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Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultrahigh mobilities
up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic
regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of
nonlocal resistances in multiterminal Hall bar devices can be used to extract the hydrodynamic shear viscosity
of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated
hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables
measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.
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I. INTRODUCTION

Transport in systems with many particles (such as gases
and liquids) undergoing very frequent interparticle collisions
has been studied for more than two centuries and is described
by the theory of hydrodynamics [1–3]. In the hydrodynamic
regime, transport is described by [1–3] three nonlinear
partial-differential equations—the continuity, Navier-Stokes,
and energy-transport equations—reflecting the conservation
of mass, momentum, and energy, respectively. The Navier-
Stokes equation contains two transport coefficients [1–3]: The
shear viscosity η, which describes friction between adjacent
layers of fluid moving with different velocities, and the bulk
viscosity ζ , which describes dissipation arising in a liquid due
to homogeneous compressionlike deformations. The energy-
transport equation contains the thermal conductivity κ , which
describes dissipative heat flow between regions with different
temperatures. These coefficients quantify the tendency of the
liquid to restore a homogeneous state in response to a velocity
or thermal gradient: They therefore control the magnitude of
nonlocal contributions to the linear-response functions of the
liquid.

Viscous flow of dilute classical gases attracted the attention
of Maxwell, who theoretically discovered [3] a puzzling
property of the shear viscosity of a dilute gas. Using a
molecular approach [3], he found that the shear viscosity
of a dilute gas is independent of density n (and depends on
temperature T according to η ∝ T 1/2), a counterintuitive result
that he felt needed immediate experimental testing [4]. The
importance of η in the hydrodynamic behavior of dilute gases
and liquids stems from the fact that this parameter controls
the term of the Navier-Stokes equation that opposes turbulent
flow [1–3].

Recent years have witnessed a tremendous interdisciplinary
interest in the hydrodynamic flow of strongly interacting quan-
tum fluids. This interest was sparked by a series of results [5],
which were obtained via the anti-de Sitter/conformal field
theory (AdS/CFT) correspondence, for the shear viscosity
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of a large class of strongly interacting thermal quantum
field theories. These efforts culminated in 2005 when it was
conjectured [6] that all quantum fluids obey the following
universal lower bound: η/s � �/(4πkB), where s is the
entropy density. Note that this bound does not contain the speed
of light, thereby explaining why the conjecture was extended
also to nonrelativistic quantum field theories. Fluids that
saturate this bound have been dubbed “nearly perfect fluids”
(NPFs) [7], i.e., fluids that dissipate the smallest possible
amount of energy and satisfy the laws of hydrodynamics at
distances as short as the interparticle spacing. Currently, two
laboratory systems come closest to saturating the AdS/CFT
bound: (i) the quark-gluon plasma [8], which is created at
Brookhaven’s Relativistic Heavy Ion Collider and at CERN’s
Large Hadron Collider by bashing heavy (e.g., gold and lead)
ions together, and (ii) ultracold atomic Fermi gases [9,10] (such
as 6Li) close to a Feshbach resonance. Although mathematical
counterexamples have appeared in the literature [11], there are
no known experimental violations of the AdS/CFT bound.

The present paper is motivated by the following questions:
Do electron liquids display hydrodynamic behavior? If so,
how can it be experimentally proven that the electron system
has entered the hydrodynamic transport regime? Once in the
hydrodynamic regime, how can the shear viscosity of an
electron liquid be measured in a solid-state device? Can an
electron liquid in a solid-state device be a NPF?

Hydrodynamics has been used for a long time to describe
transport of electrons in solid-state devices [12–25]. However,
since the (Bloch) momentum of an electron in a solid is a
poorly conserved quantity due to collisions against impurities,
phonons, and structural defects in the crystal, experimental
signatures of hydrodynamic electron flow are expected only in
ultraclean crystals, at sufficiently low temperatures. Second,
electron-electron (e-e) interactions need to be sufficiently
strong to ensure that the mean-free path �ee for e-e collisions is
the shortest length scale in the problem, i.e., �ee � �,W,vF/ω.
Here, vF is the Fermi velocity, � is the mean-free path for
momentum-non-conserving collisions, W is the sample size,
and ω is the frequency of the external perturbation.

