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We derive a general theory of effective properties in metasolids based on phononic crystals with low frequency
resonances. We demonstrate that in general these structures need to be described by means of a frequency-
dependent and nonlocal anisotropic mass density, stiffness tensor and a third-rank coupling tensor, which shows
that they behave like a nonlocal Willis medium. The effect of nonlocality and coupling tensor manifest themselves
for some particular resonances, whereas they become negligible for other resonances. Considering the example
of a two-dimensional phononic crystal, consisting of triangular arrangements of cylindrical shells in an elastic
matrix, we show that its mass density tensor is strongly resonant and anisotropic presenting both positive and
negative divergent values, while becoming scalar in the quasistatic limit. Moreover, it is found that the negative
value of transverse component of the mass density is induced by a dipolar resonance, while that of the vertical
component is induced by a monopolar one. Finally, the dispersion relation obtained by the effective parameters
of the crystal is compared with the band structure, showing good agreement for the low-wave-number region,
although the nonlocal effects are important given the existence of some resonant values of the wave number.

DOI: 10.1103/PhysRevB.92.174110 PACS number(s): 43.40.+s, 46.40.Cd, 62.30.+d, 81.05.Xj

I. INTRODUCTION

Metamaterials are artificial structures with unusual con-
stitutive parameters not found in natural materials [1], such
as negative compressibility [2], refractive index [3–5], or
anisotropic mass density [6]. These properties offer new
insights into the propagation of classical waves, and a wide
variety of effects and applications have been found, such as
cloaking shells [7,8], superlenses [9], optical and acoustical
black holes [10–12], or gradient index lenses [13,14].

Metamaterials for acoustic or elastic waves, also named
metafluids or metasolids, respectively, have been mainly
implemented by means of sonic and phononic crystals, which
consist of periodic arrangement of inclusions in a fluid (sonic
crystal) or elastic (phononic crystal) matrix [15]. If the
inclusion is properly chosen so that it presents low-frequency
resonances, these structures behave like effective materials
with resonantlike constitutive parameters which can be either
positive, zero, or negative [16].

Phononic and sonic crystals are anisotropic structures
in general, therefore they present anisotropic constitutive
parameters. Then, it was demonstrated that metafluids present
anisotropic mass density not only near a local resonance,
but also in the quasistatic limit [6,17], although for the case
of metasolids it has been assumed in general that the mass
density is a scalar [18–20]. Recently, some works have shown
that elastic composites have to be described by means of the
so-called “Willis form” of the constitutive parameters [21,22],
which include a tensorial mass density and an additional
coupling tensor, and the dynamic homogenization of phononic
crystals has also shown that this general description applies to
these structures [23].

In this work the low-frequency limit of phononic crystals
is analyzed, and it is shown analytically that low-frequency
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resonances actually induce an anisotropic mass density, which,
however, becomes scalar in the static limit. It is also shown that
the usual assumption that the negative mass density is induced
by dipolar resonances is not necessarily true, in a similar way
as was previously demonstrated for plate metamaterials for
flexural waves by the authors in a recent publication [24].
Finally, the dispersion relation of the full phononic crystal
is compared with that of a homogeneous material with the
obtained effective parameters, and good agreement is found
in general, although it is also demonstrated that nonlocal
parameters have to be considered.

The paper is organized as follows: After this Introduction,
Sec. II explains the homogenization method employed here.
Following, Sec. III explains how to apply perturbation theory
to derive some important properties of metasolids in the
low-frequency limit. Finally, Sec. IV describes a phononic
crystal as a locally resonant metamaterial and Sec. V shows
a numerical example of application of the theory. Section VI
summarizes the work.

