yellow, blue) with a high-frequency filtered
bath. For an initial excited state 〈σz〉 = 1, coupling to the bath leads
to exponential decay when the oscillating frequency of the bath is
set to zero, as shown in red. However, for an initial ground state
〈σz〉 = −1, turning on the parametric coupling to the bath such that it
oscillates at frequencies μ = {0.9 (blue), 1.0 (yellow), 1.1 (green)}ω0

leads to inversion of the spin when μ > ω0, as predicted by our more
general theoretical model.
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We expect the system to approach spin up for μ > 1 according
to the chemical potential derivation given in the first part of

this part, and find these expectations confirmed in this simple
numerical experiment (Fig. 5).

[1] M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son &
Co., Philadelphia, 1914).

[2] P. Wurfel, J. Phys. C: Solid State Phys. 15, 3967 (1982).
[3] H. Ries and A. McEvoy, J. Photochem. Photobiol. A: Chem. 59,

11 (1991).
[4] F. Herrmann and P. Wurfel, Am. J. Phys. 73, 717 (2005).
[5] G. Job and F. Herrmann, Eur. J. Phys. 27, 353 (2006).
[6] J. Keeling, F. M. Marchetti, M. H. Szymańska, and P. B.
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