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Low-temperature 1/ f noise in microwave dielectric constant of amorphous
dielectrics in Josephson qubits
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The analytical solution for the low-temperature 1/f noise in the microwave dielectric constant of amorphous
films at frequency ν0 ∼ 5 GHz due to tunneling two-level systems (TLSs) is derived within the standard tunneling
model including the weak dipolar or elastic TLS-TLS interactions. The 1/f frequency dependence is caused
by TLS spectral diffusion characterized by the width growing logarithmically with time. Temperature and field
dependencies are predicted for the noise spectral density in typical glasses with universal TLSs. The satisfactory
interpretation of the recent experiment by J. Burnett et al. [Nat. Commun. 5, 4119 (2014)] in Pt-capped Nb
superconducting resonators is attained by assuming a smaller density of TLSs compared to ordinary glasses,
which is consistent with the very high internal quality factor in those samples.
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I. INTRODUCTION

1/f noise exists in a variety of physical systems [1–4],
and it dramatically restricts the performance of modern elec-
tronic and quantum nanodevices [5–7]. The inverse frequency
dependence of the noise power spectral density, S(f ) ∝ 1/f ,
is a consequence of a logarithmically slow relaxation often
associated with a random ensemble of fluctuators possess-
ing a logarithmically uniform spectrum of relaxation times
[2,3,8–10]. Such fluctuators do exist in amorphous solids in
the form of universal tunneling two-level systems (TLSs; see
Fig. 1) [11]. With the advent of superconducting quantum bits
(qubits) based on Josephson junctions [7,12], a comprehensive
study of the noise properties due to TLSs has become crucial
for the achievement of high-fidelity quantum computation.
TLSs are ubiquitous, appearing in wiring dielectrics, Joseph-
son junction barriers, and other disordered insulating regions.
The deleterious effects of the coupling of TLSs to the qubit
are associated with the absorption of qubit energy in the
microwave frequency range, and with the low-frequency noise
in the microwave dielectric constant [7], resulting in qubit
decoherence.

The noise in superconducting resonators has been ex-
tensively studied [13–17]. Recently, 1/f noise has been
investigated in Pt-capped Nb superconducting resonators [16].
It was found that the noise power spectral density increases
with decreasing temperature as T −1−η, with η ≈ 0.3. This
dependence was considered as being incompatible with the
standard tunneling model (STM) [16,18]. To explain this
observation, the qualitative theoretical model proposed in
Refs. [16] and [18] suggests an energy-dependent TLS density
of states (DOS), g(E) ≈ Eη, in contrast with the STM which
assumes a constant DOS [11]. This assumption of the STM
is supported by earlier experimental data in “ordinary” amor-
phous solids showing logarithmic temperature dependence of
the dielectric constant and sound velocity [19,20], as expected
from an energy-independent DOS.

In this paper we investigate the noise in the microwave
dielectric constant of amorphous insulators containing TLSs

described by the STM [11,19] including weak TLS-TLS
dipolar interactions, of the form Uij ∼ U0/R

3
ij . Here U0 is

the interaction constant and Rij is the distance between TLSs.
A general expression for the noise power spectral density,
Sy(f ; T ,Fac), as a function of temperature (T ) and external
electric field at microwave frequency (Fac) is derived. The
noise has a 1/f spectral density as a consequence of the
logarithmic broadening of the energy splitting of resonant
TLSs with time due to spectral diffusion [21]. We then
analyze the general expression obtained assuming typical
amorphous dielectrics characterized by the universal value
χ ≈ 10−4 to 10−3 of the parameter χ = P0U0, where P0 is
the homogeneous DOS of TLSs. In these systems one expects
the broadening of the resonance due to spectral diffusion to
dominate over the broadening due to relaxation processes. At
low temperatures, T � �ω0/kB ≈ 0.2–0.3 K, the zero-field
limit is shown to behave as Sy(f ; T ,Fac → 0) ∝ f −1T −1−η,
similarly to the temperature dependence observed in Ref. [16].
The inverse temperature dependence is associated with the
spectral diffusion width as has been pointed out in Ref. [18].
The additional exponent η ∼ 0.25 is associated with the
logarithmic temperature dependence of the spectral diffusion
width [21] (see Fig. 4 below). However, this result cannot
be used to fit the experimental data of Ref. [16] at T �
0.1 K, where the theory predicts much stronger temperature
dependence. We suggest an alternative interpretation of the
experiment in Sec. IV B (see Figs. 6 and 7) assuming that
the relaxation rate of the TLSs is larger than their spectral
width. This can be a result of an anomalously small amount of
TLSs, which is consistent with the high internal quality factor
of the experimental setup of Ref. [16] compared to ordinary
glasses, or to an increased relaxation coming from interaction
with conduction electrons in the Pt capping layer. Using this
assumption, we show that the temperature dependence at
T � 0.1 K of the 1/f noise reported in Ref. [16] may be
explained within the STM.

One should notice that the STM may not be applicable to
TLSs in some recently developed superconducting resonators
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FIG. 1. (Color online) Tunneling two-level system (TLS) char-
acterized by well asymmetry � and tunneling amplitude �0.

as seen, for example, from often observed anomalous field de-
pendence of the loss tangent (see discussion in Refs. [16,18,22]
and references therein). Therefore, we cannot exclude that
deviations from the STM take place in some materials,
including deviations from a homogeneous DOS [22]. Yet,
our main target here is to describe the low-frequency noise
in the microwave dielectric constant in the simplest possible
model and attempt to fit the existing experimental data [16]
without major modifications of the STM, that is, by assuming
a homogeneous DOS.

