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Dynamics of a monolayer of microspheres on an elastic substrate
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We present a model for wave propagation in a monolayer of spheres on an elastic substrate. The model, which
considers sagittally polarized waves, includes: horizontal, vertical, and rotational degrees of freedom; normal and
shear coupling between the spheres and substrate, as well as between adjacent spheres; and the effects of wave
propagation in the elastic substrate. For a monolayer of interacting spheres, we find three contact resonances,
whose frequencies are given by simple closed-form expressions. For a monolayer of isolated spheres, only two
resonances are present. The contact resonances couple to surface acoustic waves in the substrate, leading to
mode hybridization and “avoided crossing” phenomena. We present dispersion curves for a monolayer of silica
microspheres on a silica substrate, assuming adhesive Hertzian interactions, and compare calculations using an
effective medium approximation (including elasticity of the substrate) to a discrete model of a monolayer on a
rigid substrate. While the effective medium model does not describe discrete lattice effects occurring at short
wavelengths, we find that it is well suited for describing the interaction between the monolayer and substrate in
the long wavelength limit. We suggest that a complete picture of the dynamics of a monolayer adhered to an
elastic substrate can be found by combining the dispersion curves generated with the effective medium model
for the elastic substrate and the discrete model for the rigid substrate. This model is potentially scalable for use
with nano- to macroscale systems, and offers the prospect of experimentally extracting contact stiffnesses from
measurements of acoustic dispersion.
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I. INTRODUCTION

Granular media are simultaneously one of the most com-
mon and complex forms of matter on Earth. This complexity
stems from their heterogeneous structure and highly nonlinear
particulate interactions [1–3]. Over the past thirty years,
mechanical wave propagation in ordered granular media has
become an active field of research, as it provides an avenue to
gain broader understanding of granular media dynamics [3].
Ordered granular media have also been shown to enable
a wide array of novel passive wave tailoring devices that
leverage the nonlinear response stemming from the Hertzian
relationship between elastic particles in contact [4,5], in
conjunction with the dispersion induced by periodicity [6]
or local resonances [7].

The experimental configurations that are used to study
mechanical wave propagation in ordered granular media
typically involve spherical particles confined by elastic media.
This type of arrangement is particularly common in one-
and two-dimensional configurations, and includes macro-
to microscale particles. For example, at the macroscale,
elastic rod structures, tracks, and tubes have been used to
confine the particles in one-dimensional [7–9] and quasi-one-
dimensional [10] configurations, and elastic plates have been
used in two dimensions [11]. More recently, the dynamics
of a two-dimensional monolayer of 1 μm diameter silica
particles adhered to an elastic substrate was studied using a
laser ultrasonic technique [12].

Analytical models used to describe the dynamics of these
systems typically only include the interaction between the
particles (often just the normal Hertzian contact interaction)
and disregard the effect of the substrate. In reality, even for
the simple case of a particle monolayer on a substrate, more
complex dynamics involving interactions between the particles

and elastic waves in the substrate should be expected. Indeed,
a recent experiment [12] showed that a monolayer of micro-
spheres adhered to a substrate strongly interacts with Rayleigh
surface waves in the substrate, leading to the hybridization
between Rayleigh waves and a microsphere contact resonance.
The results of this experiment were analyzed with a simple
model involving only vertical (normal to the substrate surface)
vibrations of isolated particles, following the approach adopted
in earlier theoretical works on the interaction of surface
oscillators with Rayleigh waves [13,14]. However, in reality,
the particle motion is not confined to the vertical direction,
and Rayleigh waves have a significant horizontal component.
Furthermore, the interaction between neighboring particles is
expected to significantly influence the dynamics.

A notable theoretical work [15] provided a model for the
dynamics of crystals with adsorbed monolayers that accounted
for both normal and horizontal motion and interaction be-
tween the particles, but did not take into account particle
rotation. Several recent studies have demonstrated, in both
theoretical [16,17] and experimental [18] contexts, that the
rotational degree of freedom has a profound effect on the
dynamics of ordered granular media. In particular, the study
of Ref. [16] focused on the dynamics of granular monolayers
(whereas Refs. [17,18] explored bulk granular structures),
including cases involving interaction between the monolayer
and a substrate. However, Ref. [16] only considered normal
contact interactions between the particles and the substrate,
and the substrate was modeled as rigid.

