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Local density approximation for the energy functional of three-dimensional dislocation systems
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The elastic energy functional of a system of discrete dislocation lines is well known from dislocation theory.
In this paper, we demonstrate how the discrete functional can be used to systematically derive approximations
which express the elastic energy in terms of dislocation densitylike variables which average over the discrete
dislocation configurations and represent the dislocation system on scales above the spacing of the individual
dislocation lines. We study the simple case of two-dimensional systems of straight dislocation lines before we
proceed to derive energy functionals for systems of three-dimensionally curved dislocation lines pertaining to a
single as well as to multiple slip systems. We then illustrate several applications of the theory including Debye
screening of dislocations in two and three dimensions, and the derivation of back stress and friction stress terms
entering the stress balance from the free-energy functionals.
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I. INTRODUCTION

Any dislocation density based theory of dislocation dynam-
ics under stress, and thus of plasticity, must of necessity consist
of two parts. The first consists in a density-based description of
dislocation kinematics, i.e., of the way dislocations as curved
and connected lines move in space. The second consists in
a density-based description of dislocation energetics which
allows to derive, via the powerful mathematical tools of
variational calculus, the driving forces for dislocation motion.
If one wants to go beyond the standard concepts of linear
irreversible thermodynamics, a closed theory may require
a third ingredient which provides the, in general nonlinear,
connection between driving forces and dislocation fluxes.

As to describing the kinematics of dislocations on scales
above the dislocation spacing where individual dislocation
lines can no longer be resolved, significant progress has been
made in recent years. In particular, the important question
of how to correctly describe the coupled kinematics of
“statistically stored” and geometrically necessary dislocations
for three-dimensional (3D) dislocation systems has been
addressed in several works [1–7]. The progress in dislocation
kinematics calls for a matching effort to develop averaged,
density-based descriptions of the energetics of dislocation sys-
tems. Such an effort needs to consider both excess dislocations
associated with the spatial average of the classical dislocation
density tensor (often termed geometrically necessary disloca-
tions) and so-called statistically stored dislocations of zero net
Burgers vector which dominate plasticity in the early stages of
deformation.

For dislocation systems described as systems of discrete
lines, expressions for the associated elastic energy functional
and interaction stresses have been provided in the classical
works of dislocation theory (see, e.g., Ref. [8] and, for
overview, the textbook of Hirth and Lothe [9]). Recent progress
has focused on methods to regularize the elastic singularity and
associated diverging energy density in the dislocation core,
using either nonlocal elasticity theories (e.g., Ref. [10]) or
continuous Burgers vector distributions [11]. Starting from
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the energy functional of a discrete dislocation system, one
may then develop an energy functional for dislocation densities
through appropriate averaging procedures. This is the approach
pursued in the present investigation.

There are alternative approaches. In the traditional spirit
of constitutive modeling in continuum mechanics, numerous
authors have introduced free-energy functionals which depend
on dislocation densitylike variables where the related func-
tional dependencies were assumed in an ad hoc manner (see
Ref. [12] as one example of many). Usually, little attention is
paid to the question as to how, if at all, these functionals can be
derived from properties of the underlying discrete dislocation
systems. We find this method of reasoning of little relevance to
our own work, however, we note that our results can serve as
a benchmark to assess whether or not the structure of various
free-energy functionals used in the literature is adequate
for representing actual dislocation systems. Groma and co-
workers derived equations for dislocation density evolution
in two dimensions (2D) by direct averaging of the discrete
dynamics [13–15] and then proceeded to design, via educated
guess, free-energy functionals which are consistent with this
averaged dynamics [16], or which are directly designed to
reproduce average behavior in discrete dislocation dynamics
simulations [17]. In this work, we pursue a modified but related
approach: instead of systematically averaging the dynamics,
and then matching it with free-energy functionals obtained
via educated guess, we apply systematic averaging to directly
obtain an energy function.

Recently, several authors have attempted to derive free-
energy functionals for dislocation systems using thermody-
namic formalisms (see, e.g., Refs. [18–20]). In the opinion of
the present author, thermodynamic approaches need to deal
with the fundamental problem that dislocations do not exist in
thermal equilibrium, and some authors may not be sufficiently
aware of the implications of this basic fact. To illustrate the
problem, let us compute the energy associated with a single
Burgers vector of dislocation line length. This energy is of the
order of μb3 where b is the length of the Burgers vector and μ

is the shear modulus of the material. For typical materials
parameters of copper, this energy amounts to about 4 eV.
To provide matching thermal energies one would need to
consider temperatures of the order of 40 000 K, which is more
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than one order of magnitude above the melting temperature.
Kooiman et al. [18] make the same observation when they
notice that the coupling constant which gives the relative
magnitude of elastic to thermal energies is, for dislocation
systems at room temperature, of the order of 100. Hence,
thermal effects and thus classical thermodynamic entropy are
practically irrelevant to dislocation systems, whose driving
forces derive almost exclusively from the internal (elastic)
energy. Attempts to evaluate properties such as the range
of correlations in dislocation systems using thermodynamic
formalisms have produced interesting results [see, e.g., the
remarkable work of Limkumnerd and Van der Giessen [21]
who use a Langevin-type approach to evaluate correlation
functions, with results that are consistent with the results of
discrete dislocation dynamics (DDD) simulations]. However,
these authors recognize that the fluctuation magnitude that
must be assumed to achieve such agreement is orders of
magnitude above the level of thermal fluctuations even at
the melting temperature, hence it represents some kind of
“effective temperature,” in fact a fit parameter that needs
to be adjusted to make the range of dislocation correlations
equal to a few dislocation spacings as observed in simulations.
An effective temperature is also introduced by Groma et al.
[16] in their free-energy expression, and these authors make
the same observation. These approaches may be considered
implementations of the general suggestion by Berdichevsky
to consider microstructural disorder in terms of an effective
microstructural entropy and associated temperature [22].

The bottom line is that, in order to explain why for instance
the screening radius in a dislocation system is of the order of
several dislocation spacings [16,23], one needs to introduce
effective temperatures that cannot be related to standard
temperature and thus, effectively, constitute phenomenological
fit parameters.

So, why do we find, in plastically deformed crystals,
densities of “statistically stored” dislocations (dislocations
which have zero net Burgers vector and might thus annihilate)
which are as high as 1015 m−2 [23], when equilibrium
thermodynamics requires this density to be zero? The answer
is simply that statistically stored dislocations exist because
kinematic constraints prevent them from annihilating. One can
understand the problem best by considering dipoles consisting
of dislocations of opposite sign moving on parallel slip planes:
As long as the interaction is not sufficient to overcome the high
energy barrier that prevents dislocations from leaving their slip
planes, the dislocations will form a dipole with a width that is
dictated by the slip plane spacing. Furthermore, dislocations
are likely to become trapped in the first local energy minimum
close to their initial position, and thermal energies (which are
orders of magnitude less than dislocation interaction energies)
may be unable to liberate them. Metastability and kinematic
constraints ensure that dislocations are, and tend to remain,
in the crystal despite the fact that in thermal equilibrium they
should not be there. This raises major conceptual problems.
Unless methods for dealing with metastability and constraints
in statistical thermodynamics are developed to a much higher
level than presently available, it may be difficult for us to
derive the nonequilibrium statistical properties of dislocation
systems from first principles. This work therefore pursues
more modest goals: To establish the fundamental structure of

functionals which express the energy of a dislocation system
in terms of dislocation density functions, to clearly formulate
the parts of the functionals which we can know for certain, and
to find reasonable approximations for those which depend on
information regarding the relative arrangement of dislocations.
In this task, we are inspired by density functional theory
of electron systems where energy contributions of known
and established form which represent long-range electrostatic
interactions (the Hartree energy functional) are separated from
those which depend on correlations in a many-body problem
(the exchange-correlation energy) (see, e.g., Ref. [24] or other
textbooks on quantum mechanics of many-electron systems).
The latter are approximated by reference to idealized systems
such as a homogeneous electron gas. We apply the same
strategy to the many-dislocation problem. Just as in electron
theory, what we get is the fundamental mathematical structure
of the energy functional which we determine first in two and
then in three dimensions. As to the correlation energies, these
depend on parameters characterizing the range and nature of
dislocation-dislocation correlations, parameters which remain
to be determined by reference to direct DDD simulations
of the many-dislocation problem. Again, this strategy is
analogous to the proceedings in density functional theory
where exchange-correlation energy functionals are formulated
and parametrized by reference to idealized model systems (the
free-electron gas) or by comparison with direct numerical
simulations of the many-body problem via quantum Monte
Carlo methods.

The technical method which we shall use is to represent
the dislocation interaction energy in terms of densities and
correlation functions. This idea is not new: Correlation
functions have been introduced for averaging the forces in
2D dislocation systems, and hence the dynamics, in earlier
work by Zaiser and Groma [14,15]. Averaging the forces
implies, of course, evaluating average derivatives of the elastic
energy functional. Here, we apply the same averaging method
to evaluate the energy functional itself. A similar approach
has been used already in work in the 1960s (see, e.g., the
work of Kocks and Scattergood [25] on systems of straight
parallel dislocations), but was not further pursued. A possible
reason for this lies in the fact that, in absence of DDD
simulations which can provide complete information about
the dislocation microstructure, information about dislocation
correlations is hard to come by, even though some limited
information can be inferred from electron microscopy and
x-ray profile analysis data, and indeed some of the early work
by Wilkens in the field considers both mean-square stresses
(and thus elastic energy densities) and x-ray line broadening
[26,27]. In this study, we resume these approaches and extend
them to general dislocation systems in three dimensions with
multiple slip systems and arbitrarily curved dislocations. We
first revisit results of classical dislocation theory for the energy
of discrete dislocation systems, and then develop our averaging
methodology for the conceptually simple case of systems of
straight parallel edge dislocations. We generalize the results
first to curved dislocations on a single slip system, and then
to general 3D dislocation systems. We then demonstrate a
few applications for the resulting free-energy functionals,
first to evaluate “Debye screening” of dislocations in 2D,
i.e., the formation of an induced distribution of local excess
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dislocations around a given dislocation which screens the
long-range dislocation stress field. We also investigate the
emergence of “back stress” terms in the stress balance that
are proportional to second order plastic strain gradients and
demonstrate that these are associated with energy contributions
that are quadratic functionals of the local excess dislocation
density. Finally, we outline how our results can be used to
evaluate the “friction stress” associated with formation and
breaking of junctions in general 3D dislocation systems. We
conclude with a brief discussion which puts our results into
the context of other published work.