The paper is organized as follows. In Sec. II we define
the noise, introduce the STM, review earlier results for TLS
relaxation, decoherence, and spectral diffusion, and describe
the TLS contribution to the dielectric constant at microwave
frequency. In Sec. III we derive the analytical solution for the
power spectral density of the noise in the microwave dielectric
constant. The frequency, temperature, and field dependencies
of the noise are considered in Sec. IV for ordinary glasses
(Sec. IV A) and in the limit of anomalously small density
of TLSs (Sec. IV B), possibly corresponding to the recent
experiment of Burnett et al. [16]. We conclude with a brief
summary of the results in Sec. V.

II. BASIC DEFINITIONS

A. Definition of noise

The noise measured in superconducting resonators [16] is
given by the correlation function of fluctuations of the cavity
resonance frequency at different times,

Sy(t) ≡ 〈δω0(t)δω0(0)〉
ω2

0

, (1)

where ω0 = 〈ω0(t)〉 is the average resonance frequency and
δω0(t) = ω0(t) − ω0 is its fluctuation at time t . Equation (1)
can also be expressed in terms of fluctuations of the cavity
dielectric constant at frequency ω0,

Sy(t) = 〈δε(t)δε(0)〉
ε2

, (2)

with ε = 〈ε(t)〉 and δε(t) = ε(t) − ε. The noise spectral
density of interest is determined by the Fourier transform of
this correlation function at very low frequencies, f � 1 Hz,
corresponding to long time tf ∼ 1/(2πf ). Specifically, for the
frequency f ∼ 0.1 Hz studied in Ref. [16], one has tf ∼ 1 s.
The only known excitations in amorphous solids possessing
such long relaxation times are TLSs with sufficiently small
tunneling amplitude �0 (see Fig. 1), because the relaxation

time of TLSs is proportional to �−2
0 [see Eqs. (6) and (7)].

Since TLSs possess the logarithmically uniform distribution
with respect to their tunneling amplitudes [11],

P (�,�0) = P0

�0
, (3)

it is indeed expected that TLSs with small tunneling amplitude
will be responsible for 1/f noise at low frequencies [10].

However, these TLSs cannot contribute directly to the
fluctuations in the dielectric constant at microwave frequencies
(e.g., at frequency ν0 ∼ 5 GHz as in Ref. [16]) because
their relaxation time (∼1 s) is much longer than the field
oscillation period. At microwave frequencies the most signif-
icant contribution to the dielectric constant is associated with
resonant TLSs having � ∼ �0 ∼ hν0 = �ω0 [19]. Therefore,
we assume that the contribution of slowly relaxing TLSs to the
dielectric constant noise is indirect; they affect resonant TLSs
contributing to the dielectric constant due to their interaction
capable of bringing them in and out of resonance with the
external field [23,24].

In Sec. II B we describe the resonant contribution of
TLSs to the dielectric constant and then expound on the
various parameters affecting this contribution, namely TLS
time-dependent energy splitting due to spectral diffusion,
relaxation, and decoherence rates (Secs. II C–II E).

B. Time-dependent dielectric constant at high frequency

We are interested in the contribution of TLSs to the
dielectric constant measured by an external electric field,
F = ezFac cos(ωt), applied along the z axis (here ez is a
unit vector along the z direction) at a frequency ω close
to the cavity resonant frequency ω0 ∼ 2π × 5 GHz. The
TLSs possess dipole moments and therefore interact with the
external field. The TLS-field interaction can be represented by
the Hamiltonian [19,24]

ĥ = −�Sz − �0S
x − 2pzS

zFac cos(ωt), (4)

where the operator Sz = ±1/2 describes the TLS position
either in the right or in the left potential well (see Fig. 1), and
pz is the z-axis projection of the TLS dipole moment. The

energy splitting of an unperturbed TLS is E =
√

�2
0 + �2.

Due to this interaction TLSs respond to the external ac field
and contribute to the dielectric constant.

Consider the dielectric constant at high frequency ω ∼
2π × 5 GHz corresponding to the cavity resonant microwave
frequency. In this regime the TLS relaxation time T1 ∼ 1 μs
(see Eq. (6) and Refs. [25,26]) is much larger than the field
oscillation period, i.e., ωT1 
 1, and the TLS contribution
to the dielectric constant is of resonant nature [19]. This
contribution can be expressed in the form [18,19,27,28]

εTLS(t)

ε
= 4π

V ε

∑
i

tanh

(
Ei

2kBT

)

×
[Ei(t) − �ω]�2

0i

E2
i

p2
iz

[Ei(t) − �ω]2 + 1
T 2

2i

[
1 +

(
�0i

Ei

)2
p2

izF
2
acT1i T2i

�2

] ,

(5)
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where V represents the sample volume and the summation is
taken over all TLSs i having dipole moments pi , relaxation
and decoherence times T1i and T2i , respectively, and time-
dependent energies Ei(t) [Eq. (8)]. The time dependence of the
energies is induced by the spectral diffusion caused by dipolar
or elastic TLS-TLS interactions [18,21]. The TLS relaxation
and decoherence rates are defined in Secs. II C and II E below.
The time dependence of the TLS energy splitting is discussed
in Sec. II D.

In general, another indirect relaxational contribution of
slow TLSs to the noise can exist due to their nonresonant
interactions with other TLSs or polarized vibrations. One
can expect that this contributions shows a linear temperature
dependence (see Ref. [10]). It can be responsible for the
increase of 1/f noise power spectral density with temperature
at T ∼ 0.5 K (see Figs. 6, 7, Ref. [16], and discussion in
Sec. IV B).