The aim of this work is to provide a theoretical model
for the contact-based dynamics of a two-dimensional layer
of spheres on a substrate, accounting for the elasticity of the
substrate, translational and rotational motion of the spheres,
and both normal and shear stiffnesses of sphere-to-sphere
and sphere-substrate contacts. We focus on a system with
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microscale particles that interact with each other and with
the substrate via van der Waals adhesion forces. Rather than
postulate the contact stiffness constants, we derive them from
Hertzian contact models. This imposes certain constraints on
the values of the constants: for example, the ratio of the
normal and shear contact stiffness between the spheres is a
constant only weakly dependent on the Poisson ratio. We
consider contact-based modes having frequencies significantly
below the intrinsic spheroidal vibrational modes of the spheres,
such that they can be described as spring-mass oscillators.
Furthermore, we focus on dynamics involving particle and
substrate displacements in the sagittal plane, as would be
detectable in a laser-based experiment [12].

We start with the case of a rigid substrate, where we find
three eigenmodes involving vertical, horizontal, and rotational
motion of the spheres. In the long-wavelength limit, these
modes yield three contact resonances, for which simple analyt-
ical expressions are obtained. One of the resonances involves
motion of the spheres normal to the substrate surface, whereas
the other two involve mixed horizontal-rotational motion. We
then present our effective medium model, which describes the
interaction between the spheres and the substrate, and show
hybridization between the contact resonances and Rayleigh
surface waves. We discuss cases involving both isolated and
interacting spheres, and demonstrate the important role of
rotations in both cases. We also examine the validity of the
effective medium approximation, by comparing calculations
using discrete and effective medium models. Finally, we
discuss the implications of our findings for past and future
studies of granular monolayer systems.

II. MODEL

We consider a monolayer of elastic spheres on a substrate,
which can be either in contact or isolated, as shown in Fig. 1(a).
In either case, the spheres are assumed to form a square lattice,
with the wave propagation direction aligned with the lattice
vector, as shown in Fig. 1(b). We model the layer as an infinite
lattice of rigid spheres with diameter D = 2R and mass m,
coupled to a semi-infinite, isotropic elastic substrate by normal
and shear stiffnesses KN and KS , and to nearest-neighbor
spheres by stiffnesses GN and GS , as schematically shown in
Fig. 1(c). The subscript N corresponds to forces acting normal
to the surface of the sphere, and S to forces acting transverse
to the surface of the sphere. The shear springs generate an
associated torque about the sphere center, while the normal
springs do not. The absolute horizontal, vertical, and angular
displacements of sphere j from its equilibrium state are given
by Qj , Zj , and θj , respectively, and the displacements of the
substrate are denoted by u(x,z), corresponding to displacement
in the x direction, and w(x,z), corresponding to displacements
in the z direction.

A. Contact stiffness

We derive the stiffnesses KN , KS , GN , and GS using
Derjaguin-Muller-Toporov (DMT) [21,22] and Mindlin con-
tact models [23]. The DMT theory is typically applicable in
weakly-adhesive systems with small, stiff particles [24], and
assumes that the deformation profile is Hertzian. The Mindlin

m
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FIG. 1. (Color online) (a) Side-view schematic of an amplified
wave profile for cases with isolated and interacting spheres. (b) Top-
down view of the square-packed monolayer, with the arrow indicating
the direction of wave propagation. (c) Schematic for the model of a
monolayer of spheres coupled to an elastic half-space.

model describes the shear stiffness of particles in contact,
assuming an applied normal force [23]. At the microscale,
adhesive contact mechanics has been studied using atomic
force microscopy and nanoindentation approaches [25].

For contact between two spheres (or a sphere and a
halfspace) having elastic moduli E1 and E2, and Poisson
ratios ν1 and ν2, the Hertzian restoring elastic force FN

corresponding to displacement δN of the particle center in
the direction normal to the contact surface is given by

FN = 4
3E∗R1/2

c δ
3/2
N , (1)

where Rc is the effective radius (equal to R for sphere-
half-space contacts and R/2 for sphere-sphere contacts), and
E∗ = [(1 − ν2

1 )/E1 + (1 − ν2
2 )/E2]−1 is the effective modu-

lus. Considering the DMT adhesive force FDMT = 2πwRc

acting normal to the contact surface [21,22] (where w is the
work of adhesion between two surfaces), the net normal force
is given by

FN,net = FN − FDMT. (2)

To describe the shear contact, we utilize the Mindlin
model [23], which assumes small relative displacements and
no slip at the contact surface. For two elastic bodies with
shear moduli G1 and G2, the restoring elastic force FS

to displacement δS of the particle center in the direction
transverse to the contact normal is given by

FS = 8G∗R1/2
c δSδ

1/2
N , (3)

where G∗ = [(2 − ν1)/G1 + (2 − ν2)/G2]−1 is the effective
shear modulus [23]. Here, the factor of δ

1/2
N arises from the

Hertzian relation between the contact radius and FN given by
Eq. (1).