Unfortunately, the low-temperature requirement (needed
to mitigate the breakdown of momentum conservation in
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a solid-state environment) and the strong e-e interaction
requirement are conflicting: At low temperatures, where � is
large, the mean-free path �ee for e-e collisions is also very
large due to Pauli blocking. Indeed, normal Fermi liquids
at low temperatures [26–28] display very large values of
�ee, i.e., �ee ∝ (TF/T )2 for temperatures T � TF with TF as
the Fermi temperature. (In two spatial dimensions there is
a very well-known [29] logarithmic correction that has been
dropped.) These severe restrictions, imposed by a rigid Fermi
surface on the phase space for two-body e-e collisions, can
be relieved by increasing temperature. Indeed, �ee quickly
decreases for increasing T . Short e-e mean-free paths therefore
require operating at sufficiently elevated temperatures. At such
temperatures, strong scattering of electrons against optical
phonons (e.g., in polar crystals, such as GaAs) often leads to
the unwanted inequality � < �ee. Realizing hydrodynamic flow
at “high” temperatures therefore requires not only ultraclean
crystals, but also crystals where electron-phonon coupling
is extremely weak. We note that it is in principle easier
to reach the hydrodynamic transport regime in nonpolar
crystals, such as graphene, where the dominating mechanism
at high temperatures is scattering of electrons against acoustic
phonons. In this case � decays as 1/T , i.e., slower than �ee.

For these reasons, evidence of hydrodynamic transport in
solid-state devices is, to the best of our knowledge, limited to
early work carried out by Molenkamp and de Jong [30] and
de Jong and Molenkamp [31] in electrostatically defined wires
in GaAs/AlGaAs heterostructures. These authors measured a
nonmonotonic dependence of the four-point longitudinal resis-
tivity ρxx on the electronic temperature T , which is increased
above the lattice temperature by using a large dc heating
current. The decrease in ρxx with increasing temperature above
a certain value of T was attributed to e-e collisions [30,31].
This is the so-called “Gurzhi effect” and will be discussed
extensively in this article. More recently, indirect evidence
of hydrodynamic flow comes from an explanation [32] of
Coulomb drag between two neutral graphene sheets [33],
which differs from that offered by the authors of Ref. [33].

Recent experimental progress [34–39], however, has made
it possible to fabricate samples with ultrahigh carrier transport
mobilities up to room temperature. These are graphene
sheets encapsulated between thin hexagonal boron nitride
(hBN) slabs, which display ultrahigh mobilities reaching
105 cm2 V−1 s−1 in a wide range of temperatures up to room
temperature. These values can be achieved in GaAs/AlGaAs
heterostructures only below 100 K because of polar phonon
scattering [40]. In addition, the finite electron mass and
moderate doping required to achieve high mobilities limits
the Fermi energy to values below a few tens of meV,
which makes the Fermi-level smearing important even at
liquid-nitrogen temperatures. Encapsulated samples [33–39]
are special because electrons roaming in graphene suffer
very weak scattering against acoustic phonons [41–44] and
because hBN provides an exceptionally clean and flat dielectric
environment for graphene [45]. Furthermore, microscopic
calculations based on many-body diagrammatic perturbation
theory [46–48] indicate that the e-e mean-free path �ee in
graphene is shorter than 400 nm in a wide range of carrier den-
sities and temperatures T � 150 K. We therefore conclude that
hBN/graphene/hBN stacks are ideal samples where the long-

sought hydrodynamic regime can be unveiled and explored.
Indeed, recent nonlocal transport measurements [49] carried
out in high-quality encapsulated single-layer graphene (SLG)
and bilayer graphene (BLG) samples have demonstrated that
this is the case. The authors of Ref. [49] have reported evidence
of hydrodynamic transport, showing that doped graphene
exhibits an anomalous (negative) voltage drop near current
injection points, which has been attributed to the formation
of whirlpools in the electron flow. From measurements of
nonlocal signals, Bandurin et al. [49] extracted the viscosity
of graphene’s electron liquid and found it to be in quantitative
agreement with many-body theory calculations [48].

In this article, we present a fully analytical theoretical
study of nonlocal dc transport in the two-dimensional (2D)
electron liquid in a graphene sheet in the hydrodynamic
regime. In Sec. II we present the theoretical framework that
was used in Ref. [49] to interpret the experimental results, i.e.,
a linearized steady-state hydrodynamic approach based on the
continuity and Navier-Stokes equations. Suitable boundary
conditions for these hydrodynamic equations are discussed
in Sec. II A. In Sec. III we present analytical solutions for
longitudinal transport in a rectangular Hall bar, and we discuss
the dependence of the solutions on the boundary conditions,
providing details on the Gurzhi effect. In Sec. IV we present
analytical results for the spatial dependence of the 2D electrical
potential, nonlocal resistance, and current-induced magnetic
field as obtained by solving the hydrodynamic equations with
the free-surface boundary conditions, which we believe to be
the appropriate boundary conditions for the linear-response
regime. Finally, in Sec. V we present a summary of our main
results and offer some perspectives.

We remark that, in the present paper, we focus only on
doped SLG and BLG sheets where the applicability of the
Fermi-liquid theory is granted. However, it is believed that
the hydrodynamic behavior of the semimetals is particularly
interesting [16,17] when these are in the charge neutral state. In
this case the Fermi surface shrinks to a point, and Fermi-liquid
theory is not applicable. For example, the authors of Ref. [17]
have found that the ratio η/s for the 2D electron liquid in a
graphene sheet at the charge neutrality point (CNP) comes
close to saturating the AdS/CFT bound. In nearly neutral
semimetals �ee is also short due to frequent collisions between
thermally excited carriers (T � TF). It is, however, well
known that any theory at the CNP must take into account: (i)
the spatially inhomogeneous pattern of electron-hole puddles
created by disorder [50–53] and (ii) coupling between charge
and energy flow [32,54,55]. In the regime of doping we
consider, we can safely ignore both effects. For this reason,
our theoretical predictions below cannot be extrapolated down
to the CNP.