C. Relaxation

In dielectric glasses the relaxation of TLSs is caused
by phonon emission or absorption, with the relaxation rate
[19,21,26]

1

T1i,ph

= A

(
�0i

Ei

)2(
Ei

kB

)3

coth

(
Ei

2kBT

)
, (6)

where A = γ 2(v−5
l + 2v−5

t )/2π�
4ρ, with γ being the cou-

pling of TLSs to the strain field, ρ the mass density, and vl , vt

the longitudinal and transverse sound velocities, respectively.
Note that, in general, the coupling constant γ may vary among
different TLSs (and also phonon polarizations). Below we
assume a single value of γ ∼ 1 eV for which A ∼ 108 s−1 K−3

[26].
In metallic glasses TLSs can also relax via their interaction

with conduction electrons. In this case the TLS relaxation rate
is [19]

1

T1i,e

= Ae

(
�0i

Ei

)2
Ei

kB
coth

(
Ei

2kBT

)
, (7)

where Ae = π [n(EF)K]2/�, with n(EF) being the electronic
density of states at the Fermi energy, EF, and K is the TLS-
electron coupling constant. In metallic glasses this relaxation
mechanism is usually much faster than the phonon-induced
relaxation, Eq. (6). As shown in Sec. IV B, this relaxation
mechanism may also be relevant in the experimental setup of
Ref. [16], in which TLSs can interact with conduction electrons
belonging to the Pt capping layer.

D. Spectral diffusion

The spectral diffusion is the fluctuation of the TLS energy
splitting Ei with time due to its interaction with neighboring
TLSs. This interaction can bring the TLS in and out of
resonance with the external field. The spectral diffusion theory
has been developed by Black and Halperin [21] and below we
briefly summarize their results which will be used later to study
1/f noise.

The time dependence of a TLS energy splitting due to its
interaction with neighboring TLSs, enumerated by the index

j , reads [21]

δEi(t) = �i

Ei

∑
j

�j

Ej

UijS
z
j (t). (8)

Here the interaction Uij represents elastic or electric dipole-
dipole interaction and its average absolute value can be written
as 〈|Uij |〉 = U0/R

3
ij , where U0 is the TLS-TLS interaction

constant. The neighboring TLSs j responsible for the spectral
diffusion are thermal TLSs (sometimes called fluctuators), i.e.,
TLSs for which E � kBT [21]. Such TLSs undergo random
transitions due to relaxation process [Eqs. (6) and (7)], causing
fluctuations of the energy Ei of the considered TLS.

Assume that at time t = 0 the TLS energy was equal to
a certain value E(0). Then according to Black and Halperin
[21] [see Eq. (16) there], in the case of interaction which
falls off with distance as 1/R3, the energy change δE(t) =
E(t) − E(0) is characterized by the Lorentzian distribution
function

D(δE,t) = 1

π

�W (t)

�2W 2(t) + (δE)2
, (9)

with a characteristic width W (t) = W0(t)|�|/E, where W0(t)
is given in frequency units by

W0(t) = 2π2χkBT

3�

∫ ∞

0

dμ

cosh2 μ

∫ 1

0

1 − e
− x2 t

T1(μ)

x
dx. (10)

Here we defined the dimensionless variables μ = E/2kBT and
x = �0/E, and the maximum relaxation rate T −1

1 (μ) is de-
fined in accordance with Eq. (6) as T −1

1 (μ) = 8AT 3μ3 coth μ.
The dimensionless parameter χ = P0U0 ∼ 5 × 10−4 repre-
sents the product of the TLSs DOS, P0 in Eq. (3), and their
1/R3 interaction strength, U0 [26,29]. The product χkBT in
Eq. (10) represents the typical interaction of the given TLS
with thermal TLSs.

Low-frequency 1/f noise is determined by long times t �
1 s 
 (AT 3)−1 [16], where (AT 3)−1 estimates the minimum
relaxation time of thermal TLSs. In this limit the width of the
distribution W0(t) grows logarithmically with time and can be
approximated as

W0(t) ≈ π2

3�
χkBT ln(3.3 × AT 3t). (11)

This logarithmic time dependence is responsible for the
appearance of 1/f noise. In addition, the logarithmic tem-
perature dependence in Eq. (11) determines the temperature
dependence of the noise power spectral density for typical
glasses at small fields (see Sec. IV A). In particular, at low
temperatures, T � �ω/kB, it gives rise to the power law
dependence Sy(f ) ∝ T −1−η, reminiscent of the 1/f noise
temperature dependence observed in Ref. [16] and explained in
terms of an energy-dependent DOS. We note that in restricted
geometries deviations from the functional form of the time
dependence in Eq. (11) may appear, e.g., as a result of the
discreteness of the phonon spectrum [30]. Such fluctuations,
however, would have only a minor quantitative effect on our
results.
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E. Phase decoherence

The TLS decoherence rate T −1
2 determines the instanta-

neous resonance width in Eq. (5). It is affected by both TLS
relaxation, Eqs. (6) and (7), and spectral diffusion, Eq. (8)
[19,24,26]. Thus, the decoherence rate is composed of the
contributions of relaxation and pure phase decoherence,

T −1
2i = (2T1i)

−1 + T −1
ϕ,i . (12)

The pure phase decoherence rate T −1
ϕ,i is determined by TLS

spectral diffusion induced by its interaction with neighboring
thermal TLSs. This rate can be written as [21,26]

1

Tϕ,i

=
√

40
|�i |
Ei

χkBT × AT 3

�
. (13)

Although the use of Eq. (13) in the expression for the
dielectric constant [Eq. (5)] is not well justified theoretically,
its approximate relevance was demonstrated experimentally
[28]. However, the limited relevance of Eq. (13) is not
important for most of the consideration except for the strong
ac field limit [see Eq. (24) in Sec. IV A]. Otherwise the noise
power spectral density depends on TLS decoherence rate only
logarithmically [see Eqs. (22) and (25)]. For the experiment of
interest [16] we assume a very weak TLS-TLS interaction and
the phase decoherence contribution to the decoherence rate is
expected to be smaller than the contribution of the relaxation,
i.e., T2,i ≈ 2T1,i .