By substituting the relative displacements δN = Z − w0

and δS = Q − u0 + Rθ (where u0 and w0 are horizontal
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and vertical displacements of the substrate surface at the
point of contact, respectively) into Eqs. (2) and (3), and
linearizing about the equilibrium configuration of δN,0 =
[3FDMT/(4E∗R1/2

c )]2/3 and δS,0 = 0, we derive linearized
normal and shear contact stiffnesses:

KN = (
6E∗2

RcFDMT
)1/3

,
(4)

KS = 8

(
3

4

G∗3

E∗ RcFDMT

)1/3

.

Stiffnesses GN and GS are given by equations of the same
form as Eq. (4), but with E∗, G∗, Rc, and FDMT adjusted
for sphere-sphere contacts. In the special case where the
spheres and substrate are composed of the same material, the
relative magnitudes of the stiffness constants are determined
exclusively by the Poisson ratio ν of the material,

GN = 2−2/3KN,

KS = ν∗KN,

GS = 2−2/3ν∗KN,

(5)

where ν∗ = 2(1 − ν)/(2 − ν).

B. Equations of motion of the spheres

Assuming small displacements (i.e., Qj , Zj , and Rθj are
much less than D), the j th sphere obeys the equations of
motion

mQ̈j = −KS(Qj − u0,j + Rθj )

+GN (Qj+1 − 2Qj + Qj−1),

mZ̈j = −KN (Zj − w0,j )
(6)

+GS[Zj+1 − 2Zj + Zj−1 − R(θj+1 − θj−1)],

I θ̈j = −KSR(Qj − u0,j + Rθj )

−GSR[R(θj+1 + 2θj + θj−1) − (Zj+1 − Zj−1)].

C. Effective medium approximation

Considering wavelengths much longer than the sphere
diameter, we treat the monolayer as an effective contin-
uous medium. By substituting the center difference for-
mulas [(·)j+1 − (·)j−1]/(2D) ≈ ∂(·)/∂x and [(·)j+1 − 2(·)j+
(·)j−1]/(D2) ≈ ∂2(·)/∂x2 into Eq. (6), we arrive at the equa-
tions of motion of the monolayer in an effective medium

form:

m
∂2Q

∂t2
= −KS(Q − u0 + Rθ ) + 4GNR2 ∂2Q

∂x2
,

m
∂2Z

∂t2
= −KN (Z − w0) + 4GSR

2

(
∂2Z

∂x2
− ∂θ

∂x

)
,

(7)

I
∂2θ

∂t2
= −KSR(Q − u0 + Rθ )

− 4GSR
2

(
R2 ∂2θ

∂x2
+ θ − ∂Z

∂x

)
.

The coupling between the monolayer and the substrate is
described by the following boundary conditions at the surface
z = 0, which describe the average force acting on the surface
due to the motion of the spheres:

σzx = KS

A
(Q − u0 + Rθ ),

σzz = KN

A
(Z − w0),

(8)

where σzx and σzz are components of the elastic stress
tensor [19] and A = D2 is the area of a primitive unit cell
in our square-packed monolayer. The combination of Eq. (7)
and the linear elastic wave equations describing waves in the
substrate [19], coupled by the boundary conditions of Eq. (8),
comprises the complete effective medium model.

III. DISPERSION RELATIONS

A. Rigid substrate

1. Discrete model

We calculate the dispersion relation for a monolayer on a
rigid base using Eq. (6), by assuming spatially discrete travel-
ing wave solutions of the form Q̂ei(ωt−kDj ) (with similar terms
for the other displacements) and setting the displacements of
the substrate surface u0,j and w0,j to zero. Here, ˆ(·) is the
amplitude of a plane wave in the displacement variable (·),
ω is the angular frequency, and k is the wave number. After
algebraic manipulation, Eq. (6) is reduced to a homogeneous
system of three linear algebraic equations in terms of the
amplitudes ˆ(·). This system possesses nontrivial solutions only
for pairs of k and ω that cause the determinant of the system
to vanish. Enforcing this condition, we arrive at the following
dispersion relation, where the three rows of the determinant
correspond to the three equations of Eq. (6):

∣∣∣∣∣∣∣∣

c2
N

2R2 (1 − cos(kD)) + φSω
2
S 0 Rω2

S

0 c2
S

2R2 (1 − cos(kD)) + φNω2
N − c2

S

2R
i sin(kD)

Rω2
S

c2
S

2R
i sin(kD) I

m

[ c2
θ

2R2 (1 − cos(kD)) + φθω
2
θ

]

∣∣∣∣∣∣∣∣
= 0, (9)

where φN = 1 − ω2/ω2
N , φS = 1 − ω2/ω2

S , φθ = 1 − ω2/ω2
θ ,

cN = √
GN/m(2R) and cS = √

GS/m(2R) [26], c2
θ =

−mR2c2
S/I , ω2

N = KN/m, ω2
S = KS/m, and ω2

θ = (KS +
4GS)R2/I .