II. ENERGY OF A DISCRETE DISLOCATION SYSTEM

As demonstrated by de Wit [8], the energy of a three-
dimensional system of dislocations can be written in terms
of double integrals over the dislocation lines. This represen-
tation has been directly implemented in discrete dislocation
dynamics (DDD) codes, notably the parametric DDD model
of Ghoniem and co-workers [28,29] who use the variation of
the energy with respect to dislocation line parameters in order
to derive generalized forces acting on the dislocation lines.
In our presentation, we follow the representation given in the
standard textbook of Hirth and Lothe [9] which can be applied
both to closed loops and to loop segments. We write the energy
of a dislocation system consisting of closed loops C(i) with
Burgers vectors b(i) = be(i) as

E = 1

2

∑
ij

∮
C(i)

∮
C(j )

l (i) · E (i,j )(r (i) − r (j )) · l (j )ds(i)ds(j ).

(1)

Here, the sum runs over all pairs of loops, and the self-
energy of each loop is evaluated as half the interaction
energy of two loops at distance b (more generally, the core
radius). Here and in the following, upper bracketed indices
(i) enumerate dislocation loops or segments of loops, whereas
lower indices indicate coordinates of a Cartesian coordinate
system. When dealing with 3D dislocation networks, we retain
the decomposition into closed loops but break the loops into
segments S separated by nodes. A junction which forms at the
intersection of two loops C(i) and C(j ) is thus represented as
two segments of Burgers vectors b(i) and b(j ) that are aligned
with each other between the two nodes which delimit the
junction. A collinear reaction where b(i) = −b(j ) is represented
as two aligned segments of opposite Burgers vector, not as a
missing segment. In segment representation, the energy of the
dislocation system is

E = 1

2

∑
ij

∫
S (i)

∫
S (j )

l (i) · E (i,j )(r (i) − r (j )) · l (j )ds(i)ds(j ).

(2)

In Eqs. (1) and (2), the interaction kernel E (i,j ) is given by

E (i,j )(r (i) − r (j )) = μb2

4π
g(i,j )(r (i) − r (j )), (3)

where

g(i,j )(r (i)−r (j )) = −[e(i) ⊗ e(j ) − e(j ) ⊗ e(i)]TrG

+ e(i) ⊗ e(j )

2
TrG + 1

1 − ν
G̃(e(i),e(j )). (4)

In this expression, μ is the shear modulus, ν is Poisson’s
number, G is a tensor with components

Gkl(r (i) − r (j )) = ∂2

∂rk∂rl

|r (i) − r (j )|,
(5)

TrG = Gkk = 2

|r (i) − r (j )| ,

and G̃(e(i),e(j )) has the components

G̃kp = b
(i)
l εlkmGmnεnopb(j )

o . (6)

In Eq. (4), the first term on the right-hand side is nonzero
only if neither the line directions nor the Burgers vectors of
both segments are aligned with each other, hence, it can be
considered to describe edge-screw interactions. The second
term on the right-hand side describes the interactions of the
screw components of both line segments, and the third term
describes the interactions of edge components.

These equations apply to dislocations in an infinite medium.
In the presence of boundaries and boundary tractions which
cause, in a fictitious crystal without dislocations, the stress
field σ ext(r), the energy changes. The corresponding energy
contribution can be written in terms of the fictitious work that
would need to be done by the Peach-Koehler forces in order to
expand the loops C to their current size. For a system of planar
glide loops this is simply given by

Eext =
∑

i

∫
A(i)

bM (i) : σ ext(r)d2r. (7)

Here, A(i) is the area enclosed by the loop C(i) in the slip plane
with normal n(i) and the projection tensor M (i) = (e(i) ⊗ n(i) +
n(i) ⊗ e(i))/2. Alternatively, we may write the same expression
in terms of the microscopic plastic strain

εpl,d(r) =
∑

i

∫
A(i)

bM (i)δ(r − r ′)d2r ′. (8)

Inserting into Eq. (7) gives

Eext =
∫

V

εpl,d(r) : σ ext(r)d3r, (9)

where the integration is carried over the crystal volume.
In the following, it will be useful to develop a number

of ideas first for the physically unrealistic, but conceptually
simple case of quasi-two-dimensional (2D) systems consisting
of straight parallel edge dislocations pertaining to a single slip
system. For such a dislocation system, we may without loss
of generality set e(i) = ex and l (i) = s(i)ez where s(i) ∈ {−1,1}
is the sign of a dislocation. The line integrals then reduce to
integrals over the z axis, and the energy of the system becomes

E = 1

2

∑
i �=j

s(i)s(j )Eint(r (i) − r (j )) +
∑

i

Eself, (10)

where the vectors r (i) now lie in the xy plane and all
energies are understood as energies per unit length in the z

direction. The self- and interaction energies are given by (see,
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e.g., Ref. [9])

Eself = μb2

4π (1 − ν)
ln

(
R

αb

)
,

(11)

Eint(x,y) = − μb2

2π (1 − ν)

[
ln

(
r

R

)
+ y2

r2

]
,

where R is the crystal radius (or another external dimension
of the system) and r = (x2 + y2)1/2 is the spacing of the
dislocations in the xy plane. αb is a measure of the dislocation
core radius, with the parameter α ≈ 1 chosen to correctly
represent the core energy of the dislocations. Finally, the
external energy for the considered dislocation system reads
as

Eext =
∑

i

s(i)b

∫ x(i)

x0

τext(x,y(i))dx, (12)

where τext = M : σ ext with the projection tensor =(ex ⊗ ez +
ez ⊗ ex)/2 is the resolved shear stress in the slip system.
In Eq. (12), the glide distance traveled by dislocation (i)

ranges from an arbitrary reference position x0 to its current
position x(i).

III. DENSITY FUNCTIONAL THEORY OF
TWO-DIMENSIONAL DISLOCATION SYSTEMS

To write the energy of our 2D model system as a functional
of the dislocation densities, we define discrete densities of
dislocations of sign s, and discrete pair densities of dislocation
pairs of signs (s,s ′), as

ρd
s (r) =

∑
j :s(j )=s

δ(r − r (j )),

ρ
d,p
ss ′ (r,r ′) =

∑
k : s(k) = s ′
j : s(j ) = s

j �= k

δ(r − r (j ))δ(r ′ − r (k)). (13)

With these, the energy of the dislocation system can be written
as

E =
∑

s

∫
Eselfρ

d
s (r)d2r + 1

2

∑
ss ′

ss ′
∫∫

Eint(r − r ′)

× ρ
d,p
ss ′ (r,r ′)d2r d2r ′. (14)

We now make a transition towards continuous densities via an
averaging operation 〈. . . 〉 (see Appendix). This leads to

E =
∑

s

∫
Eselfρs(r)d2r + 1

2

∑
ss ′

ss ′
∫ ∫

Eint(r − r ′)

× ρss ′ (r,r ′)d2r d2r ′. (15)

Here, the averaged single-particle densities ρs(r) = 〈ρd
s (r)〉

can be understood as averages of the sign-dependent dis-
crete densities, and the averaged pair densities ρss ′ (r,r ′) =
〈ρd

s (r)ρd
s ′ (r ′)〉 are averages of products of discrete densities.

Note that the averaged pair densities are in general not equal
to the products of the averaged single-dislocation densities:
averaging is a linear operation which does not interchange
with the formation of a product.

Hence, the information contained in the single-particle
densities is of necessity incomplete. Nevertheless, it is our
goal to express the energy functional in terms of the densities
ρs(r). To this end, we write the pair densities without loss of
generality as

ρss ′ (r,r ′) = ρs(r)ρs ′ (r ′)[1 + dss ′ (r,r ′)], (16)

where dss ′ are correlation functions. This allows us to split the
energy functional into a part which can be exactly expressed
in terms of the dislocation densities (Hartree energy EH ), and
a part which depends on the correlation functions (correlation
energy EC) and needs to be evaluated in an approximate
manner. After some algebra we arrive at

E = ES + EH + EC

=
∫

ρ(r)Eselfd
2r + 1

2

∫∫
κ(r)κ(r ′)Eint(r − r ′)d2r d2r ′

+ 1

2

∑
ss ′

ss ′
∫∫

ρs(r)ρs ′ (r ′)dss ′ (r,r ′)Eint(r − r ′)d2r d2r ′.

(17)

Here, we have introduced the notations

ρ(r) =
∑

s

ρs(r), κ(r) =
∑

s

sρs(r) (18)

for the total and excess dislocation densities.

A. Hartree or self-consistent energy

The Hartree energy EH depends only on the excess
dislocation density. To analyze its meaning, we use that
κ = −(1/b)∂xγ where γ is the mesoscopically averaged shear
strain on the single slip system. We may now integrate the
expression for EH twice by parts to write the Hartree energy
as a functional of the mesoscopically averaged plastic strain
εp = Mγ p:

EH =
∫∫

εp(r) : �(r − r ′) : εp(r ′)d2r d2r ′. (19)

Here, for this particular problem, � = (M−1 ⊗
M−1)∂2Eint/∂x2. We can rewrite Eq. (19) as

EH =
∫

εp(r) : σ int(r)d2r, (20)

where the internal stress field is given by

σ int(r) =
∫

�(r − r ′) : εp(r ′)d2r ′. (21)

This corresponds to the solution of the eigenstrain problem in
an infinite medium by means of a Green’s function method
(see, e.g., Ref. [30] where expressions for � are given for the
case of a general plastic strain field). Thus, the Hartree energy
is just the elastic energy associated with the elastic-plastic
problem in the absence of boundary effects. In the general case
where boundaries are present, the boundary conditions result in
an additional, “external” stress field σ ext which superimposes
on the internal stress field σ int and which enters into the energy
Eext. In most practical circumstances where elastic-plastic
problems are to be solved, the Hartree energy or its functional
derivative (the internal stress) will not be computed from
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the dislocation field κ but evaluated in conjunction with the
external stress from the solution of the elastic boundary value
problem with eigenstrains.