III. DERIVATION OF THE NOISE SPECTRAL DENSITY

The noise is given by the time-dependent correlation func-
tion of the dielectric constant fluctuations, Eq. (2). This expres-
sion can be simplified by invoking the resonant approximation,
in which one sets E ≈ �ω in the relaxation and decoherence
rates [Eqs. (6), (7), and (13)], and in the spectral diffusion
[Eq. (8)]. The resonant approximation is applicable at typical
experimental temperatures T < 1 K since all broadenings of
the resonance, caused by relaxation, decoherence, and spectral
diffusion, are much smaller than the resonance frequency ω

[31]. Setting E = �ω, these broadenings can be rewritten using
the dimensionless parameter xi = �0i/�ω as

1

T1i,ph

= Ax2
i

(
�ω

kB

)3

coth

(
�ω

2kBT

)
,

1

T1i,e

= Aex
2
i

�ω

kB
coth

(
�ω

2kBT

)
,

T −1
2i = (2T1i)

−1 + T −1
ϕ,i , (14)

1

Tϕ,i

=
√

40
√

1 − x2
i

χkBT × AT 3

�
,

Wi(t) ≈ π2

3�
χkBT ln(3.3 × AT 3t)

√
1 − x2

i .

Moreover, correlations between different resonant TLSs con-
tributing to the noise can be neglected because of the
weakness of the TLS-TLS interactions (see, for example,
Ref. [29]). Then the leading order contribution in the resonant
approximation is a sum of average squared contributions of

individual TLSs,

Sy(t) = (4π )2

V 2ε2

∑
i

(
�0i

�ω

)4

p4
iz tanh2

(
�ω

2kBT

)

×
*

Ei(t) − �ω

[Ei(t) − �ω]2 + 1
T 2

2i

[
1 + (

�0i

Ei

)2 p2
izF

2
acT1i T2i

�2

]

× Ei(0) − �ω

[Ei(0) − �ω]2 + 1
T 2

2i

[
1 + (

�0i

Ei

)2 p2
izF

2
acT1i T2i

�2

]
+
.

(15)

Averaging of each term involves several integrations, including
the integration over the uniform distribution of the initial
energy Ei(0), the integration over the energy Ei(t) = Ei(0) +
δE(t) using the Lorentzian distribution in Eq. (9), and the
integrations over the dimensionless tunneling parameter x =
�0/�ω and dipole moment projection pz. A further averaging
over the relaxation rate parameter A should be performed if one
considers its variation among different TLSs. The integration
over energies can be performed analytically by expanding to
partial fractions and using the identity

∫ ∞
−∞

dx
(x+y+ia)(x−ib) =

2πθ(ab)
|a+b|−iy sgn(a) . Then one ends up with

Sy(t) = tanh2

(
�ω

2kBT

)
4π3P0

�V ε2

∫ 1

0

dx

x(1 − x2)

×
〈

p4
zx

4

W0(t) + 2
T2(x)

√
1−x2

√
1 + (xpzFac)2T1(x)T2(x)

�2

〉
.

(16)

The remaining average in Eq. (16) should be performed
over the dipole moment projection pz and the relaxation rate
parameter A.

The noise power spectral density, Sy(f ), can be evaluated
as a Fourier transform of Eq. (16) in the low-frequency limit
f T1,f/W0(tf ) � 1 with tf = 1/(2πf ) being a typical 1/f

noise measurement time. It has the pure 1/f spectrum if the
function Sy(t) depends on time as A − B ln |t |, which has a
Fourier transform B/2f at f 
= 0. The correlation function
Sy(t) can be expanded near |t | = tf in the approximate form
Sy(|t |) ≈ Sy(tf ) + dSy (tf )

d ln tf
ln(|t |/tf ) (higher order expansion

terms are smaller by the factor ln−1(AT 3/f ) ≈ 0.1 for the
low frequency of interest, f ≈ 0.1 Hz). Therefore, the noise
power spectral density can be approximated as Sy(f ) ≈
−(1/2f )dSy(tf )/d ln tf , i.e.,

Sy(f ) = 1

2f
tanh2

(
�ω

2kBT

)
4π3P0

�V ε2

∫ 1

0

dx

x(1 − x2)

×
*

p4
zx

4 π2

3�
χkBT[

W0(tf ) + 2
T2(x)

√
1−x2

√
1 + (xpzFac)2T1(x)T2(x)

�2

]2

+
.

(17)

The noise power spectral density has approximately 1/f

dependence which is a consequence of the logarithmic time
dependence of the width W0(t) [Eq. (11)] of the energy
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broadening distribution [Eq. (9)]. The deviation from the 1/f

spectrum due to the logarithmic term in the denominator of
Eq. (17) is small, as discussed in Sec. IV below.