2. Effective medium

To obtain dispersion relations assuming an effective
medium, we substitute spatially-continuous traveling wave
solutions of the form Q̂ei(ωt−kx) (with similar terms for
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the other displacements) into Q, Z, and θ in Eq. (7) with
u0 = w0 = 0. Following the same procedure used to obtain
Eq. (9), we obtain∣∣∣∣∣∣

c2
Nk2 + φSω

2
S 0 Rω2

S

0 c2
Sk

2 + φNω2
N −ikc2

S

Rω2
S ikc2

S
I
m

(
c2
θ k

2 + φθω
2
θ

)
∣∣∣∣∣∣ = 0.

(10)
It is particularly instructive to examine the behavior of the

effective medium model in the long wavelength limit k → 0.
In this limit, the displacements vary slowly in space, and the
spatial derivative terms of Eq. (7) may be neglected. For the
case of a rigid base, Eq. (7) reduces to the form

m
∂2Q

∂t2
= − KS(Q + Rθ ),

m
∂2Z

∂t2
= − KNZ,

I
∂2θ

∂t2
= − KSR(Q + Rθ ) − 4GSR

2θ.

(11)

The equation for Z decouples from the other two equations
and yields a vertical vibrational mode. The two other equations
remain coupled, yielding two modes containing both horizon-
tal and rotational motion. Using the moment of inertia of a solid
sphere I = (2/5)mR2, we find three resonance frequencies

ωN =
(

KN

m

)1/2

,

ωRH =
[(

KS

4m

)
(20γ + 7 +

√
400γ 2 + 120γ + 49)

]1/2

,

ωHR =
[(

KS

4m

)
(20γ + 7 −

√
400γ 2 + 120γ + 49)

]1/2

,

(12)

where γ = GS/KS . Here, ωN corresponds to a mode with
exclusively vertical motion. The other two modes ωRH and
ωHR exhibit both rotational and horizontal (but not vertical)
motion, with relative amplitudes determined by γ . The higher
of the two horizontal-rotational modes is predominantly
rotational and the lower is predominantly horizontal, hence we
have used the notations ωRH and ωHR , where the first letter
in the subscript denotes the dominant motion. If the spheres
and substrate are made of the same material, then, by using
Eq. (5), we can relate the horizontal-rotational frequencies
of Eq. (12) to the vertical resonance frequency, with the
expressions ωRH = 3.018ν∗1/2

ωN and ωHR = 0.832ν∗1/2
ωN .

In the limiting case of isolated spheres (γ = 0), ωRH and
ωHR of Eq. (12) become ωRH,Iso = √

7/2ωS and ωHR,Iso = 0,
respectively. For identical materials, ωRH,Iso = √

7ν∗/2ωN .
The dependence of ωRH and ωHR on γ is shown in Fig. 2(a),
where it can be seen that ωRH originates at ωRH,Iso for γ = 0
and grows unbounded, while ωHR originates at ωHR,Iso = 0,
and approaches ωS asymptotically. In Fig. 2(b), we plot the
horizontal and rotational displacement amplitudes as functions
of γ for these two modes. Different signs of the rotational
amplitude indicate that the ωRH and ωHR modes have different
motion patterns. In the former, a positive displacement is
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FIG. 2. (Color online) (a) Resonance frequencies ωRH (red line)
and ωHR (black line) as functions of the stiffness ratio γ .
(b) Displacement amplitudes of the resonant modes with frequencies
ωRH (red lines) and ωHR (black lines), as functions of the stiffness
ratio γ . Solid and dotted lines correspond to Q and Rθ , respectively.
For each resonance, the amplitudes are normalized such that the
sum of squares is unity. The positive sign of Rθ corresponds to
counterclockwise rotation.

accompanied by a counterclockwise rotation, while in the
latter, it is accompanied by a clockwise rotation.

We note that the zero-frequency mode, ωHR,Iso, corre-
sponds to the rolling motion of an isolated sphere. With
the inclusion of a bending rigidity, the sphere would not be
allowed to freely roll, and instead would undergo rocking
motion of a finite frequency. While nonzero bending rigidity
exists in real systems (for instance, a microsphere adhered to
a substrate does not freely roll), the frequency of resulting
rocking vibrations has been shown [27,28] to be over an
order of magnitude lower than the other contact resonances
discussed here. Bending rigidity would thus act as a small
perturbation to the predictions of our model, and we do not
include it in our analysis.