II. HOMOGENIZATION OF THE PERIODIC MEDIUM
FROM THE BAND STRUCTURE

The equation of motion of an inhomogeneous solid,
assuming harmonic time dependence with frequency ω, is
given by the classical elastodynamic equation [25]

−ρ(r)ω2ui = ∂jCijkl(r)∂kul (1)

with ui being the components of the displacement field and
Cijkl the components of the stiffness tensor. Hereafter we
employ the summation convention in which two repeated
indexes implies summation over their possible values, to sim-
plify notation. If the medium is homogeneous the dispersion
relation is obtained by assuming plane-wave propagation with
wave vector k = kn, with k being the wave number and n a
unit vector parallel to the propagation direction. Under this
assumption, the equation of motion becomes the well-known
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secular equation for elastic waves [25]

ρω2ui = k2niICIJ nJjuj , (2)

with ui being the components of the displacement field and CIJ

the components of the stiffness tensor in Voigt notation (see
Ref. [25] and Appendix A). The solution for the dispersion
relation ω = ω(k,n) is therefore given by the roots of the
determinant of the matrix �̄ defined as

�̄ij = ρω2δij − k2niICIJ nJj . (3)

In a phononic crystal both ρ(r) and Cijkl(r) are periodic
functions of the spatial coordinates; then the Bloch theorem is
applied and the plane-wave expansion method [26] can be used
to obtain the dispersion relation ω = ω(k,n) as the solution of
the following eigenvalue equation:

ω2ρG−G′(uG′)i = (k + G)iIC
G−G′
IJ (k + G′)Jj (uG′)j , (4)

where ρG, CG
IJ , and (uG)i stand for the Fourier components

of the mass density, stiffness tensor, and displacement field,
respectively, and summation over repeated indexes is assumed
including the Fourier indexes defined by the reciprocal lattice
vector G. The matrix elements (k + G)iI are defined in
Appendix A. In matrix form the above eigenvalue equation
is expressed as

ω2NGG′ uG′ = MGG′ uG′ , (5)

where

(NGG′)ij = ρG−G′δij , (6)

(MGG′)ij = (k + G)iIC
G−G′
IJ (k + G′)Jj . (7)

This equation solves for the dispersion relation inside the
phononic crystal; however, in its current form it is difficult
to figure out any property of the crystal as a composite. The
description of the crystal as a material can be obtained by
averaging the components of the displacement vector in the
unit cell and finding in this way an equation similar to Eq. (2),
in which the coefficients of the different terms multiplying the
wave vector and the frequency define the effective parameters.
The average of the displacement vector is given by the G = 0
component of uG , so that it can be obtained by expressing
Eq. (5) as

ω2N00u0 + ω2N0G′ uG′ = M00u0 + M0G′ uG′ , (8a)

ω2NG0u0 + ω2NGG′ uG′ = MG0u0 + MGG′ uG′ . (8b)

It must be recalled that repeated indexes means summation
over all their possible values, and that hereafter it is considered
that matrix elements labeled with G do not include the term
G = 0, which is extracted from the above decomposition. We
can now solve from the second equation for uG ,

uG′ = −(MG′ G − ω2NG′G)−1(MG0 − ω2NG0)u0 (9)

and insert it into the first one, obtaining the following equation:

[ω2N00 − ω2N0G′χG′ G(MG0 − ω2NG0)

− M00 + M0G′χG′ G(MG0 − ω2NG0)]u0 = 0, (10)

where we have defined

χ G′ G
�m (ω,k) ≡ (MG′G − ω2NG′ G)−1

�m. (11)

Equation (10) is formally the same as Eq. (5); however,
it is not an eigenvalue equation, but a secular equation for u0

similar to Eq. (2), where the solutions ω = ω(k,n) are obtained
from the zeros of the determinant of the matrix � defined as

� = ω2N00 − ω2N0G′χG′ G(MG0 − ω2NG0)

− M00 + M0G′χG′ G(MG0 − ω2NG0). (12)

The matrix � is actually a 3 × 3 matrix, in which coeffi-
cients are in general functions of both ω and k, which makes
it less suitable for band structure calculation than Eq. (5) but
more suitable for the description of the phononic crystal as
a composite. Effectively, we can see that the elements of the
N00, N0G′ , and NG0 do not depend explicitly on the wave
vector k,

(N00)ij = ρ̄δij , (13)