For a quantitative comparison of the theory with exper-
iments it is convenient to introduce a volume-independent
parameter in a similar way to the experimentally determined
Hooge’s constant for 1/f conductivity noise in semiconductors
[32]. We define this parameter as

αTLS ≡ P0V kBTf Sy(f )

tan2 δ
= 9π

8〈p2〉2�2

∫ 1

0

dx

x(1 − x2)

×
*

p4
zx

4χ (kBT )2

[
W0(tf ) + 2

T2(x)
√

1−x2

√
1 + (xpzFac)2T1(x)T2(x)

�2

]2

+
,

(18)

namely as the ratio of the noise power spectral density
multiplied by the number of thermal TLSs, NT = P0V kBT ,
to the squared average loss tangent due to TLSs,

tan δ = 〈ε′′〉
ε

=
(

4π2

3ε

)
P0〈p2〉 tanh

(
�ω

2kBT

)
. (19)

Here 〈p2〉 is an average of the squared magnitude of the dipole
moment.

Equations (17) and (18) contain a full description of
the contribution of TLSs to the low-frequency 1/f noise.
This is the main result of the present paper. The currently
available experimental data do not permit a direct quantitative
comparison of experiments with Eq. (18). Yet, we hope this
result will be used in the future when such data will be
available together with other data needed to estimate the
quantitative noise parameter αTLS, particularly the TLS DOS,
dipole moment, and loss tangent. In Sec. IV we discuss the
temperature and frequency dependence of Eqs. (17) and (18)
in different regimes of interest.

IV. FIELD AND TEMPERATURE DEPENDENCE
OF 1/ f NOISE

The noise power spectral density, Eq. (17), is sensitive to
the relations between the various parameters which determine
the broadening of the resonance. The broadening due to
the interaction with phonons can be estimated using the
TLS relaxation rate, Eq. (6), whereas the interaction-induced
broadening can be estimated using the spectral diffusion width
W0(t), Eq. (11). This width is time dependent and we can
use it at time t = tf = 1/(2πf ) to characterize the noise at
frequency f [see Eq. (17)], which we set in all estimates to
be f = 0.1 Hz similarly to the experiment [16]. Assuming
typical parameters for amorphous solids, A ∼ 108 s−1 K−3

and χ ∼ 5 × 10−4 [26,29], for resonant TLSs (�0 ≈ E ≈ hν0

with ν0 ≈ 5 GHz) one can estimate the typical broadenings as

1

T1
≈ 1.2 × 106 coth

(
0.11 K

T

)
s−1,

W0(tf ) ∼ 2 × 108 T

0.1 K
s−1. (20)

Comparing these two expressions one concludes that in a
“typical” amorphous solid at temperatures exceeding 1 mK

the most important contribution to the resonance broadening
comes from spectral diffusion.

It should be emphasized that the regime W0(tf )T1 

1 is applicable for “typical” amorphous solids, for which
χ ≈ 10−3 to 10−4. Such amorphous solids are characterized
by a universal value of the quality factor Q ≈ 103 to 104

[19,29,33]. However, this is not the case in the experiment
by Burnett et al. [16], where the system under investigation
is characterized by a very high quality factor Q � 106. If this
enhancement of the quality factor is a consequence of a smaller
density of TLSs, P0, or their interaction, U0, then the resonance
broadening due to spectral diffusion may be two or three orders
of magnitude smaller than the estimate in Eq. (20). Moreover,
the relaxation rate of TLSs can be larger than in ordinary
glasses because of the contribution of conduction electrons
(see Sec. IV B). Accordingly, in this case one can assume the
opposite regime, that is, W0(tf )T1 � 1.

Below we study the frequency, temperature, and field
dependencies of the noise power spectral density in the
two regimes W0(tf )T1 
 1 (Sec. IV A) and W0(tf )T1 � 1
(Sec. IV B). For W0(tf )T1 
 1, a regime corresponding to
“typical” amorphous solids, the results are presented in terms
of the parameter αTLS [Eq. (18)]. These results can be directly
compared with experimental studies to be performed in the
future. In Sec. IV B we analyze the experimental data of
Ref. [16] assuming the opposite regime, W0(tf )T1 � 1, and
show that a consistent interpretation of the experiment can be
attained within the model of Sec. III.

A. 1/ f noise in a “typical” amorphous solid

According to Eq. (20), in typical amorphous solids at
temperatures above 1 mK the broadening of the resonance due
to spectral diffusion exceeds other resonance widths, at least
in the limit of small external field, pFac

√
T1T2/� � 1. In this

case the integral over the dimensionless tunneling parameter
x in Eq. (18) can be evaluated with logarithmic accuracy by
neglecting the decoherence rate term in the denominator for√

1 − x2 > 1/[W0(tf )T2(x)] and using the value of x = xc,
where

√
1 − x2

c = 1/[W0(tf )T2(xc)], as the upper cutoff of the
integral over x. Then we obtain

αTLS ≈ 9πχ (kBT )2

16〈p2〉2�2

〈
p4

z ln[W0(tf )T1,res]

W 2
0 (tf )

〉
,

1

T1,res
= A

(
�ω

kB

)3

coth

(
�ω

2kBT

)
. (21)

Using the definition of the spectral diffusion width W0(t)
[Eq. (11)] and performing the average over the dipole moment
orientations 〈p4

z 〉 = 〈p4〉/5, we obtain

αTLS ≈ 81

80π3χ

〈p4〉
〈p2〉2

*
ln[W0(tf )T1,res]

ln2
(
3.3AT 3

2πf

)
+
. (22)

The frequency dependence of the parameter αTLS is iden-
tical to the frequency dependence of the product f Sy(f )
[see Eq. (18)]. For a pure 1/f noise this product should
be frequency-independent. However, the noise parameter in
Eq. (22) shows a logarithmic frequency dependence. To
characterize this dependence we evaluated the integral in
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α
T

LS

100

101

typical glass, χ=5· 10-4

Fit using f0.12 

χ = 10-6

Fit using f0.03

FIG. 2. (Color online) Frequency dependence of the noise pa-
rameter αTLS for typical glasses with χ = 5 × 10−4 (red) and for
glasses with a smaller density of TLSs, with χ = 10−6 (blue). The
curves with diamond markers describe the numerical evaluation of
the integral in Eq. (18) with T = 0.1 K, ω = 2π × 5 GHz, p = 5 D,
and A = 108 s−1 K−3. Dashed lines are fit to αTLS ∝ f β .