In summary, the Hartree energy represents the part of
the elastic energy functional that is related to long-range
internal stresses which can be described in terms of the
coarse-grained plastic strain field εp or its spatial derivative,
the geometrically necessary dislocation (GND) density κ . In
absence of mesoscale strain gradients (κ = 0, equal numbers
of dislocations of both signs), this term is zero and, hence,
all remaining interaction energy terms are associated with
correlations. We now focus on the correlation energy EC .

B. Correlation energy

To evaluate the correlation energy, we proceed in the spirit
of density functional theory of electron systems, i.e., we use
a local density approximation where we approximate the
correlation energy by a local functional of the dislocation
densities which we evaluate as the correlation energy of a
spatially homogeneous reference system. As shown in the Ap-
pendix, this is feasible if and only if the correlation functions
dss ′ (r,r ′) are short-ranged functions of range  which, for large
values of |r − r ′| 	 , go to zero faster than algebraically
(short-range correlated/macrodisordered dislocation systems).
The assumption that the dss ′ are short-ranged functions allows
us, for dislocation arrangements where the densities ρs are
weakly space dependent on scale , to approximate

ρs(
r1)ρs ′(
r2)dss ′ (
r1,
r2) ≈ ρs(
r1)ρs ′ (
r1)dss ′ (
r1 − 
r2). (22)

This local density approximation represents the zeroth order of
a systematic expansion which expresses the energy functional
in terms of gradients of the dislocation densities of increasing
order (see Appendix). From Eqs. (17) and (22), the correlation
energy reads as

EC = 1

2

∑
ss ′

ss ′
∫ [

ρs(
r)ρs ′ (
r)
∫

Eint(
r ′)dss ′ (
r ′)d2r ′
]
d2r.

(23)

Using the notation

Eint(r) = μb2

2π (1 − ν)
g(r), g(r) = −ln

(
r

R

)
−

(
y

r

)2

, (24)

this can be rewritten as

EC = μb2

4π (1 − ν)

∫ [ ∑
ss ′=±1

ρs(
r)ρs ′ (
r)Tss ′

]
d2r, (25)

where

Tss ′ =
∫

ss ′dss ′ (r)g(r)d2r. (26)

To proceed further, we need to specify some properties
of the functions dss ′ . By construction (see Appendix), the
correlation functions have the properties∫

dss ′ (r − r ′)d2r ′ = 0 if s �= s ′,

(27)∫
dss(r − r ′)d2r ′ ≈ −1/ρs(r) if s = s ′,

where we have used that, in a weakly heterogeneous dis-
location arrangement, ρs(r) ≈ ρs(r ′) changes little over the
range of the function dss . Furthermore, as discussed in
detail elsewhere [14,31], due to the scale-free nature of
dislocation-dislocation interactions in nearly homogeneous
dislocation systems, any correlation functions which emerge
spontaneously from the evolution of an initially disordered
dislocation system must exhibit a range  ∝ ρ−1/2 that is
proportional to the mean dislocation spacing, i.e., to the inverse
square root of the total dislocation density as defined by
Eq. (18). Hence, we assume that the correlation functions
depend only on the relative position of the two dislocations
divided by the mean dislocation spacing, expressed through the
variable u = (r − r ′)

√
ρ, i.e., dss ′ (r − r ′) = dss ′ (u). Note that

since ρs(r) ≈ ρs(r ′) over the range of the correlation function
dss ′ , it does not matter whether we evaluate ρ at r or at r ′.

Let us now first consider the case of s �= s ′. As the first step,
the radial function g given by Eq. (24) is rewritten as

g(r) = g0 + gr (r
√

ρ) where g0 = ln(R
√

ρ),

gr = −ln(r
√

ρ) − y2

r2
. (28)

After substituting Eq. (28) into (26) and using the condition
(27), one obtains that

Tss ′ = −
∫

dss ′ (r)gr (r)d2r

= 1

ρ

∫
dss ′ (u)

[
ln(u) + u2

y

u2

]
d2u = Dss ′

ρ
. (29)

It can be seen that the correlation function enters our further
considerations only in form of the dimensionless number Dss ′ .

In the case s = s ′, we substitute Eq. (28) into (26). Due to
Eq. (27) we find that

Tss =
∫

dss(r)gr (r)d2r − 1

2ρs

ln(ρR2)

= 1

ρ

∫
dss(u)

[
− ln(u) − u2

y

u2

]
d2u − 1

2ρs

ln(ρR2)

= Dss

ρ
− 1

2ρs

ln(ρsR
2). (30)

By substituting Eqs. (29) and (30) into (25) we get

EC = μb2

4π (1 − ν)

∫ [
(D+− + D−+)

ρ+ρ−
ρ

+ D++
ρ2

+
ρ

+D−−
ρ2

−
ρ

− ρ+ + ρ−
2

ln(ρR2)

]
d2r

= μb2

4π (1 − ν)

∫ [
ρ

(
DI

4
− 1

2
ln(ρR2)

)
+ DII

4

κ2

ρ

]
d2r

= μb2

4π (1 − ν)

∫ [
−ρ

2
ln

(
ρR2

a2

)
+ DII

4

κ2

ρ

]
d2r, (31)

where DI = ∑
ss ′ ss ′Dss ′ and DII = ∑

ss ′ Dss ′ . Here, we have
used that ρ± = (ρ ± κ)/2 and, in a weakly polarized disloca-
tion arrangement, D++ = D−−. The nondimensional parame-
ter a = exp(DI/2) can be envisaged as a dislocation screening
radius, measured in units of mean dislocation spacings. We see
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that the correlation energy in local density approximation is
indeed a local functional of the dislocation density functions.
It consists of two contributions: first, the term proportional
to ρ can be envisaged as a screening energy which reduces
the dislocation energy as compared to a random dislocation
arrangement. Second, the term quadratic in κ characterizes
modifications to local screening as we move from unpolarized
to polarized dislocation arrangements.

The total energy function of the dislocation arrangement
then reads as

E = μb2

4π (1 − ν)

[
−

∫
ρ ln

(
ρ

ρ0

)
+

∫
DII

4

κ2

ρ

+ 1

2

∫∫
κ(r)κ(r ′)g(r − r ′)d2r ′

]
d2r. (32)

Here, the normalization constant ρ0 	 ρ is given by ρ0 =
a2/(α2b2). The total energy consists of three contributions: The
term proportional to ρ can be envisaged as line energy of dis-
locations which are screened by the surrounding dislocations.
The quadratic but local term in κ is a correction to screening,
and finally, the Hartree energy expressed by the double integral
over κ describes the energy stored in the long-range elastic field
associated with macroscopic polarization of the dislocation
arrangement.

IV. DENSITY FUNCTIONAL THEORY OF
THREE-DIMENSIONAL DISLOCATION SYSTEMS

A. System of loops on a single slip system

We first consider a 3D system of loops pertaining to a single
slip system with slip vector e(i) = ex and slip plane normal
n = ey . To facilitate the transfer of our results to the general
case of multiple slip systems, we start from the “segment
representation” of the dislocation energy [Eq. (2)]. For loops
on a single slip system, there exists no natural subdivision
into segments as provided by the nodes in a 3D dislocation
network. Instead, the length of the segments S is an artificial
parameter of the calculation, which will be chosen as a small
fraction η of the local radius of curvature Rc of the dislocation
lines, a method also used in discrete dislocation schemes which
represent the dislocation as a sequence of straight segments
separated by nodes [32]. We split the elastic energy of the
system (2) into sums of segment self-energies and segment
interaction energies:

E = ES + EI

= 1

2

∑
i

∫∫
S (i)

l(s) · E[r(s) − r(s ′)] · l(s ′)ds ds ′

+ 1

2

∑
i �=j

∫
S (i)

∫
S (j )

l (i) · E(r (i)−r (j )) · l (j )ds(i)ds(j ). (33)

Here, E is the interaction energy tensor for segments in the
considered slip system which we write as

E(r − r ′) = μb

4π
g(r − r ′), (34)

where g follows from Eq. (4) with e1 = e2 = ex . Since we
consider glide loops on a single slip system where the line

direction l is contained in the plane y = 0, this tensor has only
two relevant components which are explicitly given by

gxx(r − r ′) = 1

|r − r ′| , gzz(r − r ′) = 1

1 − ν

∂2

∂y2
|r − r ′|.

(35)
In a first approximation, the segment self-energies are replaced
by the self-energies of straight segments which we write,
following Hirth and Lothe [9], as

ES ≈
∑

i

∫
S (i)

L

l(s) · EL · l(s)ds, (36)

where the line energy tensor is given by

EL = μb2

4π
gL, gL = (I − νex ⊗ ex)

1 − ν
ln

(
L

b

)
. (37)

In Eq. (36), S (i)
L denotes a straight segment of length L

connecting the end points of segment S (i). In the spirit of
nodal discrete dislocation dynamics [32], we take the segment
length to be a small fraction of the radius of curvature
of the dislocation line under consideration, L = η/k where
the dislocation curvature k characterizes the line shape on
scales above the segment length. The deviation between the
curved segment and its straight approximation goes to zero in
proportion with η2 as η → 0. In practice, η may be adjusted
to provide an optimum representation of the core energy
contribution to the dislocation self-energy.