(N0G′)ij = ρ−G′δij , (14)

(NG0)ij = ρGδij , (15)

with ρ̄ = ρG=0 the mass density average in the unit cell.
Contrarily, the M00, M0G′ , and MG0 contains this dependence
with the wave vector, since

(M00)ij = kiI C̄IJ kJj , (16)

(M0G′)ij = kiIC
−G′
IJ (k + G′)Jj , (17)

(MG0)ij = (k + G)iIC
G
IJ kJj , (18)

with C̄IJ = CG=0
IJ the average in the unit cell of the compo-

nents of the stiffness tensor. The dependence with the wave
vector and frequency can be reorganized, then the � matrix
can be cast as

�ij = ω2ρ∗
ij − k2niIC

∗
IJ nJj − ωk(niI SIj + S

†
iJ nJj ), (19)

where the coefficients ρ∗
ij , C∗

IJ , and SIj are given by

ρ∗
ij (ω,k) = ρ̄δij + ω2ρ−G′χ G′ G

ij (ω,k)ρG, (20a)

C∗
IJ (ω,k) = C̄IJ −C−G′

IL (k + G′)L�χ
G′ G
�m (ω,k)(k + G)mMCG

MJ ,

(20b)

SIj (ω,k) = ωC−G′
IL (k + G′)L�χ

G′G
�j (ω,k)ρG . (20c)

Equation (19) is similar to Eq. (2), but the constitutive
parameters required to describe the phononic solid are more
complex. Equations (20) were derived in [23] using a different
approach, and they show that the phononic crystal is a nonlocal
Willis medium [22], in which the mass density is a tensorial
quantity and with the presence of the coupling field SIj . The
above expressions are valid at any frequency and wave number;
however, in this work we are especially interested in the low-
frequency limit, that is, the limit in which the wavelength of the
field in the background is larger than the typical periodicity of
the crystal and it is described as a homogeneous material. It will
be shown that even in the low-frequency limit these systems
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can have some special resonances in which the crystal behaves
like a Willis medium with resonant and nonlocal parameters.

If in Eqs. (20) the limit ω → 0 and k → 0 is taken it is found
that the coupling field SIj = 0, since it is directly proportional
to ω. Also, the mass density becomes a scalar which is simply
the volume average ρij = ρ̄δij , as is well known from the
theory of composites. Finally, the effective stiffness tensor is
given by

C∗
IJ = C̄IJ − C−G′

IL G′
L�

(
M−1

G′ G

)
�m

GmMCG
MJ (21)

and the medium behaves like an effective homogeneous
medium with local and frequency-independent parameters.
The mass density is a scalar, therefore all the information
about the microstructure of the composite is contained in the
C∗

IJ tensor, whose symmetry will depend on the background,
inclusions, and lattice symmetry. In the above expression the
limit in which the frequency and the wave number tend to zero
has been assumed; however, in practice this limit will be valid
from zero to some cut-off frequency in which it will not be
possible to neglect some terms containing the frequency or the
wave number; the medium then begins to be dispersive and
the constitutive parameters will depend on both frequency and
wave number. It can happen, however, that these parameters
are frequency dependent even in the low-frequency limit,
under the condition called a “local resonance.” This happens
when the parameter χGG′ is singular, and then it is found that
all the constitutive parameters can become resonant and locally
singular, with the remarkable result that it presents, depending
on the lattice symmetry, anisotropic mass density.

III. PERTURBATION THEORY IN THE
LOW-FREQUENCY LIMIT

In this section we develop a perturbation theory for the
computation of the effective parameters. The main objective
of this approach is to provide an explanation of the resonant
and nonlocal properties that the effective parameters can
present and, as we will see later, many interesting properties
can be deduced from this approach. However, although this
methodology can provide good numerical results under certain
conditions, for numerical accuracy it is better to employ the
full expressions given by Eqs. (20). The origin of the resonant
parameters of these structures is the χ matrix defined in general
as

χ = (M − ω2N )−1. (22)

It must be pointed out that, in the static limit this χ matrix
simply is the reciprocal of the matrix M; however, the term
ω2N can make that the determinant of the matrix M − ω2N be
zero for some specific values of ω, which we call resonances
because then the χ matrix is singular. Let us try to understand
the nature of these resonances.