Eq. (18) numerically, assuming a constant dipole moment
p = 5 D and TLS relaxation rate parameter A = 108 s−1 K−3

[7,17,25]. The TLS dipole moment is chosen as 5 D following
the earlier estimates for aluminum oxide and silicon nitride
glasses used in previous noise measurements [7,17], though
it may be smaller in other glasses [24]. This dependence is
shown in Fig. 2 for χ = 5 × 10−4 as in typical glasses and
χ = 10−6 to characterize the case of small number of TLSs to
be discussed in Sec. IV. The typical temperature T = 0.1 K
and frequency ω = 2π × 5 GHz have been assumed.

At the frequency of interest, f ≈ 0.1 Hz, the frequency
dependence of the noise parameter αTLS is very weak and
estimated as αTLS ∝ f 0.12 for typical glasses and αTLS ∝ f 0.03

in the case of a small number of TLSs. The corresponding noise
power spectral density is S

typ
y ∝ f −0.88 and Ssm

y ∝ f −0.97,
respectively. Thus, the theory predicts an experimentally
recognizable 1/f noise spectrum.

The temperature dependence of the noise parameter αTLS

at frequency f = 0.1 Hz for typical glasses is shown in Fig. 3.
The temperature dependence is remarkable even though it is
logarithmic [Eq. (22)]. As Fac → 0, it can be approximated by
a power law T −η with η ≈ 0.25 at temperatures T � 0.05 K.
As a result, the temperature dependence of the noise power
spectral density Sy(f ) is predicted to be Sy(f ) ∝ αTLS/T ∝
T −1−η at low temperatures, T � �ω/kB. Interestingly, this
is the same temperature dependence observed in Ref. [16].
However, this result is not applicable to the measurements of
Ref. [16] which are reported at temperatures T ∼ �ω/kB (that
is, above 0.1 K). As we show in Sec. IV B, the temperature
dependence of the 1/f noise observed in Ref. [16] may be
explained within the STM by assuming a smaller density of
TLSs than in typical glasses, as suggested by the much higher
quality factor of the resonator.

Finally, consider the field dependence of the noise parame-
ter αTLS in a typical glass. Based on Eq. (22) one can specify
three different regimes of Fac with distinguishable behaviors.
The pure linear regime takes place for Fac � F1, where F1

is the nonlinear absorption threshold defined by the condition
pF1

√
T1T2/� ≈ 1 [19]. At T < 0.1 K both relaxation times

are of the order of 1 μs and one can estimate the critical field
using the typical TLS dipole moment p ∼ 5 D [25] as

F1 = �

p
√

T1T2
≈ 10 V/m. (23)

For Fac � F1 the field dependence is negligible.
The field dependence remains relatively weak for Fac > F1

until the associated contribution to the resonance broadening,
(pFac/�)

√
T1/T2, becomes comparable to the spectral diffu-

sion width W0(tf ) [Eq. (11)]. This occurs at Fac ≈ F2 where
the second threshold field, F2, can be estimated as

F2 ≈ π2χkBT

3p
ln

(
3.3 × AT 3

2πf

)
. (24)

At T = 0.1 K one can estimate this field as F2 ≈ 200 V/m. It
decreases approximately linearly with decreasing temperature.

At intermediate fields, F1 < Fac < F2, one can estimate the
TLS noise parameter within the same logarithmic accuracy as
in Eq. (22) by

αTLS ≈ 81

80π3χ

〈p4〉
〈p2〉2

〈
ln[�W0(tf )/(pFac)]

ln2
(
3.3AT 3

2πf

) 〉
. (25)

At large fields, F2 � Fac, the spectral diffusion width can be
approximately neglected in the denominator of Eq. (18) and
one can estimate the noise parameter as

αTLS ≈ 9πχ (kBT )2

32〈p2〉F 2
ac

. (26)

In this regime the noise parameter decreases with decreasing
temperature. All these conclusions are consistent with the
temperature and field dependence of the noise parameter
[Eq. (18)] shown in Fig. 3.

T (K)
10-2 10-110-2

10-1

100

 F
ac

=0

 
TLS

 T-0.25

 F
ac

=10
 F

ac
=30

 F
ac

=100
 F

ac
=300

FIG. 3. (Color online) Temperature dependence of the noise pa-
rameter αTLS in typical glasses (χ = 5 × 10−4) at frequency f =
0.1 Hz for various electric fields. Other parameters are the same as in
Fig. 2. Dashed line is a fit of the zero-field curve to αTLS ∝ T −η. The
values of the field Fac are in units of V/m.
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FIG. 4. (Color online) Temperature dependence of the noise
power spectral density Sy in typical glasses (χ = 5 × 10−4) at
frequency f = 0.1 Hz for various electric fields.