We now proceed in direct generalization of the two-
dimensional case. We define the discrete dislocation segment
density as

ρd(r,φ) =
∑
S

∫
S

δ[r − r(s)]δ[φ − φ(s)]ds, (38)

where φ is the angle between the Burgers vector b and the line
direction l . Similarly, we define the segment pair density as

ρ
p
d (r,φ,r ′,φ′) =

∑
S ′ �=S

∫∫
SS ′

δ[r − r(s)]δ[r ′−r(s ′)]

× δ[φ−φ(s)]δ[φ′ − φ(s ′)]ds ds ′. (39)

This allows us to write the dislocation self-energy as

ES =
∫∫

l(φ) · EL · l(φ)ρd(r,φ)d3r dφ (40)

and the dislocation interaction energy as

EI = 1

2

∫∫∫∫
[l(φ) · E(r − r ′) · l(φ′)]

× ρ
p
d (r,r ′,φ,φ′)d3r dφd3r ′dφ′. (41)

Upon averaging, the discrete densities and pair densities
become continuous functions of their arguments. In Eq. (40),
the only change is that we replace the discrete density ρd(r,φ)
by its continuous ensemble average ρ(r,φ). To evaluate the
dislocation interaction energy, we proceed in analogy with the
2D case and write the ensemble-averaged pair density as

ρp(r,φ,r ′,φ′) = ρ(r,φ)ρ(r ′,φ′)[1 + d(r,r ′,φ,φ′)]. (42)

Comparison demonstrates that the angle φ in the present
formalism plays very much the same role as the “sign” s in the
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2D problem. Inserting Eq. (42) into (41) allows us to separate
the dislocation interaction energy EI = EH + EC into Hartree
and correlation energy terms. The self-energy, Hartree energy,
and correlation energy are given by

ES =
∫∫

ρ(r,φ)[l(φ) · EL · l(φ)]d3r dφ, (43)

EH = 1

2

∫∫∫∫
ρ(r,φ)[l(φ) · E(r − r ′) · l(φ′)]

× ρ(r ′,φ′)dφ dφ′d3r d3r ′, (44)

EC = 1

2

∫∫∫∫
ρ(r,φ)[l(φ) · E(r − r ′) · l(φ′)]

× ρ(r ′,φ′)d(r,r ′,φ,φ′)dφ dφ′d3r d3r ′. (45)

We can eliminate the explicit angular dependencies from these
equations by choosing an appropriate representation of the
dislocation density functions. To this end, we resort to the
concept of so-called alignment tensors.

1. Alignment tensor representation of the dislocation
density functions

To simplify the expressions, it is convenient to use an
idea of Hochrainer [7] and represent the angular dependence
of the dislocation density function ρ(r,φ) in terms of an
alignment tensor expansion. Following Hochrainer, we define
the sequence of (reducible) dislocation density alignment
tensors as

ρ[0](r) =
∫

ρ(r,φ)dφ =: ρ(r),

ρ[1](r) =
∫

ρ(r,φ)l(φ)dφ =: κ(r),

ρ[2](r) =
∫

ρ(r,φ)l(φ) ⊗ l(φ)dφ, (46)

. . .

ρ[n](r) =
∫

ρ(r,φ)l(φ)[⊗l(φ)]n−1dφ,

where [⊗l]n denotes an n-fold tensor product with the line
direction vector l . The zeroth-order alignment tensor is the
conventional dislocation density (line length per unit volume).
The first-order tensor (or dislocation density vector) has
as its components the edge and screw contributions of the
geometrically necessary dislocation density. The second-order
tensor contains the information about the distribution of the
total dislocation density over edge and screw orientations, and
so on [7].

The dislocation density function ρ(r,φ) can be recovered
from the alignment tensors as follows [7]: We denote the irre-
ducible part of the tensor ρ[n] as ρ̃[n] with components ρ̃i1...in

.
Furthermore, we denote as ρ̃[n](φ) the n-fold contraction of

ρ̃[n] with the direction vector l(φ). Then,

ρ(r,φ) = 1

2π

(
ρ[0](r) +

∑
n

2nρ̃[n](r,φ)

)
,

ρ̃[n](r,φ) = ρ̃
[n]
i1...in

(r)li1 (φ) . . . lin(φ). (47)

The double angular dependency of the pair correlation
function d(r,r ′,φ,φ′) can be expressed in terms of a double
alignment tensor expansion. We define

d[n,m](r,r ′) =
∫∫

d(r,r ′,φ,φ′)l(φ)[⊗l(φ)]n−1 ⊗ l(φ′)

× [⊗l(φ′)]m−1dφ dφ′. (48)

This is an expansion on the direct product of the unit circle
with itself as the l are unit vectors in the xy plane. In terms of

the associated irreducible tensors d̃
[n,m]

the function d can be
represented as

d(r,r ′,φ,φ′) = 1

4π2

∞∑
n,m=1

2n+md̃ [n,m](r,r ′,φ,φ′), (49)

with the expansion coefficients

d̃ [n,m](r,r ′,φ,φ′) = d̃
[n,m]
i1...in,j1...jm

(r,r ′)li1 (φ) . . . lin(φ)

× lj1 (φ′) . . . ljm
(φ′) . (50)

2. Self-energy

The different contributions to the energy of a dislocation
system can be expressed in a natural manner in terms of the
dislocation density alignment tensors. As immediately seen
from Eq. (44) and the definition of the second-order dislocation
density alignment tensor, the self-energy of a dislocation
system can be represented as

ES =
∫

EL : ρ[2](r)d3r = μb2

4π

∫
gL : ρ[2](r)d3r. (51)

The term under the integral has the character of a local energy
density which is evaluated as a double contraction of the
line energy and second-order dislocation density alignment
tensors. It depends both on the local density of dislocations
and on their character (edge/screw).

3. Hartree energy

According to Eq. (44) and the definition of the first-
order dislocation density alignment tensor ρ[1] (also termed
dislocation density vector κ), the Hartree energy can be
represented as

EH = 1

2

∫∫
ρ[1](r) · E(r − r ′) · ρ[1](r ′)d3r d3r ′. (52)

Alternatively, we might express this energy in terms of the
classical dislocation density tensor α (the curl of the plastic
distortion). To this end, we note that α = ρ[1] ⊗ b = κ ⊗ b
and define the fourth-rank interaction energy tensor R = b ⊗
E ⊗ b to write

EH = 1

2

∫∫
α(r) · R(r − r ′) · α′(r ′)d3r d3r ′. (53)

This is the formulation used by Berdichevsky [33].
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4. Correlation energy

To evaluate the correlation energy EC , we make the same
crucial approximation as in the case of the 2D dislocation
system: We use a local density approximation based upon
the idea that the correlation function d is short ranged,
and that we may approximate the correlation energy by the
correlation energy of a homogeneous system. In lowest-order
approximation we thus set

ρ(r,φ)ρ(r ′,φ′)d(r,r ′,φ,φ′) ≈ ρ(r,φ)ρ(r,φ′)d(r − r ′,φ,φ′)

= ρ(r,φ)ρ(r,φ′)
∞∑

m,n=0

2n+m

4π2

× d̃ [m,n](r − r ′,φ,φ′). (54)

We now insert this approximation into the correlation energy
[Eq. (45)]. The form of the expansion coefficients given by
Eq. (50) then leads us to define a sequence of coupling tensors
T [n,m] with components

T
[n,m]
i1...in,j1...jm

= 2m+n−2

4π2

∫
d̃

[n−1,m−1]
i1...in−1,j1...jn−1

(r)gin,jm
(r)d3r, (55)

where we again have assumed short-ranged correlation func-
tions to ensure existence of the spatial integrals. We find that
the correlation energy can be written in terms of these coupling
tensors as

EC = μb2

8π

∞∑
n,m=1

∫∫∫
ρ(r,φ)li1 (φ) . . . lin(φ)T [n,m]

i1...in,j1...jm

× ρ(r ′,φ′)lj1 (φ′) . . . ljm
(φ′)dφ dφ′d3r

= μb2

8π

∞∑
n,m=1

∫
ρ[n](r)

(n)
: T [n,m] (m)

: ρ[m](r)d3r, (56)

where
(n)
: denotes an n-fold contraction. We note that, for

reasons of symmetry, all interaction tensors T [n,m] must vanish
where n + m is an odd number. Such tensors involve, in
Eq. (56), odd numbers of products of the director l . Since
l changes sign under coordinate inversion (r → −r), whereas
the energy does not, all terms in Eq. (56) with odd numbers of
products of l must be zero.

In case where dislocation correlations emerge from the evo-
lution of an otherwise scale-free dislocation system, we expect
them to obey the relation d = d(r

√
ρ) =: d(u). Furthermore,

we note that g(r − r ′) = √
ρg(u − u′). Using these relations

we can write the coupling tensors in analogy with Eq. (29) as

T [n,m] = D[n,m]

ρ
,

(57)

D
[n,m]
i1...in,j1...jm

= 2m+n−2

4π2

∫
d̃

[n−1,m−1]
i1...in−1,j1...jn−1

(u)gin,jm
(u)d3u,

where u = r
√

ρ.

5. Energy functionals for continuum dislocation dynamics

In practical terms, it is desirable to truncate the alignment
tensor expansion at some low order. This is done in continuum
dislocation dynamics theories which represent dislocation

systems in terms of the evolution of dislocation density
alignment tensors, restricting themselves to the alignment
tensors of order zero and one [6] or orders one and two [7]. By
evaluating the interaction coefficients D[n,m] using data from
discrete dislocation dynamics simulations, we might arrive at
unbiased estimates to which degree such truncated expansions
faithfully represent the energetics of dislocation systems.

We explicitly give the energy functional for an expansion
containing the first- and second-order dislocation alignment
tensors. The diagonal components of the second-order align-
ment tensor ρs := ρ[2]

xx and ρe := ρ[2]
yy correspond to the

screw and edge dislocation densities. Furthermore, we use
that, because of invariance under the transformation (φ →
−φ, φ′ → −φ′), the correlation alignment tensor d[1,1] is
diagonal with only nonvanishing components d [1,1]

xx and d [1,1]
yy .