Let us assume that we know the eigenvalues λn and
eigenvectors vn of the matrix M − ω2N . We know then that
the reciprocal of this matrix can be expanded by means of the
eigendecomposition theorem, thus we have that

χ = (M − ω2N )−1 =
∑

n

v
†
n ⊗ vn

λn

(23)

given that M − ω2N is actually a Hermitian matrix. The
matrix M is defined in Eq. (7), and it can be expressed as

M = M0 + kM1 + k2M2, (24)

where

M0 = GiIC
G−G′
IJ G′

Jj , (25)

M1 = niIC
G−G′
IJ G′

Jj + GiIC
G−G′
IJ nJj , (26)

M2 = niIC
G−G′
IJ nJj . (27)

For low frequencies and wave numbers, the matrix M can
be considered a perturbation of the M0 matrix, so that we
can apply perturbation theory to relate the eigenvalues λk with
frequency. Let us define un and C0

n/a
2 (with a being a quantity

with units of length, for convenience in the units) as the
eigenvectors and eigenvalues of the M0 matrix, respectively,
thus

M0un = C0
n/a

2un. (28)

If we assume that kM1 + k2M2 − ω2N is a perturbation of the
matrix M0, the eigenvalues and eigenvectors λn and vn will be
given, up to first order in perturbation theory, by

λn = C0
n/a

2 + kC(1)
n /a + k2C(2)

n − ω2ρn, (29)

vn = un + k
∑

�

b
(1)
n� u� + k2

∑
�

b
(2)
n� u� − ω2

∑
�

an�u�,

(30)

where (assuming un · un = 1)

ρn = u†
nNun, (31)

C(1)
n /a = u†

nM1un, (32)

C(2)
n = u†

nM2un, (33)

and, for n �= �,

an� = u†
nNu�

C0
n/a

2 − C0
� /a

2
, (34)

b
(1)
n� = u†

nM1u�

C0
n/a

2 − C0
� /a

2
, (35)

b
(2)
n� = u†

nM2u�

C0
n/a

2 − C0
� /a

2
, (36)

which ensures as well that vn · vn = 1.
The dependence in k of the eigenvalues λn implies that

the effective parameters will be nonlocal in general. However,
as will be shown later, metamaterials are in general designed
by means of “soft” scatterers, that is, it is required that the
velocity of the waves inside the scatterers be much smaller
than that of the background; in other words, the stiffness matrix
elements display a much higher contrast between matrix and
scatterer than the mass density components. Therefore, as a
first approximation, we can neglect the coefficients multiplying
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the wave number and approximate λn as

λn ≈ C0
n/a

2 − ω2ρn, (37)

allowing one to express the χ matrix as (neglecting the
perturbative terms in u)

χ G′ G
ij (ω) =

∑
n

(u∗
n)G′i(un)Gj

C0
n/a

2 − ω2ρn

. (38)

This interesting result shows that at the resonant frequencies
ω2

na
2 = C0

n/ρn the effective parameters become singular, and
in the neighborhood of this frequency they can have positive,
negative, or zero values. These resonances are determined by
the ratio of the eigenvalues Cn of the matrix M0 and by the
perturbation term ρn. Also, the coupling of these resonances
with the different constitutive parameters is defined by the
symmetry of the eigenvectors un of the matrix M0, as will be
explained in the following section.