The temperature dependence of the noise power spectral
density at frequency f = 0.1 Hz is shown in Fig. 4. At
low temperatures, T � �ω/kB, one has tanh (�ω/2kBT ) ≈
1 in Eq. (19) and the power spectral density behaves as
Sy ∝ αTLS/T [see Eq. (18)]. In the limit of small fields it
shows the power law dependence, Sy ∝ T −1−η, discussed
in Refs. [16,18]. The inverse temperature dependence is of
similar origin and reflects the inverse dependence on the
density of thermal TLSs. The additional exponent η is due
to the logarithmic temperature dependence predicted within
the STM. This exponent can vary depending on the specific
system under consideration and future experiments can be
compared to the proposed theory by evaluating Eq. (18) for the
specific material under consideration. The noise decreases and
its temperature dependence becomes weaker with increasing
field Fac. At large fields, Fac > 1000 V/m, the noise power
spectral density decreases with decreasing temperature.

However, the regime of low temperatures, T � �ω/kB,
in which one expects Sy ∝ T −1−η, is not applicable to the
experimental results of Ref. [16] which are reported at
temperatures T ∼ �ω/kB. In this regime one expects the
temperature dependence of the factor tanh2 (�ω/2kBT ) to
be significant. Thus, it cannot be approximated as unity
when comparing the data of Ref. [16] with theory. For
instance, at high temperatures, T 
 �ω/kB, the relevant
limit is tanh2 (�ω/2kBT ) ∝ T −2 for which Eq. (17) as well
as Refs. [16,18] predict a strong reduction of the noise
with increasing temperature, Sy ∝ T −3−η. For intermediate
temperatures, T ∼ �ω/kB as in Ref. [16], one should not use
any of these approximations for the factor tanh2 (�ω/2kBT ).
To show the importance of this factor in the analysis of the data
of Ref. [16], we plot in Fig. 5 the temperature dependence of
the noise power spectral density obtained in this experiment
divided by tanh2 (�ω/2kBT ) [cf. Eq. (17)]. After this rescaling
the temperature dependence almost disappears in contrast with
the predictions of Ref. [18] and the present work for typical
glasses (which predict that this rescaled power spectral density
should behave as T −1−η). As discussed above, we conjecture
that this discrepancy is because the material studied in Ref. [16]

T (K)
0 0.1 0.2 0.3 0.4 0.5

10
-1

7 S
y/ta

nh
2
(h

ν/
k B

T
) 

(H
z-1

)

0

200

400

600

ν=5.55 GHz

FIG. 5. (Color online) Temperature dependence of Sy/ tanh2

(�ω0/2kBT ) for the noise power spectral density Sy obtained in a
Pt-capped Nb resonator at resonance frequency ν0 = 5.55 GHz and
at the smallest measuring field [16].

cannot be treated as a typical glass. In Sec. IV B we suggest the
interpretation of this experiment by assuming a small spectral
diffusion width compared to the TLS relaxation rate which
may be a consequence of a smaller density of TLSs compared
to ordinary glasses.

B. 1/ f noise in Pt-capped Nb resonator

In this section we attempt to fit the experimental data of
Ref. [16]. This experiment was performed using supercon-
ducting Nb resonators. Following Refs. [34,35] we assume
that TLSs cannot exchange energy with Nb superconducting
electrons because the superconductor has a gap in energy
spectrum which is much larger than the thermal energy. We
also use the model developed above for 1/f noise due to
interacting TLSs forming a three-dimensional system. The
assumption of a three-dimensional geometry is valid until
the distance between thermal TLSs is smaller compared to
the thickness of the oxide film at the Nb surface where
TLSs are located. At low temperature this assumption fails
and two-dimensional consideration is needed. Based on the
qualitative consistency between theory and experiment we
assume that our consideration is qualitatively valid at T > 0.1
K. At low temperatures the generalization of our theory to
two-dimensional geometry may be required, which is beyond
the scope of the present paper.

In order to fit the experimental data we assume that the
relaxation rate of TLSs, 1/T1 [Eqs. (6) and (7)], exceeds
the spectral diffusion width W0(tf ) [Eq. (11)]. This could
be a result of the small amount of TLSs in the sample, as
reflected by the high quality factor Q ∼ 106 [16], leading to
a smaller value of W0(tf ). In addition, the relaxation rate in
the experimental setup of Ref. [16] may be larger compared to
ordinary glasses, due to interaction of TLSs with conduction
electrons in the Pt capping layer. Assuming W0(tf )T1 � 1,
one can ignore the contributions of spectral diffusion and
decoherence in the denominator of Eq. (17). The noise power
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FIG. 6. (Color online) Fit of the experimental data by Burnett
et al. [16] at resonance frequency ν0 = 5.55 GHz (markers) to
Eq. (29) (solid lines).

spectral density then takes the form

Sy(f ) ∝ kBT

2f
tanh2

(
�ω

2kBT

) ∫ 1

0
x3dx

×
*

p4
z

x4 coth2
(

�ω
2kBT

)
1

τ 2
min

+ x2
(

pzFac

�

)2

+
. (27)

Here the time τmin stands for the minimum TLS relaxation
time in the zero-temperature limit. This time is defined by
τ−1

min = A(�ω/kB)3 for the relaxation induced by TLS-phonon
interaction [Eq. (6)], or τ−1

min = Ae�ω/kB for the relaxation
induced by the interaction of TLSs with conduction electrons
[Eq. (7)].