The same is true for the interaction energy tensor with the only
nonvanishing components gxx and gyy . With these notations
we write

E = ES + EH + EC

= μb2

4π

∫ [
ρs(r) + 1

1 − ν
ρe

]
ln

(
ρ(r)

ρ0(r)

)
d3r

+ μb2

8π

∫∫
κ(r) · g(r − r ′) · κ(r ′)d3r d3r ′

+ μb2

8π

∫
ρ2

s Dss + ρ2
e Dee + Dseρsρe

ρ(r)
d3r

+ μb2

8π

∫
κ(r) · D[1,1] · κ(r)

ρ(r)
d3r. (58)

The interaction coefficients for the dislocation densities are
given by

Dss = 1

π2

∫
gxx(u)d [1,1]

xx (u)d3u

= 1

π2

∫∫∫
gxx(u)d(u,φ,φ′) cos φ cos φ′d3u dφ dφ′,

Dee = 1

π2

∫
gzz(u)d [1,1]

zz (u)d3u

= 1

π2

∫∫∫
gzz(u)d(u,φ,φ′) sin φ sin φ′d3u dφ dφ′,

Dse = 1

π2

∫ [
gzz(u)d [1,1]

xx (u) + gxx(u)d [1,1]
zz (u)

]
d3u

= 1

π2

∫∫∫
d(u,φ,φ′)[gyy(u) cos φ cos φ′

+ gxx(u) sin φ sin φ′]d3u dφ dφ, (59)

and the interaction matrix associated with the dislocation
density vector ρ[1,1] = κ is

D[1,1] = 1

4π2

∫
g(u)d [0,0](u)d3u

= 1

4π2

∫∫∫
g(u)d(u,φ,φ′)d3u dφ dφ′. (60)

The quantity ρ0(r) = q(r)ηb in Eq. (58) relates to the so-
called curvature density (a product of dislocation density and
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curvature) which is one of the field variables of continuum
dislocation dynamics as introduced in Ref. [6].

A simplified theory as proposed in Ref. [6] might only
consider the dislocation density alignment tensors of order
zero and one, hence retains only information about the total
dislocation density ρ and geometrically necessary dislocation
density vector κ . Since no additional information is available,
the alignment tensor of order two is then represented as
ρ[2] = (ρ/2)I . With this simplification, the energy functional
becomes

E = μb2(2 − ν)

8π (1 − ν)

∫
ρ(r) ln

(
ρ(r)

ρ∗
0 (r)

)
d3r

+ μb2

8π

∫∫
κ(r) · g(r − r ′) · κ(r ′)d3r d3r ′

+ μb2

8π

∫
κ(r) · D[1,1] · κ(r)

ρ(r)
d3r. (61)

Here, all coefficients of energy contributions proportional to ρ

have been absorbed into the scaling factor ρ∗
0 = αqb, where

the numerical parameter α is proportional to exp[(Dss + Dee +
Dse)/4].

B. Multiple slip systems

In case of multiple slip systems, dislocations are likely to
form 3D networks. We now consider as segmentsS i,β stretches
of dislocations bounded by two nodes in the dislocation
network. The superscript β distinguishes the different slip
systems with Burgers vectors beβ , slip plane normal vectors
nβ , and projection tensors Mβ . The interactions between
segments pertaining to two slip systems β and β ′ are given
by Eββ ′ = E (ij ) where e(i) = eβ,e(j ) = eβ ′

. For self-energies
we again approximate the self-energy of a segment by that
of a straight segment, for which we introduce the line energy
tensor

Eβ

L = − μb2

4π
gβ

L,

gL = 1

1 − ν
(I − νeβ ⊗ eβ) ln

(√
ρ

ηb2

)

= 1

2(1 − ν)
(I − νeβ ⊗ eβ) ln

(
ρ

ρ0

)
, (62)

where we used that the segment length (mesh length of the
dislocation network) is now proportional to the characteristic
dislocation spacing (1/

√
ρ). The parameter η can again be

adjusted to account for the dislocation core energy. There
exists, in a three-dimensional network, the possibility that a
segment of a loop of slip system β is collinear with a segment
of slip system β ′ (the two segments form a junction of Burgers
vector bββ ′ = bβ + bβ ′

). We evaluate the junction energy as
the sum of the energies of the constituent segments and an
interaction energy. This interaction energy is strictly negative
(otherwise the junction does not form). It is given by

E
ββ ′
J = μb2

4π
g

ββ ′
J , g

ββ ′
J = lββ ′ · (

gββ ′
L − gβ

L − gβ ′
L

) · lββ ′
,

(63)

where lββ ′
is the direction of the junction segment which is

constrained to form along the line of intersection of the slip
planes of both slip systems. At first glance, our method of
bookkeeping may look unusual; why not directly evaluate
the self-energy of the junction segment and discarding the
addition-cum-subtraction of the constituent segment energies?
The reasons for this procedure will become transparent
later.

Discrete dislocation densities are now defined separately
for each slip system as

ρ
β

d (r,φβ) =
∑
S∈β

∫
S

δ[r − r(s)]δ[φβ − φβ(s)]ds, (64)

where φβ is the angle between the Burgers vector bβ and the
line direction l(s). For junction segments we define junction
densities

ρ
ββ ′
j (r,φβ) =

∑
S∈(β,β ′)

∫
S

δ[r − r(s)]δ(φβ − φββ ′
)ds

= ρ
β

d (r,φβ)f ββ ′
(r,φβ),

ρ
β ′β
j (r,φβ ′

) =
∑

S∈(β,β ′)

∫
S

δ[r − r(s)]δ[φβ ′ − φβ ′β(s)]ds

= ρ
β ′
d (r,φβ ′

)f β ′β(r,φβ ′
). (65)

Here, the function f ββ ′
has the value 1 whenever a segment

of slip system β forms a junction with a segment of slip
system β ′, and the value 0 otherwise. Note that a junction
can alternatively be envisaged as a segment of orientation
φββ ′ = arccos(lββ ′

eβ) in slip system β or as a segment of
orientation φβ ′β = arccos(lββ ′

eβ ′
) in slip system β ′.

For describing interactions between noncollinear disloca-
tion segments, we define pair densities for pairs of slip systems
as

ρ
ββ ′
d (r,φβ,r ′,φβ ′

) =
∑

S∈β �=S ′∈β ′

∫∫
SS ′

δ[r − r(s)]δ[r ′ − r(s ′)]

× δ[φβ − φβ(s)]δ[φβ ′ − φβ ′
(s ′)]ds ds ′.

(66)

Upon averaging, all these densities become continuous func-
tions of their arguments and we drop the subscript d. As
previously, we write the pair density functions in terms of
products of single dislocation densities and pair correlation
functions

ρββ ′
(r,φβ,r ′,φβ ′

)=ρβ(r,φβ)ρβ(r,φβ)[1 + dββ ′
(r,φβ,r ′,φβ ′

)].
(67)

We skip the intermediate steps which proceed in direct analogy
with those for a single slip system, with the only differences
that now we need to sum over all slip systems (for the
self-energy) and all pairs of slip systems (for the interaction
energy), and that we need to account explicitly for the junction
energy. As in the previous section, we expand the slip system
specific dislocation densities and correlation functions into
alignment tensors

ρβ,[n](r) =
∫

ρβ(r,φβ)l(φβ)[⊗l(φβ)]n−1dφβ, (68)
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dββ ′[n,m](r,r ′) =
∫∫

d(r,r ′,φ,φ′)l(φβ)[⊗l(φβ)]n−1

⊗ l(φβ ′
)[⊗l(φβ ′

)]m−1dφβdφβ ′
. (69)

Using these notations, we write the self- and Hartree energies
as

ES = μb2

4π

∑
β

∫
ρβ,[2] : gβ

Ld3r, (70)

EH = μb2

8π

∑
ββ ′

∫∫
ρβ,[1](r) · gββ ′

(r−r ′) · ρβ ′,[1](r ′)d3r d3r ′,

(71)

where gββ ′
is obtained from Eq. (4) by setting e(i) = eβ,e(j ) =

eβ ′
. A new contribution to the system energy in case of multiple

slip systems is the junction energy. To represent the junction
energy, we introduce the definition

f ββ ′ = hββ ′ ρβ ′

ρ
(72)

with hββ ′ = hβ ′β � 1 to meet the conditions
∑

β ′ f ββ ′
< 1

(only a fraction <1 of all dislocation segments can form junc-
tions) and f ββ ′

ρβ = f β ′βρβ ′
(a junction between segments of

slip systems β and β ′ is a junction of slip systems β ′ and β).
Using this notation, we can write the junction energy as

EJ = μb2

8π

∑
ββ ′

∫
ρβ(r)ρβ ′

(r)

ρ(r)
hββ ′

(r)gββ ′
J d3r. (73)

In this expression, we have made the simplifying assumption
that the probability of forming a junction does not depend
strongly on the orientation of the intersecting dislocations in
their respective slip planes. A more general treatment which
uses an alignment tensor expansion of hββ ′

, and of which
Eq. (73) is the lowest-order term, will be given elsewhere.

We are left with evaluating the correlation energy which
contains all terms dependent on the correlation functions dββ ′

.
This can be written as

EC = μb2

8π

∑
ββ ′

∞∑
n,m=1

∫
ρβ,[n](r)

(n)
: Tββ ′,[n,m] (m)

: ρβ ′[m](r)d3r,

(74)
where the interaction coefficients are

Tββ ′,[n,m] = Dββ ′[n,m]

ρ
,

D
ββ ′[n,m]
i1...in,j1...jm

= 2m+n−2

4π2

∫
d̃

ββ ′[n−1,m−1]
i1...in−1,j1...jn−1

(u)gββ ′
in,jm

(u)d3u

(75)

with u = r
√

ρ. We note that the main qualitative difference
between the single and multiple slip situations resides in the
possible existence of collinear segments, i.e., junctions. In
comparison with mutual interactions between distant segments
of different loops, junctions may lead to a much more efficient
energy reduction.

V. APPLICATIONS

A. Dislocation screening in two dimensions

As an application of our two-dimensional theory, we revisit
the problem of Debye screening of dislocations which has
been previously studied by Groma and co-workers [16]. We
use the energy functional given by Eq. (32) to evaluate the
reponse of a homogeneous, infinitely extended 2D dislocation
system of density ρ to a single excess dislocation fixed in the
origin κ0(r) = δ(r). The induced excess dislocation density
κ follows by considering the variation of the ensuing energy
functional, under the assumption that the overall density ρ

remains homogeneous. The variation of Eq. (32) with respect
to κ is then given by

δE = μb2

4π (1−ν)

∫ [
DII

κ

2ρ
+

∫
[κ(r ′) + δ(r ′)]g(r − r ′)d2r ′

]

× δκ(r)d2r
!= 0. (76)

This leads to the following equilibrium equation for the
induced density κ:

μb2

4π (1 − ν)

[
DII

κ

2ρ
+

∫
κ(r ′)g(r − r ′)d2r ′ + g(r)

]
= 0.