It must be mentioned that the eigenvectors un correspond
to the eigenvectors of the matrix M0, which actually is the
matrix MGG′ given by Eq. (7) but for k = 0 and removing the
terms corresponding to G = 0. These eigenvectors correspond
to a physical system which is easy to understand: Imagine a
phononic crystal in which the stiffness tensor is periodic while
the mass density is equal to that of the background. It is easy to
see that the eigenvalue equation of this system at the � point,
that is, for k = 0, is according to Eqs. (8),

ω2ρ̄u0 = 0, (39a)

ω2ρ̄uG′ = MGG′ uG′ . (39b)

The above equation for ω �= 0 has the only solution uG =
(0,un), with un being the eigenvectors of the matrix M0. This
relationship between the eigenvalues and eigenvectors of a
physical system with those required to compute the effective
parameters suggest that other numerical methods different
than the plane-wave expansion method, like the finite element
method, could be used. Then, computing the eigenvalues of
this virtual system, in which the mass density is equal to that
of the background and the stiffness tensor has the desired
periodicity, allows computation of all the un and, after proper
Fourier transform solutions and elastic constants’ distribution,
we can efficiently compute the effective parameters by means
of the expansion (38). Therefore, on the basis of the present
theory, this work opens the door to a more efficient calculation
of the effective parameters, whose discussion is beyond
the objective of the present work. Therefore, the presented
effective medium theory, together with the above connection
with other numerical tools, suggest that this method is more
general than other homogenization schemes found in the
literature, since it allows the inclusion of anisotropic, nonlocal
effects and arbitrary shapes of the inclusions.

IV. EFFECTIVE PARAMETERS IN THE LOCAL
APPROXIMATION

The study of a local resonance is made in a regime in which
the wavelength of the propagating field is larger than the typical
periodicity of the composite. This hypothesis implies that in
Eqs. (20) we can make the approximation k + G ≈ G, so that
in these equations the dependence on k disappears and the

parameters, although frequency dependent, are “local” and
given by

ρ∗
ij (ω) = ρ̄δij + ω2ρ−G′χ G′ G

�m (ω)ρG, (40a)

C∗
IJ (ω) = C̄IJ − C−G′

IL G′
L�χ

G′ G
�m (ω)GmMCG

MJ , (40b)

SIj (ω) = ωC−G′
IL G′

L�χ
G′ G
�j (ω)ρG, (40c)

where χ G′ G
ij (ω) is computed from Eq. (11) as χ G′ G

ij (ω,k = 0).
Better insight into the properties of these parameters can be
provided by including the expansion of χ given by Eq. (38);
then we have

ρ∗
ij (ω) = ρ̄δij +

∑
n

ω2ρ−G′
(u∗

n)G′i(un)Gj

C0
n/a

2 − ω2ρn

ρG, (41a)

C∗
IJ (ω) = C̄IJ −

∑
n

C−G′
IL G′

L�

(u∗
n)G′�(un)Gm

C0
n/a

2 − ω2ρn

GmMCG
MJ ,

(41b)

SIj (ω) =
∑

n

ωC−G′
IL G′

L�

(u∗
n)G′�(un)Gj

C0
n/a

2 − ω2ρn

ρG . (41c)

We can now define the quantities

(An)i = (un)GiρG, (42)

(Bn)I = (un)GmGmMCG
MI , (43)

and given that any Fourier coefficient satisfies F−G = F ∗
G we

get for the effective parameters the following expressions:

ρ∗
ij (ω) = ρ̄δij + ω2

∑
n

(A∗
n)i(An)j

C0
n/a

2 − ω2ρn

, (44a)

C∗
IJ (ω) = C̄IJ −

∑
n

(B∗
n )I (Bn)J

C0
n/a

2 − ω2ρn

, (44b)

SIj (ω) = ω
∑

n

(B∗
n )I (An)j

C0
n/a

2 − ω2ρn

. (44c)