To illustrate the importance of particle rotations in the
model, we note that in the limiting case of I → ∞, when
there is no rotation, Eq. (11) yields two resonances: a vertical
resonance with frequency ωN , and a horizontal resonance
having frequency ωS . For isolated spheres, the effect of
rotations can be thought of as a reduction of the “effective
mass” of the sphere to (2/7)m, which increases the horizontal
resonance frequency. On the other hand, for interacting
spheres, rotations drastically change the dynamics, yielding
two horizontal-rotational modes whose frequencies depend
on the relative strengths of the sphere-to-sphere and sphere-
substrate interactions.

B. Elastic substrate

As in the case of the effective medium approximation for a
rigid substrate, we assume traveling wave solutions of the form
Q̂ei(ωt−kx) (with similar terms for the other displacements)
into Q, Z, and θ in Eq. (7). Likewise, we express the
variables u0, w0, σzx σzz in terms of surface wave solutions
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for the elastic potentials [19] φ(x,z,t) = φ̂ekαz+i(ωt−kx) and
ψ(x,z,t) = ψ̂ekβz+i(ωt−kx), and then substitute these expres-
sions into Eqs. (7) and (8). Here, ˆ(·) is the amplitude of
a plane wave in the displacement or potential variable (·),
α =

√
1 − ω2/(c2

Lk2), β =
√

1 − ω2/(c2
T k2), and cL and cT

are the longitudinal and transverse sound speeds of the
substrate, respectively. After algebraic manipulation, Eqs. (7)

and (8) are reduced to a homogeneous system of five
linear algebraic equations in the five plane wave amplitudes
ˆ(·), with coefficients depending on k and ω. We reach

the dispersion relation by seeking nontrivial solutions of
this system, which exist only for pairs of k and ω that
cause the determinant of the following coefficient matrix to
vanish:

∣∣∣∣∣∣∣∣∣∣∣∣∣

ikω2
S kβω2

S c2
Nk2 + φSω

2
S 0 Rω2

S

−kαω2
N ikω2

N 0 c2
Sk

2 + φNω2
N −ikc2

S

ikRω2
S kRβω2

S Rω2
S ikc2

S
I
m

(
c2
θ k

2 + φθω
2
θ

)
1 + β2 −2iβ 0 m

ρAc2
T k2

(
c2
Sk

2 + φNω2
N − ω2

N

) −m

ρAc2
T k2 ikc2

S

−2iα −(1 + β2) m

ρAc2
T k2

(
c2
Nk2 + φSω

2
S − ω2

S

)
0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (13)

where ρ is the density of the substrate, and A = D2 is the area of a primitive unit cell in our square-packed monolayer. We
note that the coupling between the spheres and the substrate is represented by elements (4,4), (4,5), and (5,3) of the matrix in
Eq. (13). Thus the strength of the coupling can be quantified by the ratio m/(ρA); if this term is made to vanish (e.g., by making
the mass of each sphere much less than that of the portion of the substrate below it, extending to the depth of material influenced
by Rayleigh waves), then the substrate and monolayer will be effectively decoupled. We note that if rotations are disregarded
(e.g., by letting I → ∞), Eq. (13) reduces to the same form as that of the adsorbed monolayer of Ref. [15].

It is instructive to consider the long-wave limit when the spatial derivatives in Eq. (7) can be disregarded. In this case, we find
the simplified dispersion relation∣∣∣∣∣∣∣∣∣∣∣∣∣

ikω2
S kβω2

S φSω
2
S 0 Rω2

S

−kαω2
N ikω2

N 0 φNω2
N 0

ikRω2
S kRβω2

S Rω2
S 0 I

m
φθω

2
θ

1 + β2 −2iβ 0 m

ρAc2
T k2

(
φNω2

N − ω2
N

)
0

−2iα −(1 + β2) m

ρAc2
T k2

(
φSω

2
S − ω2

S

)
0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (14)

For isolated spheres, there is no approximation in Eq. (14)
with respect to Eq. (13), because, in this case, the terms
generated by the spatial derivatives in Eq. (7) are identically
zero. For interacting spheres, the accuracy of dispersion
relations calculated with Eq. (14) will be assessed below by a
comparison with results obtained with Eq. (13). We will see
that Eq. (14) essentially describes the interaction of contact
resonances given by Eq. (11) with Rayleigh surface waves.