(77)

The solution of Eq. (77) can be found by Fourier transfor-
mation. Using

g(k) = 8πk2
y

k4
(78)

and the definition k2
0 = 4πρ/DII, we find

κ(k) = − 4k2
0k

2
y

4k2
0k

2
y + k4

(79)

from which reverse Fourier transformation yields the result

κ(r) = k2
0

π

[
y sinh(k0y)

r
K1(k0r) − cosh(k0y)K0(k0r)

]
. (80)

This is also the result obtained by Groma and co-workers [16]
and, using a quite different formalism, by Linkumnerd and
Van der Giessen [21]. We point out that our investigation,
though it leads to the same result, differs somewhat from
the work of Groma and also of Limkumnerd and Van der
Giessen. Groma et al. use a free-energy functional which
is devised heuristically and the term D, which controls the
range of correlations, is associated with entropylike terms
in the free energy. The same is true for the investigation
of Limkumnerd and Van der Giessen [21] who relate the
range of correlations to fluctuation terms in the dislocation
dynamics which they characterize by an effective temperature.
In the present investigation, on the other hand, the parameter
k0, or DII, which controls the interaction range, arises from
purely energetic considerations. Comparison with discrete
simulations gives k0 = 4.2

√
ρ [16] which allows us to obtain

the numerical value of the coupling parameter DII ≈ 0.84.
Inserting this numerical value into Eq. (32) together with typ-
ical values ρ ≈ 1012 m−2 and ρ0 ≈ b−2 ≈ 1019 m−2 indicates
that, in the absence of long-range stresses (Hartree energy),
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the composition of the dislocation arrangement (geometrically
necessary versus statistically stored dislocations) has only a
quite modest influence on the energetics. Even in the extreme
limit κ = ρ (only geometrically necessary dislocations), the
additional energy cost implicit in the term proportional to κ2

amounts only to about 3% of the term proportional to ρ.

B. Derivation of “back stress” terms in two
and three dimensions

In dislocation-based plasticity theories, many authors have
found it convenient to introduce “back stress” terms propor-
tional to the gradient of the dislocation density vector κ into
the stress balance (see, e.g., Refs. [15,34–37]). Such terms
are of interest also because the dislocation density vector
κ is proportional to the gradient of plastic strain, hence,
back stress terms correspond to second-order plastic strain
gradients entering the stress balance, a device highly popular
in phenomenological gradient plasticity models of continuum
mechanics. We demonstrate in this section that such terms
arise naturally from our density functional representation of
the dislocation energy.

To this end, we first consider the 2D case. We take the
κ-dependent terms in the energy functional given by Eq. (32)
and insert the relation between the excess dislocation density
κ and the plastic strain γ , κ = −(1/b)∂xγ :

E =
∫

μDII

16π (1 − ν)ρ
(∂xγ )2d2r + μ

8π (1 − ν)

∫∫
∂xγ (r)

× ∂xγ (r ′)g(r − r ′)d2r d2r ′. (81)

Variation with respect to γ yields

δE =
∫

μ

4π (1−ν)ρ

[
DII

2
∂2
x γ −

∫
∂xγ (r ′)∂xg(r − r ′)d2r ′

]

× δγ d2r
!=

∫
τ (r)δγ (r)d2r, (82)

where we have used that the work conjugate of the plastic shear
strain γ is a resolved shear stress in the considered slip system.
Using that the shear stress of a single dislocation is given by
τd(r) = −μb/[4π (1 − ν)]∂xg(r) we see that the shear stress
in the slip system is of the form

τ (r) = − μbDII

8π (1−ν)ρ
∂xκ +

∫
κ(r ′)τd(r−r ′)d2r ′ = τb + τsc.

(83)
The first of these terms is the back stress τb derived, along a
quite different line of reasoning, by Groma et al. [15]. The
present derivation makes it obvious that this term results from
the correlation energy contribution that is quadratic in the
excess dislocation density κ . The second term τsc represents
the superposition of the long-range stress fields of the excess
dislocations. This stress contribution derives from the Hartree
energy and is normally obtained from solving the standard
elastic-plastic problem.

We can repeat the same argument for 3D systems. In case
of a single slip system, the dislocation density vector relates
to the strain gradient by κ = (1/b)εn∇γ , εn = ε · n where
ε is the Levi-Civita tensor and n the slip plane normal. The
tensor εn rotates a vector contained in the slip plane, such as

κ , counterclockwise by 90◦. With this notation we can write
the κ-dependent terms in the energy functional (58) as

E(κ) = μb2

8π

∫∫
κ(r) · g(r − r ′) · κ(r ′)d3r d3r ′

+ μb2

8π

∫
κ(r) · D[1,1] · κ(r)

ρ(r)
d3r

= μb2

8π

∫∫
[εn · ∇γ (r ′)]·g(r−r ′)·[εn · ∇γ (r)]d3r d3r ′

+ μb2

8π

∫
[εn · ∇γ (r)] · D[1,1] · [εn · ∇γ (r)]

ρ(r)
d3r.

(84)

Variation with respect to δγ gives

δE(κ) = μb2

4π

∫ [ ∫
[εn∇γ (r ′)][εn∇g(r − r ′)]d3r ′

− μb2

4π

∫
[εn∇]D[1,1] · [εn∇γ ]

ρ(r)

]
δγ (r)d3r. (85)

The term in the brackets can again be understood as the
resolved shear stress. In terms of κ it is given by

τ (r) = μb

4π

∫
κ(r ′)[εn∇]r g(r − r ′)d3r ′

− μb

4πρ
[εn∇] · D[1,1] · κ(r)

= τsc + τb. (86)

In case of multiple slip systems, we use the notation ε
β
n =

ε · nβ where nβ is the slip plane normal of slip system β. After
repeating the steps as above, we get for the slip system specific
back stress terms in multiple slip conditions

τ
β

b (r) = − μb2

4πρ

[
εβ

n∇] ·
⎡
⎣∑

β ′
Dββ ′[1,1] · κβ ′

(r)

⎤
⎦. (87)

Some implications of our derivation of the back stress term are
discussed in the Appendix.

C. Estimate of the friction stress for a dislocation moving
in a multiple slip environment

Because of the geometrical constraints to dislocation glide
on slip planes, dislocations can in general not move without
intersecting dislocations on other slip systems. Because of this,
sustained dislocation motion requires the repeated formation
and breaking of junctions. The work required to break
junctions is dissipated in the process. The distance between
statistically equivalent configurations in the average direction
of dislocation motion is given by the mesh length 1/

√
ρ of the

dislocation network. Thus, the energy dissipated in advancing
the dislocation by a distance δq > 1/

√
ρ can be estimated as

E
β

diss(δq) =
∑
β ′

∑
S∈ββ ′

∫
S

E
ββ ′
J [

√
ρδq(s)]ds

=:
∑
S

∫
S

τβ(r)bδq(s)ds, (88)
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where τβ is the friction stress required to move the dislocations,
i.e., the resolved shear stress τ which provides the work
required for breaking junctions. Upon transition to an averaged
formulation we can rewrite this equation as

E
β

diss = μb2

4π (1−ν)

∑
β ′

∫ [
√

ρ(r)
ρβ(r)ρβ ′

(r)

ρ(r)
hββ ′

g
ββ ′
J

]
δq(r)d3r

=
∫

ρβ(r)τβ(r)δq(r)d3r. (89)

Since the virtual displacement δq is arbitrary, it follows that the
shear stress (“friction stress”) required to move the dislocation
is

τ
β

f (r) = μb

4π (1 − ν)

∑
β ′

ρβ ′
(r)

ρ(r)
hββ ′

(r)gββ ′
J

√
ρ(r). (90)

This stress obeys the generic Taylor scaling relation, i.e.,
it is proportional to the square root of dislocation density.
It also depends on the distribution of dislocations over the
various slip systems and on the coefficients hββ ′

gββ ′
which

have the character of latent hardening coefficients. The basic
idea underlying the above argument is that the junction energy
defines the amplitude of the small-scale energy fluctuations
(on scales of the order of one dislocation spacing) that need
to be overcome in order to move a dislocation by repeated
breaking and formation of junctions. We note that the above
argument can be generalized by replacing the scalars hββ ′

and
ρβ with alignment tensor expansions of the corresponding
angle-dependent functions. In this manner one can account for
the fact that the average junction length may depend on the
orientation distribution of the intersecting dislocations. This
will be discussed in detail elsewhere.

VI. DISCUSSION AND CONCLUSIONS

It is interesting to compare our results with related work
by other researchers, notably regarding the structure of the
energy functional. We have shown that the energy functionals
of dislocation systems possess a generic structure which is
common to 2D and 3D dislocation systems. Specifically, the
energy functionals consist of a “Hartree” energy which is
a nonlocal, quadratic functional of the dislocation density
vector or, equivalently, of the dislocation density tensor.
This part of the energy functional does not depend on
assumptions regarding dislocation correlations. The Hartree
energy is complemented by an energy term which has the
form Es ∝ − ∫

μb2ρ ln(ρ/ρ0)dDr where ρ0 ∝ (1/b2). This
energy is proportional to the line length per unit volume
with a proportionality factor that decreases with increasing
dislocation density, reflecting the fact that the screening
radius of dislocation systems is proportional to the dislocation
spacing. Terms of the form −ρ ln ρ in a free-energy density
are normally associated with entropy, and indeed such terms
appear in thermodynamic theories of dislocation systems (see,
e.g., Kooiman [18]). However, in thermodynamic theories,
the prefactor of ρ ln ρ type entropy terms is bound to be
of the order of kT , which is several orders of magnitude
less than the actual prefactor ≈μb2. The present derivation
makes it clear that this term is in fact of energetic origin.