The above equations relate the effective parameters with the
properties of the eigenvectors and eigenvalues of the matrix
M0, as well as with their perturbations. Let us note that, for
a symmetric unit cell, that is, when the position-dependent
parameters inside the unit cell are described by functions such
that f (−r) = f (r), we will have that F (−G) = F (G), and
then we have (see Appendix B) that for under these conditions
we also have that

u−G = ±uG, (45)

which implies two types of solutions: (An)i �= 0 and (Bn)I = 0
when u−G = uG , and (An)i = 0 and (BI )n �= 0 when u−G =
−uG . The former induces a resonant mass density, while
the latter induces a resonant stiffness tensor. The two cases
imply that the Willis tensor SIj is equal to zero, and this also
implies that a symmetric system cannot simultaneously excite
a resonance in the stiffness tensor and the mass density; that is,
we cannot have double negative materials in this way, unless
the different resonances are too close to each other.
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FIG. 1. (Color online) Phononic crystal studied in the present
work. The system consists of a triangular arrangement of coated
cylinders in an epoxy background. The cylinders consist of a lead
core of radius ra and a rubber shell of radius rs (see text for numerical
values).

A deeper insight into the properties of symmetry and
nonsymmetry of these resonances is beyond the objective of
the present work, in which we want to focus attention on
the properties of the resonant mass density, however, a future
work concerning a nonsymmetric lattice will be prepared and
published elsewhere.

V. NUMERICAL EXAMPLE: RESONANT AND
NONLOCAL ANISOTROPIC MASS DENSITY

Figure 1 shows the system to be studied in the present
work. It consists of a periodic arrangement of coated cylinders
in an epoxy background (ρb = 1.18 Kg/dm3, Eb = 4.35 GPa,
and νb = 0.37). The cylinders are made of a lead core
(ρa = 11.34 Kg/dm3, Ea = 16 GPa, and νa = 0.44) of ra-
dius ra = 0.16a and a rubber shell (ρs = 1.3 Kg/dm3, Es =
2.7E − 4 GPa, and νb = 0.499) of radius rs = 0.4a, since
this combination of soft-hard coatings is known to present
low-frequency resonances. The cylinders are arranged in a
triangular lattice; in this way we expect the effective material
to be transversely isotropic.

Figure 2 shows the effective mass density tensor relative
to that of the background ρb as a function of frequency as
computed by using Eq. (40a), which has been numerically
found to be identical to (44a) but, although less efficient
for computational use, it is more exact than the mentioned
approximation. Because of the symmetry of the lattice, any
second rank tensor will have only two components, one for
the xy plane and another one for the z plane. It is seen how
in the low-frequency limit the two components are identical
and equal to the normalized average mass density ρ̄/ρb, as
expected; however, it can also be seen how they split as a
function of frequency and present two different resonances,
so that the system behaves like an elastic medium with
anisotropic mass density. Moreover, it can also be seen how
these components are negative in different frequency regions.
It is found that the effective stiffness tensor is nearly constant
in frequency in this region, and that the coupling field SIj is
zero, as expected from the discussion in the previous section.
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FIG. 2. (Color online) Effective mass density tensor for the
proposed phononic crystal. Both the transversal component (blue
continuous line) and the z component (green dashed line) present a
local resonance. In the vicinity of this resonance both components of
the mass density become negative. The red dot indicates the frequency
and density of the example used in Fig. 5 (see text for further details).

Figure 3 shows the field distribution of the lower-frequency
resonances of the mass density tensor depicted in Fig. 2: the
upper panel for the z component and the lower panel for
the xy one; the left panels show the real part of the mode,
while the right panels show the absolute value. It is interesting
to note that the xy mode has a dipolar symmetry, as is
commonly assumed in the literature [19], while the z mode has
a monopolar symmetry. The fact that a monopolar symmetry
could induce a negative mass density behavior was already
found by the authors in a recent paper [24] in the study of

y
/
a

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.2

0.4

0.6

0.8

x /a

y
/
a

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6 −2

−1.5

−1

−0.5

0

0.5

x /a

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
0.5

1

1.5

2

2.5

FIG. 3. (Color online) Resonant modes inducing an effective
negative mass density. Upper panels for ωka/2πct = 0.0072, cor-
responding to a resonance in ρz, and lower panels for ωka/2πct =
0.0194, corresponding to a resonance in ρ⊥ (see text for further
discussion).
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flexural waves in thin plates. This result is consistent with
the theory of elastic waves in plates, given that a plate with
a periodic arrangement of inclusions is indeed a finite slide
of the two-dimensional phononic crystal studied here, and
this result suggests that the propagation of flexural waves is
mainly dominated by the z component of the mass density.
This important result should be taken into account in the
homogenization theory of plate metamaterials, although a deep
insight into it is beyond the objective of the present work.