Similarly to the previous section and to other works [7,25],
we assume a single value p for the magnitude of TLS dipole
moment, as well as for the relaxation parameter A (Ae). Other
assumptions (e.g., Gaussian distribution) lead to similar results
and the present uncertainty of available experimental data
[16] (see Figs. 6 and 7) does not permit us to make any
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FIG. 7. (Color online) Fit of the experimental data by Burnett
et al. [16] at resonance frequency ν0 = 6.68 GHz (markers) to
Eq. (29) (solid lines).

specific choice. For the direct comparison of our theory with
the experimental data of Ref. [16], expressed in terms of the
average number of photons 〈n〉 within the cavity, we write the
external field Fac in terms of the vacuum field Fvac as [37]

Fac = Fvac

√
〈n〉, Fvac =

√
4π�ω

εV
. (28)

The field is treated classically (〈n〉 > 1), so that the difference
between the factors

√〈n〉 and
√〈n〉 + 1 is neglected, which

is approximately satisfied for the average number of photons
〈n〉 � 3 used in the experiment [16].

Then one can evaluate the integral in Eq. (27) and obtain the
noise power spectral density in terms of the average number
of photons 〈n〉 within the cavity as

Sy(f ) ∝ kBT

f
tanh4

(
�ω

2kBT

) ∫ 1

0
x4

1dx1

× ln

⎡
⎣1 + c2〈n〉x2

1 tanh2
(

�ω
2kBT

)
c2〈n〉x2

1 tanh2
(

�ω
2kBT

)
⎤
⎦. (29)

Here the integration is over the polar angle θ (x1 = cos θ and
pz = px1) and the dimensionless parameter c is

c = pFvacτmin

�
. (30)

Using the constant c as an adjustable parameter we
attempted to fit the experimental data of Burnett et al. [16].
Only data points at temperatures higher than 0.1 K have been
considered because of the strong variation of the noise spectral
density at lower temperatures. According to Ref. [36], this
is not due to an experimental error; we believe that it can
be caused by the reduction of the number of thermal TLSs
and the narrowing of the resonance linewidth with decreasing
temperature, giving rise to strong noise fluctuations if either
the number of thermal TLSs or the number of TLSs within the
resonant linewidth approaches unity (cf. Ref. [37]).

The optimum data fits were obtained with the fitting
parameters c5.55 = 0.384 for ν0 = 5.55 GHz (Fig. 6) and
c6.68 = 0.348 for ν0 = 6.68 GHz (Fig. 7). The theory fits the
experimental data reasonably well at temperatures between
0.1 K and 0.4 K. At higher temperatures some excess contri-
bution is seen especially for the high-frequency sample. It is
possibly associated with the effect of nonresonant TLSs [10]
or the elevation of the noise floor with decreasing microwave
driving field, generally observed across many measurements
[36].

The frequency dependence of the fitting parameter c can be
used to determine the dominant mechanism of TLS relaxation,
if one assumes the sample volumes to be identical. For the
phonon-induced relaxation [Eq. (6)] the characteristic time
τmin depends on the frequency as ν−3, leading to c ∝ ν−2.5,
whereas for the relaxation due to the interaction of TLSs
with conduction electrons [Eq. (7)] one has τmin ∝ ν−1,
corresponding to c ∝ ν−0.5. The ratio of the two fitting
parameters c5.55/c6.68 = 1.101 scales almost exactly as the
inverse square root of the ratio of the cavity resonance
frequencies

√
6.68/5.55 ≈ 1.097. Thus, provided that the

volume of both resonators is the same, our analysis suggests
that the TLS relaxation in the experimental setup of Ref. [16]
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is mainly due to interaction of TLSs with conduction electrons.
Such electrons may reside in the Pt capping layer used in the
experimental setup of Ref. [16].

The fit of the experimental data is made with the accuracy
to the unknown sample-dependent, but field-independent
proportionality constant which cannot be estimated based
on the present information since the TLS density, dipole
moment, and electron-TLS coupling constant are unknown.
Loss tangent measurements with a time-varying bias similar
to Ref. [25] can help to extract these parameters separately. The
nonlinear threshold at the number of photons 〈n〉 ∼ c−2 ≈ 10
is quite typical for the microwave cavities under consideration
(cf. Ref. [37]).

V. CONCLUSION

In the present paper we investigated 1/f noise in the
microwave dielectric constant produced by TLSs in amorphous
solids. The noise power spectral density has been calculated
analytically within the standard tunneling model involving
the long-range elastic or dipolar TLS-TLS interactions. For
amorphous solids characterized by “typical” parameters we
predict the increase of the noise with decreasing temperature
according to the power-law behavior Sy(T ) ∝ T −1−η at low
temperatures, T � �ω0/kB, and vanishing field Fac → 0. The
additional exponent η originates in the logarithmic time and
temperature dependence of the spectral diffusion width and its
specific value may vary among different materials. This result
should be verified in experiments to be performed in the limit
T � �ω0/kB and Fac → 0.

The experimental data by Burnett et al. [16], performed at
T ∼ �ω0/kB, cannot be explained in terms of our theoretical

results for typical amorphous solids. In this regime of tem-
peratures the factor tanh2 (�ω/2kBT ) in Eq. (17) cannot be
neglected and one expects a temperature dependence much
stronger than T −1−η with η ≈ 0.3. Instead, we show that these
data may be explained by assuming the opposite limit of small
spectral diffusion width compared to the TLS relaxation rate.
The general expression for the noise power spectral density
then reduces to a form which fits the experimental data above
0.1 K reasonably well. This expression contains two fitting
parameters for each sample, which are independent of the
field intensity. The extracted frequency dependence of the TLS
relaxation rate suggests that the TLS relaxation is caused by
TLS interaction with conduction electrons. Such electrons may
be available in the experimental setup of Ref. [16] due to the Pt
capping layer used in this setup. It should be noted, however,
that this conclusion assumes equal volumes [as well as other
parameters in Eqs. (28) and (30)] for the two resonators studied
in Ref. [16]. Either way, the main results of this paper for the
noise in the dielectric constant do not depend on the specific
relaxation mechanism.
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