We note that, in the hypothetical case where the dislocation
density approaches ρ0, according to the present formalism the
energy per unit dislocation length in a system that is equally
composed of positive and negative dislocations would go to
zero. This is simply a reflection of the fact that in this case the
cores of the positive and negative dislocations overlap and the
dislocations annihilate. The role of the parameter ρ0 is thus
the exact opposite of the “limit dislocation density” ρs intro-
duced in an ad hoc manner by Berdichevsky [33]. This term
was introduced into the logarithmic factor in such a manner that
it makes the energy per unit dislocation length diverge as the
dislocation density approaches the critical value ρs . In view of
our results, this idea must be discarded. Indeed, if we consider
dislocation systems of zero net Burgers vector, it is difficult to
see how densification of the dislocation system, i.e., bringing
dislocations of positive and negative sign closer to each other,
could conceivably increase rather than decrease the energy
per dislocation length. The third energy contribution which
consistently emerges from the present treatment is a local term
which is quadratic in the excess (geometrically necessary)
dislocation density. This term forms part of the “correlation
energy”; it depends on the structure of the dislocation pair
correlation functions. Upon variation, it yields the back stress
which has become very popular in both phenomenological
and dislocation density-based plasticity theories, not least
because of its ability to explain size effects [15,34]. To
summarize, we hold the following fundamental structure of
the energy density in the dislocation energy functional to be
generic:

(i) self-energy terms of form ∝ −μb2
∫

ρ ln(ρ/ρ0)dDr;
(ii) a nonlocal Hartree energy which depends on the

excess (GND) dislocation density vector, or equivalently on
the dislocation density tensor, of form μb2

∫∫
κ(r) · g(r −

r ′)κ(r ′)dDr dDr ′ or μb2
∫∫

α(r) · R(r − r ′)α(r ′)dDr dDr ′;
(iii) terms proportional to the square of the excess disloca-

tion density vector, of form μb2
∫

2κ · D · κ dDr .
Of these terms, the self-energy depends only logarithmically
(through the term ρ0) on the correlation functions. Also
dependent on the structure of the correlation functions are the
length scale  and the coupling tensors D. Of these we only
know that they must be positively definite since otherwise
a homogeneous system of statistically stored dislocations
would spontaneously decompose, which it does not. As to
the length scale , in the absence of other factors it must,
in order to be consistent with the scaling properties of
discrete dislocation systems [14,31], be chosen proportional
to the dislocation spacing. This is the approach used in this
work.

In our evaluation of the energy functional of a dislocation
system we have made the key assumption that the range of
correlations between dislocations is limited. This is a necessary
assumption for expressing the correlation energy as a local
functional of the dislocation densities (see the discussion in the
Appendix). In physical terms, this assumption corresponds to
the simple idea that, by studying the dislocation configuration
within a few dislocation spacings around one point, one cannot
gain information about the configuration of dislocations
around a distant point (at a distance of many dislocation
spacings), other than the information which is contained in
the long-range space dependency of the dislocation densities.
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While this seems a rather mild assumption, it must be noted
that a lot of dislocation systems that have been extensively
investigated in the literature fall not into this category, among
them

(1) the Taylor lattice [38];
(2) the infinite periodic or nonperiodic dislocation wall

[36,39];
(3) the infinite dislocation pileup [40,41];
(4) the periodic misfit dislocation array.

Many of these systems are one dimensional and/or periodic,
which makes powerful mathematical tools available for their
analysis. The existence of these powerful tools may motivate
the investigation but, on the other hand, it is also clear that
most of the dislocation arrangements which develop during
plastic deformation and whose properties govern plastic flow
are disordered rather than ordered on large scales, and are
two or three dimensional rather than one dimensional. No
Taylor lattice and no infinite periodic dislocation wall has ever
been seen in the electron microscope, extended pileups are the
exception rather than the rule in deformation of real materials,
and even in case of interface dislocations the assumption of
periodic order has recently been called into question. We may
thus argue that the study of low-dimensional and/or periodic
dislocation arrangements (which can never be captured by the
present approach) is a consequence of mathematical conve-
nience rather than of their practical importance. In this sense,
the present investigation can hopefully be considered a step
towards “becoming generic,” which also means “becoming
realistic.”

Among the applications we have given, we consider the
derivation of back stress terms to be of fundamental interest. It
should be clear from our derivation that the fundamental term
in the energy functional that depends on the excess dislocation
density κ is the Hartree energy. Whatever assumptions are
made regarding the correlation functions, this term is bound to
stay. The term proportional to κ2 in the correlation energy,
which gives rise to back stress terms, is in fact a local
correction to the fundamentally nonlocal functional, a fact well
recognized in recent work by Kooiman et al. [19] Accordingly,
the back stress is a local correction to the in general nonlocal,
long-ranged interaction between excess dislocation densities
in different parts of the crystal. In view of this fact, it is
astonishing that there are several published attempts to replace,
rather than correct, the long-range dislocation interaction by
a back stress term. This is tantamount to throwing out the
Hartree energy and expressing the elastic energy as a functional
of the excess dislocation density which does not contain any
nonlocal, long-range interaction terms. The standard device
used to this end is a truncation of the kernel g at some arbitrary
radius  (see, e.g., [35,37]). We cannot help pointing out that
this is inconsistent with the most fundamental property of
dislocations, and of dislocation systems, namely, the existence
of a Burgers vector that is independent on the Burgers circuit:
Let us compute the stress (or equivalently the elastic strain)
associated with an arbitrary dislocation arrangement contained
in some circle CR of radius R. If we now truncate the stress
around dislocations at length , we are left with a horrible
dilemma: either we truncate the stress but not the strain, in
which case we have destroyed elasticity, or we truncate both,
in which case the integral over the circle CR+ will yield zero

whatever the Burgers vector content in C might be, which
would be possible only if dislocations had no Burgers vector
to begin with. This idea is taken to its logical conclusion in the
work of Luscher et al. [37] who use the back stress to evaluate
the dislocation-associated strain as a compatible tensor field
(see the discussion in the Appendix).

There are several directions how the present investiga-
tion could be expanded and further developed. At present,
our treatment of segment self-interactions via a line en-
ergy approximation is not very elegant. This can be easily
improved upon by replacing the interaction tensors g by
core-regularized expressions which can be derived in various
manners including gradient elasticty [10] and continuous
Burgers vector distributions around the dislocation core [11].
Since we cannot, in the general case, calculate dislocation
correlation functions from our theory, we need to obtain
the information regarding quantities like ρ0 and D[n,m] from
external sources. In our opinion, as a next step, a systematic
effort is needed to evaluate the expansion parameters of the
theory (the coupling tensors D[n,m]) from DDD simulations.
From a numerical point of view, this is not difficult, especially
with reference to DDD codes that express the interaction
energy in terms of line integrals over the dislocation lines
[28,29] since the coupling tensors can for discrete dislocation
systems be evaluated in a similar manner. A comparison with
DDD simulation data will serve two important objectives.
First, owing to the nonergodicity of dislocation dynamics,
it is not at all clear to which extent these coupling tensors
depend on initial conditions. If they do so in a sensitive
manner, meaning that different types of initial conditions lead
to quite different values for the coupling tensors and thus
to different energy functionals, then the present theory is
useless for practical application. If, on the other hand, the
dependence on initial conditions and deformation geometry
is weak and remains within the statistical scatter among
individual simulations, then the theory can be applied for
evaluating the dynamics of dislocation systems from density-
based evolution equations in a correspondingly wide range
of situations. Second, comparison with DDD simulation can
tell us how many terms of the alignment tensor expansion are
actually needed for a meaningful representation of dislocation
energetics, and thus provide important hints regarding the
question as to what degree of complexity is actually needed for
density-based dislocation dynamics models. DDD simulations
can be usefully complemented by experimental data regarding
the structure of energy functionals for dislocation systems.
Classical x-ray and calorimetry studies (see, e.g., Ref. [23])
provide information about the energy stored in a dislocated
crystal and, via line profile analysis, about the range and
dislocation density dependence of screening correlations in
dislocation systems (Wilkens’ M parameter, [23]). Recent
developments in x-ray microscopy allow to map the lattice
distortions, and hence the elastic energy density associated
with dislocation systems on scales well below the spacing of
individual dislocations (see the impressive work of Wilkinson
and co-workers [42]). Such experiments allow to obtain data
that are of comparable quality to those from DDD simulation
and can be used in a similar manner for evaluating the elastic
energy functional and parametrizing its local and nonlocal
terms.
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APPENDIX

1. Averaging procedures

To represent a discrete dislocation system by continuous
densities, averaging procedures are required. Spatial averaging
is commonly used in mechanics, but has the disadvantage that
it does not preserve information about the relative positions
of dislocations (or particles) with respect to each other,
information which is essential for capturing the energetics.
Hence, spatial averages are not normally used in statistical
mechanics where one aims at deriving the average properties
of systems from the dynamics and interactions of their discrete
elements. The only averages normally used in statistical
mechanics are (i) temporal averages along the trajectory
of a system or (ii) instantaneous averages over ensembles
of many systems. In thermal equilibrium, both types of
averages are assumed to coincide (ergodicity). However,
dislocation systems during plastic deformation are not in
thermal equilibrium, and moreover their dynamics is strongly
influenced by constraints (glide on crystallographic planes)
which normally prevent them from fully exploring the phase
space of possible configurations. Hence, dislocation motion
tends to be nonergodic. This leaves us with ensemble averaging
as the only feasible averaging approach.

Initial conditions for a 2D dislocation dynamics simulation
are provided by assigning initial positions and signs to N

dislocations. Any statistical rule for doing so explicitly or
implicitly defines an initial N -particle density probability
density function

pN (s1 . . . sN ,s1 . . . sN ,r1 . . . rN )dDr1 . . . dDrN, (A1)

which is the joint probability to find the first dislocation of
sign 1 at r1, dislocation 2 of sign 2 at r2, etc. Obviously, the
N -particle density function fulfils the normalization condition

∑
s1...sN

∫
pN (s1 . . . sN ,r1 . . . rN,s1 . . . sN )dDr1 . . . dDrN = 1.