Equations (40) show then that the phononic crystal can be
described by means of locally resonant constitutive param-
eters, whose frequency dependence can be easily computed.
The description of a phononic crystal as a frequency-dependent
homogeneous material will not be valid for every wave number
and frequency, and to determine these limits the dispersion
relation obtained by means of the constitutive parameters is
compared with the band structure obtained from the eigenvalue
equation (5). As mentioned before, in the local approximation
and due to the symmetry of the unit cell, SIj is zero for this
example, and it is also found that C∗

IJ is nearly constant in this
frequency range, thus we have that, along the �X direction,
the dispersion relation for the effective material is

ω2ρ⊥(ω)ux = k2
xC

∗
11ux, (46)

ω2ρ⊥(ω)uy = k2
xC

∗
66uy, (47)

ω2ρz(ω)uz = k2
xC

∗
44uz, (48)

while along the �A direction, that is, along the z axis, the
dispersion relation is (notice that in this case C∗

55 = C∗
44)

ω2ρ⊥(ω)ux = k2
zC

∗
44ux, (49)

ω2ρ⊥(ω)uy = k2
zC

∗
55uy, (50)

ω2ρz(ω)uz = k2
zC

∗
33uz. (51)

Figure 4, left panel, shows the dispersion relation along the
�X direction (x axis) computed by means of the eigenvalue
equation (5) (black lines) compared with the dispersion
relation obtained by means of the constitutive parameters. Red
and blue dots show the results for the xy modes, and it is seen
that there is good agreement between the eigenvalue equation
and the effective material dispersion relation. The dispersion
relation for the z mode (green crosses) is, however, different
from the eigenvalue equation and the effective material, and
there is agreement only for very low wave numbers. As will
be seen later, the reason for this disagreement is that the local
description of the metamaterial is not accurate here, and the
inclusion of the nonlocal components is required, that is, the
dependence on the wave number in the constitutive parameters.

Figure 4, right panel, shows similar results for propagation
along the �A direction (z axis). It is shown here that the
xy modes, which are degenerate given that the crystal is
transversely isotropic, are perfectly described by means of
the effective material; however, the z modes, corresponding to
green crosses, agree only for very low wave numbers. There
is also a set of flat bands that can be fairly difficult to predict
by means of the effective material parameters. The reason
for that is that these modes occur only at a given frequency
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k za

Γ A

0 0.2 0.4 0,6 0,8
0

0.005

0.01

0.015

0.02

0.025

0.03

k xa
ω

a
/
2π

c
t

Γ X

FIG. 4. (Color online) Left panel: Dispersion relation of the
phononic crystal along the �X direction (black lines) compared with
those obtained from the effective local constitutive parameters (green
crosses and blue and red dots). Right panel: Dispersion relation of
the phononic crystal along the �A direction (black lines) compared
with those obtained from the effective local constitutive parameters
(green crosses and blue dots).

and correspond to very sharp modes, and although they are
properly predicted by the theory as a resonant frequency ωn,
their effect is difficult to see in the constitutive parameters.

The spatial dispersion of the z mode can be understood
by means of the calculation of the nonlocal constitutive
parameters using Eqs. (20). Figure 5 shows these parameters at
a frequency ωa/2πct = 0.0063, corresponding to a frequency
in which the z component of the local mass density is negative
(red dot in Fig. 2). The upper panel shows the nonlocal ρz

as a function of the wave number along the �X and �A

directions. It is clear that the origin of the nonlocality is a
wave number resonance, for which the major contribution
will have its origin in the χ matrix. It is also seen that the
C33 component, responsible for the propagation of the mode
along the �A direction, also becomes nonlocal, while the
C44 component remains constant. Additionally, the S53 and
S33 elements, which are zero for k = 0, appear as resonant
components. The contribution of these spatial resonances is
essentially to displace the opening of the band gaps, as can be
seen from Fig. 4, for which their influence is important before
considering only the local theory.