IV. NUMERICAL RESULTS AND DISCUSSION

In the following calculations, we consider silica spheres of
1.08 μm diameter on a silica substrate, and use the elastic
constants (Ref. [29]) E = 73 GPa, ν = 0.17, and work of
adhesion (Ref. [22]) w = 0.063 J/m2.

A. Rigid substrate

We plot numerical solutions of Eq. (9), to obtain the
dispersion curves for the discrete model of interacting spheres
on a rigid base, as shown in Fig. 3(a). In our description of
a rigid substrate, we assume that no elastic waves propagate
in the substrate, but allow local deformation at the points of
contact for the purpose of the contact stiffness calculation; this
preserves the same contact stiffnesses as in the elastic substrate
analysis. We note that due to the periodicity of the system, all

three branches have zero-group velocities at the edge of the
first irreducible Brillouin zone [20] of the monolayer.

By substituting the solutions shown in Fig. 3(a) into the
coefficient matrix of the corresponding algebraic system,
we numerically determine the amplitudes of the sphere
displacements, which we plot in Figs. 3(b)–3(d). By comparing
the calculated displacements with the dispersion curves, we see
that each branch takes on the character of its respective contact
resonance in the limit k → 0. One can see that each of the
three modes generally involves both vertical and horizontal, as
well as rotational motion (albeit the rotational component of
mode II is quite small). The existence of the three modes with
mixed displacements is a consequence of the inclusion of the
rotational degree of freedom: without rotations, there would
be two modes, one vertical and one horizontal.

We note that in the special case KS = 0, the mode origi-
nating at ωHR becomes purely horizontal and decouples from
the other two modes. The remaining modes (characterized
by vertical translation and rotation) are generally consistent
with the results of Ref. [16], for the case of normal contact
with a rigid surface and no bending rigidity. Since Ref. [16]
considered hexagonal packing, the behavior is analogous at
long wavelengths, but diverges at short wavelengths due to
discrete lattice effects.

The dotted lines in Fig. 3(a) show dispersion curves
calculated with the effective medium model as per Eq. (10).
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FIG. 3. (Color online) (a) Dispersion relation of a monolayer of
microspheres adhered to a rigid base. Blue solid and red dotted lines
denote, respectively, the discrete and effective medium monolayer
descriptions. Black dashed lines denote the contact resonances. (b)–
(d) relative amplitudes of the displacement variables Q (black dotted
lines), Z (red dotted lines), and Rθ (blue dotted lines), corresponding
to the branches of the same numeral for the dispersion of the discrete
monolayer adhered to the rigid base shown in (a). The amplitudes are
normalized such that the sum of the squares is unity.

The effective medium approximation yields accurate results
at long wavelengths but fails at shorter wavelengths with the
unphysical behavior of the first mode, whose frequency goes
to zero. At even shorter wavelengths, as shown in Fig. 4,
the effective medium dispersion curves of modes II and III
asymptotically approach straight lines with slopes given by
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FIG. 4. (Color online) Dispersion relation of a monolayer of
microspheres adhered to a rigid base, using an extended plotting
range. Blue solid, red dotted, and black dashed lines are the same as
in Fig. 3(a). Black dash-dotted lines denote the asymptotic slopes cN

and cS .

kD
0 0.5 1

/
N

0

1

2

3

N

RH,Iso

c
T

c
R

FIG. 5. (Color online) Dispersion relation of SAWs in an elastic
half-space coupled to a monolayer of isolated microspheres, denoted
by the blue solid lines. Black dashed lines denote the contact
resonances, and black dash-dotted lines denote the transverse and
Rayleigh waves speeds of the substrate.

cN and cS ; such behavior has been described by Kosevich and
Syrkin [15]. However, this asymptotic behavior is unphysical,
because it arises as a short-wavelength asymptotic of a long-
wavelength approximation. Indeed, as can be seen from the
dispersion curves generated using the discrete model in Fig. 4,
this asymptotic behavior does not occur in our system. Thus
the inclusion of the first- and second-order spatial derivative
terms of Eq. (7), while improving the accuracy of the effective
medium model at long wavelengths, does not yield much
additional understanding of the dynamics of the system.