(A2)
A nonequilibrium ensemble is defined by its initial probability
density function and evolution equations, hence, the rules
for constructing initial conditions in a set of multiple DDD
simulations can be considered to define an ensemble. This is
true for both 2D and 3D simulations: Initial conditions for a
3D dislocation dynamics simulation can be understood as sta-
tistical rules for assigning initial positions and directions to N

segments in terms of a density function p(r1 . . . rN,φ1 . . . φN ),
where those rules need to respect line connectivity and one
makes the transition N → ∞ as the segments are made to be
arbitrarily short.

Probabilities of lower order can be obtained by integrating
over some of the coordinates. Of particular importance in
this study are the single-particle and pair probabilities defined

by

p1(r,s) =
∑

s2...sN

∫
pN (s,s2 . . . sN ,r,r2 . . . rN )

× dDr2 . . . dDrN,

p2(r,s,r ′,s ′) =
∑

s3...sN

∫
pN (s,s ′,s3 . . . sN ,r,r ′,r3 . . . rN )

× dDr3 . . . dDrN . (A3)

These give, respectively, the joint probability of finding a
dislocation at r and with sign s, and the joint probability
of finding a dislocation pair at (r,r ′) and with signs (s,s ′),
irrespective of the positions and signs of all other dislocations.
The probability for a dislocation at any position to have sign s is
given by p(s) = Ns/N where Ns is the number of dislocations
of sign s. We write

p1(s,r) = p(s)f s
1 (r), p2(s,s ′,r,r ′) = p(s)p(s ′)f ss ′

2 (r,r ′),
(A4)

where f s
1 (r) is the conditional probability density for a

dislocation of sign s to be at r and f ss ′
2 (r,r ′) is the conditional

probability density for a dislocation pair of signs (s,s ′) to be at
the positions (r,r ′). From the general normalization condition
(A2), we see that these conditional probabilities are normalized
according to

∫
f s

1 (r)dD r = 1 and
∫∫

f ss ′
2 (r,r ′)dDr dDr ′ = 1.

From the sign-conditional single-dislocation and pair prob-
ability densities we obtain the respective dislocation densities
by

ρs(r) = Nsf
(s)
1 (r),

(A5)

ρss ′ (r,r ′) =
{
NsNs ′ f ss ′

2 (r,r ′), s ′ �= s

Ns(Ns − 1) f ss
2 (r,r ′), s ′ = s.

Note that, while the number of pairs of dislocations of types
s �= s ′ is NsNs ′ , the number of pairs of dislocations of type s is
Ns(Ns − 1) since a dislocation cannot form a pair with itself.
The densities are thus normalized to yield, upon spatial inte-
gration, the respective numbers of dislocations or dislocation
pairs. From this normalization it follows that, if we express the
pair density as ρss ′ (r,r ′) = ρs(r)ρs ′ (r ′)[1 + dss ′ (r,r ′)] then∫

ρs(r)dss ′ (r,r ′)d2r =
∫

ρs ′ (r ′)dss ′ (r,r ′)d2r ′

=
{

0, s �= s ′
−1, s = s ′. (A6)

The quantity ρs(r)dss(r,r ′) has a role similar to the exchange-
correlation hole density in density functional theories of
electron systems (see, e.g., Ref. [24]). In a local density
approximation where ρs(r) depends only weakly on r over
the range of the correlation function dss(r,r ′), we may pull
the factors ρs(r) ≈ ρs(r ′) out of the integrals, and Eq. (27)
follows.

In conclusion, a point about the choice of initial con-
ditions (the intial many-dislocation density function, or
the initial conditions in a series of DDD simulations) is
appropriate. To enable comparison with experiment, ini-
tial conditions in DDD should be consistent with infor-
mation about dislocation microstructure that is accessible
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by experiment. In well-characterized microstructures, this
is typically the total dislocation density, the geometri-
cally necessary density as monitored by lattice rotations
or misorientations, and possibly the distribution of disloca-
tions over the various Burgers vectors. In extremely well-
characterized specimens, even information about the distribu-
tion of dislocations over edge and screw orientations may be
available.

All these informations are comprised in the dislocation
density alignment tensors up to order two. However, any
DDD simulation involves constructing initial conditions which
imply the definition of a many-dislocation or many-segment
density function, a function which may contain much more
information than is contained in the simple density functions.
It is in the opinion of the present author essential that initial
conditions are constructed in a manner that does not introduce
more information than is actually available since, otherwise,
the results may be influenced in a significant, and potentially
uncontrollable, manner by hidden parameters introduced in
the form of assumptions about the initial state that are not
backed up by experimental evidence. A systematic manner
of constructing unbiased initial conditions is provided by
the maximum entropy method, which allows to construct the
many-particle density by maximizing the entropy while using
the available information as constraints. As an example, for a
2D dislocation system of size L2 with N+ positive and N−
negative dislocations (densities ρ± = N±/L2), the N -particle
probability density function which maximizes the entropy
is simply pN = (1/L2)N+(1/L2)N−; in simple words, as an
initial condition, the dislocations are placed independently at
random locations, which is indeed a popular initial state for
2D DDD simulations. Other microarrangements which are
popular in the literature for analyzing properties of dislocation
systems, for instance placing dislocations on regularly spaced
slip planes [36], or even on a regular Taylor lattice [38],
seem highly problematic from an information-theoretical
point of view because they imply strong assumptions about
a correlation structure which may not be backed up by
experimental evidence.

2. Nonlocal density functional approximations
of the correlation energy

The local density approximation used in this work can
be considered the lowest order of a systematic expansion of
the energy functional in terms of gradients of the dislocation
densities. We illustrate this for the correlation energy of a 2D
dislocation system. We start from Eq. (17):

EC = 1

2

∑
ss ′

∫∫
ρs(r)ρs ′ (r ′)dss ′ (r,r ′)Eint(r − r ′)d2r d2r ′.

(A7)
We introduce the vectors r∗ = (r + r ′)/2 and a = r − r ′ and
expand both ρ and ρs ′ around the point r∗:

ρs(r) =
∞∑

n=0

1

n!

[
a · ∇r

2

]n

ρs(r)|r∗ ,

(A8)

ρs ′ (r) =
∞∑

m=0

1

m!

[
a · ∇r

2

]m

ρs ′ (r)|r∗ .

Inserting into the correlation energy gives

EC

1

2

∑
ss ′

∑
n,m

1

2n+mn!m!

∫∫
dss ′ (r∗,a)Eint(a)

[
a · ∇r

2

]n

× ρs(r∗)

[
a · ∇r

2

]m

ρs ′ (r∗)d2a d2r∗. (A9)

We then introduce the gradient coefficient tensors T (n+m)
ss ′ with

components

T n+m
ss ′,i1...in+m

(r∗) = 1

2n+mn!m!

∫
ai1 . . . ain+m

dss ′ (r∗,a)

× Eint(a)d3a (A10)

to write the correlation energy as

EC = 1

2

∑
ss ′

∑
n,m

∫
∇nρs(r)

n
: T (n+m)

ss ′ (r)
m
: ∇mρs ′ (r)d2r.

(A11)
Here, the tensorial mth-order dislocation density gradient
∇mρs is the rank-m tensor with components ∂i1 . . . ∂imρs .
Thus, the correlation energy can be represented in terms of
a gradient expansion of the dislocation densities, provided
that the dislocation density functions can be differentiated
to arbitrary order and that the gradient coefficient tensors
of arbitrary order exist. A necessary and sufficient condition
for this is a faster than algebraic decay of the correlation
functions dss ′ (r,r ′), which corresponds to the assumption of a
macrodisordered dislocation arrangement.

It is straightforward to generalize the above argument to
3D dislocation systems, however, the notation associated with
a double expansion in real space and in angular coordinates is
cumbersome so we refrain from giving explicit expressions.
The local density approximation used in the remainder of this
paper is just the lowest-order term of the above-mentioned
gradient expansion. The above argument demonstrates that
this approximation can be systematically generalized to derive
gradient-dependent expressions for the correlation energy of
any desired order.

3. How not to understand back stresses

Equation (87) relates the back stress on a slip system to
directional derivatives of the dislocation density vector:

τ
β

b (r) = − μb2

4πρ

[
εβ

n∇] ·
⎡
⎣∑

β ′
Dββ ′[1,1] · κβ ′

(r)

⎤
⎦. (A12)

Our derivation tells us that this stress enters into the stress
balance alongside the standard nonlocal stress (Hartree stress).
However, several authors [35–37] have suggested to use
the back stress in order to replace long-range dislocation
interactions. To illustrate the implications, we follow Luscher
et al. [37] who use an expression exactly analogous to the
above equation, though with a scalar coupling constant D. If
this expression is assumed to fully describe the dislocation
associated stress field, it is only natural to associate the back
stress with a matching stress tensor τ

β

b = Mβσ b, and this with
a strain through

εb = C−1 : σ b = C−1 : (Mβ)−1τb, (A13)
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where C is Hooke’s tensor. Luscher et al. use this expression to
evaluate the dislocation associated strain which is only logical
since there is no other stress associated with dislocations in
their theory. To show the implications, we look at a special
case: our 2D dislocation system with Burgers vector b = bex

and slip plane normal n = ey containing straight parallel dislo-
cations of line direction l = ez. The dislocation density vector
is κ = κez, and the back stress τb = −(μb2D)/(4πρ)∂xκ . We
now consider a particular dislocation distribution: a blob of
positive dislocations with density κ(r) = κ0 exp(−r2/2) and
ask what is the Burgers vector contained in a circle CR of radius
R and area AR around the origin. According to the classical
definition, the Burgers vector associated with κ follows as
b = bex

∫
AR

κ d2r which goes to a finite value as R → ∞.

If we instead evaluate the associated Burgers vector from the
“dislocation strain” εb, we get

bi = −(μb2D)/(4πρ)C−1
ijkl(M

β)−1
kl

∮
CR

∂xκ dsj . (A14)

It is easily seen that the integral, rather than converging to a
constant value, becomes exponentially small once the radius
of the circle becomes much larger than . It follows that,
in such a theory, depending on the choice of the Burgers
circuit, an accumulation of excess dislocations may have
no Burgers vector at all. We conclude that the back stress
should not be used to replace the long-range dislocation
interaction.
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