VI. SUMMARY

In summary, it has been analytically and numerically
demonstrated that phononic crystals behave as elastic meta-
solids with anisotropic, resonant, and nonlocal effective
parameters, with the remarkable result that the mass density
is also anisotropic in general, although in the static limit
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FIG. 5. (Color online) Nonlocal constitutive parameters related
with the propagation of the z mode in the phononic crystal. Upper
panel: z component of the mass density. Middle panel: C44 and
C33 components of the stiffness tensor. Lower panel: S53 and S33

components of the coupling field (see text for details).

this quantity recovers its scalar nature. Also, it has been
demonstrated that the symmetry of the resonance inducing this
behavior is not necessarily dipolar, as it is commonly assumed;
it can also be monopolar. The nonlocal and anisotropic nature
of the mass density has important implications especially
for the study of plate metamaterials, since these structures

are essentially finite slides of phononic crystals. It must be
pointed out that the generality of the equations derived can
be used for the homogenization of phononic crystals with
more complex unit cells, with the objective of achieving
double negative metasolids. Finally, the theory can be extended
to phononic crystals with piezoelectric inclusions, where
resonant piezoelectric constants are expected.
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APPENDIX A: MATRIX NOTATION

Throughout the paper Voigt notation for the indexes is used,
in such a way that lowercase indexes run from 1 to 3 and upper
case indexes run from 1 to 6. Also, the wave vector is defined
in terms of the ViI matrix defined as

V =
⎛
⎝Vx 0 0 0 Vz Vy

0 Vy 0 Vz 0 Vx

0 0 Vz Vy Vx 0

⎞
⎠. (A1)

Therefore the matrix elements (k + G)iI are

k + G =
⎛
⎝kx + Gx 0 0 0 kz + Gz ky + Gy

0 ky + Gy 0 kz + Gz 0 kx + Gx

0 0 kz + Gz ky + Gy kx + Gx 0

⎞
⎠ (A2)

with (k + G)Jj therefore being the transpose of the above
matrix. Similarly, the same matrix niI is defined for the normal
vector n,

n =
⎛
⎝nx 0 0 0 nz ny

0 ny 0 nz 0 nx

0 0 nz ny nx 0

⎞
⎠. (A3)

APPENDIX B: PROPERTIES OF THE
EIGENVECTORS OF M

The matrix M is a Hermitian matrix, therefore its eigen-
values are real. Also, it is known that the Fourier components
satisfy F−G = F ∗

G , which means that

M−G−G′ = M∗
GG′ , (B1)

M−GG′ = M∗
G−G′ . (B2)

We can now express the eigenvalue equation for M as
(

MGG′ MG−G′

M∗
G−G′ M∗

GG′

)(
uG′

u−G′

)
= λ

(
uG′

u−G′

)
(B3)

or, to simplify the notation,(
Maa Mab

M∗
ab M∗

aa

)(
u

v

)
= λ

(
u

v

)
. (B4)

The above eigenvalue equation can be expressed as

Maau + Mabv = λu, (B5)

M∗
abu + M∗

aav = λv. (B6)

Taking the complex conjugate of the above and exchanging
the order of the equations, we get

Maav
∗ + Mabu

∗ = λv∗, (B7)

M∗
abv

∗ + M∗
aau

∗ = λu∗, (B8)

which shows that the eigenvector (v∗,u∗) has the same
eigenvalue as the eigenvector (u,v), so that they differ only
in phase factor eiφ ; then we have

v = eiφu∗ (B9)
or

u−G = eiφu∗
G . (B10)
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For the specific case of a symmetric lattice, that is, if we can
find a unit cell such that F−G = FG , we have that matrix M

becomes real symmetric, so that it is possible to always find

real eigenvectors, so that the phase factor should be π or 0; in
other words, in this case we have that

u−G = ±uG . (B11)
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