B. Elastic substrate

1. Isolated spheres

We numerically solve Eq. (14) for the isolated spheres case
using GS = 0 and plot the resulting dispersion relation for the
effective medium model, as shown in Fig. 5. This dispersion
relation exhibits classic “avoided crossing” behavior [30]
about the resonance frequencies ωN and ωRH,Iso = √

7/2 ωS .
In this model, surface acoustic waves (SAWs) in the substrate
behave as classical Rayleigh waves at frequencies far from the
contact resonances, and the dispersion curves follow the line
corresponding to the substrate Rayleigh wave speed cR [19].
Conversely, sphere motions dominate those of the substrate
at frequencies close to the contact resonances. For phase
velocities greater than cT , which correspond to the region ω >

cT k, the wave numbers that solve Eq. (13) are complex valued;
these solutions are “leaky” modes for which energy leaves the
surface of the substrate, and radiates into the bulk. This isolated
spheres case is particularly applicable in systems where adhe-
sion between particles is negligible, e.g., for macroscale par-
ticles without lateral compression where the dominant static
compression is due to gravity and is between the particles and
substrate; or for microscale particles, if the separation distance
between particles is larger than the range of adhesion forces.

2. Interacting spheres

In Fig. 6(a), we plot numerical solutions of Eq. (14).
The amplitudes of the sphere and substrate displacements are
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FIG. 6. (Color online) (a) Blue solid lines denote the dispersion
relation of SAWs in an elastic halfspace coupled to a monolayer
of interacting microspheres. Black dashed lines denote the contact
resonances, and black dash-dotted lines denote wave speeds in the
substrate. (b)–(e) relative amplitudes of the displacement variables u0

(black solid lines), w0 (red solid lines), Q (black dotted lines), Z (red
dotted lines), and Rθ (blue dotted lines), corresponding to the branch
denoted by the same numeral in (a). The amplitudes are normalized
such that the sum of the squares is unity.

calculated in the same manner as in Fig. 3, and are plotted in
Figs. 6(b)–6(e). In Fig. 6(a), we observe features qualitatively
similar to the dispersion relation for isolated spheres in Fig. 5,
with the of a third avoided crossing at frequency ωHR . The
mode shapes reveal the ways in which each of the branches
are influenced by the contact resonances, as well as long and
short wavelength asymptotic behavior of our system. In the
long-wavelength limit, the substrate motions closely resemble
Rayleigh SAWs. Since the frequencies of waves in this regime
are well below the contact resonances, the effect of the spheres
is negligible, and the monolayer moves in phase with the
substrate surface. At short wavelengths, it can be seen that
the first, second, and third lowest branches exhibit motions
dominated by the displacements Q, Z, and θ , respectively
(each corresponding to a resonant mode of the monolayer),
while the highest branch tends toward the Rayleigh SAW.
The effects of proximity to the contact resonances are well
illustrated, for example, by branch III of Fig. 6(a), which
exhibits large vertical sphere motions at its starting point near
ωN , resembles the Rayleigh SAW as it approaches and crosses
the cR line, and transitions into large rotational sphere motions
after the avoided crossing with ωRH .
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FIG. 7. (Color online) Blue lines denote the SAW dispersion
relation with spatial derivative terms included and red lines denote the
dispersion relation of a discrete monolayer adhered to a rigid base.
Solid and dotted lines denote, respectively, valid and invalid ranges
for the two models. Black dashed and dash-dotted lines are the same
as in Fig. 3(a).

In order to examine the behavior of our system throughout
the entire Brillouin zone, we superimpose the dispersion
curves for the effective medium model of interacting spheres
on an elastic base including higher order spatial derivative
terms [the full Eq. (13)] with the dispersion curves for the
discrete monolayer on a rigid substrate [Eq. (9)], as shown in
Fig. 7. At long wavelengths, the discreteness of the monolayer
is insignificant, and the dispersion is well described by
the effective medium model. Furthermore, we note that at
long wavelengths the dispersion curves calculated using the
effective medium model including higher order terms shown
in Fig. 7, only slightly deviate from the dispersion curves
calculated using the effective medium model with the higher
order terms neglected, which are shown in Fig. 6(a). The
only noticeable effect is a downshift in frequency of the
avoided crossing between the Rayleigh wave and the ωRH

resonance. Since the latter intersects at the highest wave vector
of the three contact resonances, calculations with Eq. (14) are
the least accurate. In Fig. 7, at short wavelengths (beyond
the avoided crossings with the Rayleigh wave branch), the
elasticity of the substrate has little effect on the dynamics, and
the dispersion can be described using the discrete model for
interacting spheres on a rigid substrate. We suggest that by
“stitching together” the effective medium model for spheres
on an elastic substrate with the discrete model for spheres on a
rigid substrate, we can simultaneously capture the interaction
of SAWs with the monolayer at long wavelengths and effects
caused by the discreteness of the spheres at short wavelengths.
Past the avoided crossings, the two sets of curves in Fig. 7 stitch
together smoothly, resulting in a full picture of the monolayer
dynamics on the elastic substrate.

V. EXPERIMENTAL IMPLICATIONS

We expect the presented results to be useful for predicting
complex dynamic responses and extracting effective contact
stiffnesses from measurements of acoustic dispersion in a
manner similar to Boechler et al. [12]. The findings described
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above invite questions, including whether our model of a
square lattice is applicable to results on hexagonally packed
monolayers, and why horizontal-rotational resonances were
not observed in the experiment [12].

We believe that the assumption of the square lattice is not
essential. For isolated spheres, Eqs. (7) and (8) with GN and GS

set to zero can be obtained for any arrangement of the spheres,
periodic or random, with the only parameter depending on
the arrangement being the surface area per sphere A. For
interacting spheres, the results generally do depend on the
lattice structure and the propagation direction. However, the
contact resonances given by Eq. (12) correspond to the k = 0
limit and, consequently, do not depend on the propagation
direction. The relative positions of the three contact resonances
may be different between a hexagonal and square packed
lattice, but their presence should still be expected in both cases.

We suggest that the reasons why horizontal-rotational res-
onances were not observed in Ref. [12] may be the following.
Since the measurements were not sensitive to horizontal
motion, the ωRH and ωHR resonances could only be detected
when they hybridized with SAWs near avoided crossings, and
since the avoided crossings with ωRH and ωHR resonances
are more narrow than the one with the ωN resonance, they
could have been missed. Furthermore, our model assumes
that all spheres are either connected by identical springs or
are isolated. If the contact stiffness between spheres were
to vary widely (some neighboring spheres being in contact
and others not, for example), then distinct resonances may be
absent. In addition, the upper (ωRH ) resonance may have been
outside the range of the measurements in Ref. [12]. Further
experimental studies of monolayer dynamics in conjunction
with exploration of ways to control sphere-to-sphere contacts
should help resolve the discrepancy between the theory and
experiment.

While the main focus of this work has been on micro-
granular monolayers, our theory is equally valid for nano- to
macroscale systems. Contact resonances of isolated nanopar-
ticles have been previously demonstrated for spheres as small
as 120 nm in diameter, and their frequencies have been shown
to scale in agreement with adhesive contact models based
on Hertzian mechanics [31]. Conversely, at the macroscale,
contact springs would be determined by gravity and, possibly,
applied lateral static compression [9], rather than by adhesion
forces. We note that several past experimental works on
macroscale granular systems [9] have observed systematic
upshifts in frequency relative to theoretical predictions, and
have suggested uncertainties in material parameters and
experimental setups, as well as deviations from Hertzian
contact behavior as possible causes. The results from our
model indicate that the presence of additional degrees of
freedom and interactions between spheres and substrate may

have also played a role. In the absence of the external lateral
compression, highly nonlinear “sonic vacua” [3] should also be
expected. Generally, as amplitudes are increased, interesting
nonlinear dynamics are expected for granular monolayers due
to nonlinearity of Hertzian contacts between the particles [3,6]
and between the particles and the substrate [32].

VI. CONCLUSION

We have developed a model for wave propagation in granu-
lar systems composed of a monolayer of spheres on an elastic
substrate. Our model expands on those used in previous works
by including the elasticity of the substrate, horizontal and
rotational sphere motions, shear coupling between the spheres
and substrate, and interactions between adjacent spheres. We
have shown that a monolayer of interacting spheres on a rigid
substrate supports three modes involving vertical, horizontal,
and rotational motion. In the long-wavelength limit, these
modes yield three contact resonances, one purely vertical and
two of mixed horizontal-rotational character. On an elastic
substrate, these resonances hybridize with the Rayleigh surface
wave yielding three avoided crossings. For isolated spheres, the
frequency of the lower horizontal-rotational resonance, in the
absence of bending rigidity, tends to zero and only two contact
resonances with two respective avoided crossings remain.

By comparing the effective medium (valid for long wave-
lengths) to the discrete formulation of our model, we have
demonstrated that for the presented microsphere monolayer
example, the effective medium model can be used to describe
the interaction of the contact resonances with the Rayleigh
waves in the substrate, but loses accuracy at shorter wave-
lengths. In that case, the substrate can be considered rigid, and
the discrete model is more appropriate. This model is scalable
in that it can be adapted for use with nano- to macroscale sys-
tems, and provides a means to experimentally extract contact
stiffnesses from dynamic measurements. Opportunities for fu-
ture studies include exploration of analogous models for gran-
ular monolayers in the nonlinear regime, as well as analysis of
the transverse modes of a granular monolayer or granular chain
on a substrate. Further experiments on nano- to macroscale
granular monolayers will help guide the modeling effort.
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