II. LINEARIZED STEADY-STATE HYDRODYNAMIC
THEORY

We consider a two-dimensional electron liquid in a doped
SLG or BLG sheet, deep in the hydrodynamic transport regime
(�ee � �,W ). For the sake of definiteness, we consider the Hall
bar geometry sketched in Fig. 1. Since the energy-momentum
dispersion of electrons in these systems is particle-hole
symmetric [56], we assume, without loss of generality, that
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FIG. 1. (Color online) Schematic of the nonlocal transport setup
analyzed in this paper. A dc current I is injected (red arrow) into
an encapsulated graphene Hall bar of width W . Current injection
occurs at a lateral contact located at x = x0 and y = −W/2. The
same current is drained (blue arrow) at a contact located at x = −x0

and y = −W/2. Measurements of voltage drops 	V near the current
injection region are sensitive to the kinematic viscosity ν of the two-
dimensional massless Dirac fermion liquid. The notion of “vicinity”
between voltage probe and current injector is defined by a crucial
length scale, i.e., the vorticity diffusion length Dν = √

ντ . Here τ

(exceeding 1 ps in high-quality encapsulated devices) represents a
phenomenological scattering time due to momentum-non-conserving
collisions of a fluid element (and not of single electrons).

the sample hosts a back-gate-controlled equilibrium electron
density equal to n̄. (The charge density is −en̄, − e being the
electron charge.) We neglect thermally excited carriers and
coupling between charge and heat flow [54], which is strong
only at the charge neutrality point. Finally, we consider the
linear-response regime and steady-state transport.

In this framework of approximations, the hydrodynamic
transport equations [23,24] for the 2D electron liquid greatly
simplify and reduce to

∇ · J(r) = 0, (1)

and

n̄e

m
∇φ(r) + ν∇2 J(r) = J(r)

τ
. (2)

In Eqs. (1) and (2) we have introduced the linearized steady-
state particle current density J(r) = n̄v(r), where v(r) is the
linearized steady-state fluid-element velocity.

Equation (1) is the continuity equation, whereas Eq. (2) is
the Navier-Stokes equation. The latter contains three forces
acting on a fluid element: (i) the electric force −eE(r) =
e∇φ(r), written in terms of the electric potential φ(r) on the
2D plane where electrons are moving, which is generated by
the steady-state charge distribution n(r) in response to the
drive current I , (ii) the internal force due to the shear viscosity
η = η(n̄,T ) of the 2D electron liquid, here written in terms of
the kinematic viscosity [1–3],

ν = η

mn̄
, (3)

and (iii) friction exerted on a fluid element by agents external
to the electron liquid, such as phonons and impurities, which
dissipate the fluid-element momentum at a rate of τ−1 =

1/τ (n̄,T ). The latter is a phenomenological parameter, which
depends on n̄ and T , and is commonly used in modeling
transport in semiconductor devices [57].

In Eqs. (2) and (3) m is a suitable effective mass defined by

m =
{
mc for SLG,

0.03me for BLG,
(4)

where mc = �kF/vF is the 2D massless Dirac fermion cy-
clotron mass [56], kF = √

πn̄ being the Fermi wave number,
vF ∼ 106 m s is the Fermi velocity, and me is the bare electron
mass in vacuum.

Multiplying both members of Eq. (2) by τ , we obtain

σ0

e
∇φ(r) + D2

ν∇2 J(r) = J(r). (5)

In Eq. (5) we have introduced the following characteristic
length scale of the problem:

Dν ≡ √
ντ . (6)

For τ = 1 ps (as in high-quality hBN/graphene/hBN samples)
and ν = 0.1 m2 s (see Ref. [48]) we obtain Dν ≈ 0.3 μm.

The physical significance of Dν can be understood as
follows. We first note that we can rewrite ∇2 J(r) by using
the following identity:

∇2 J(r) = ∇[∇ · J(r)] − ∇ × [∇ × J(r)]. (7)

Because of (1), we can drop the first term on the right-hand
side of Eq. (7). The second term is finite and related to the
vorticity [1,2],

ω(r) ≡ 1

n̄
∇ × J(r) = ω(r) ẑ, (8)

which in 2D is oriented along the ẑ axis. We can then rewrite
Eq. (5) as follows:

σ0

e
∇φ(r) − n̄D2

ν∇ × ω(r) = J(r). (9)

Taking the curl of Eq. (9) and using the identities ∇ × ∇φ(r) =
0 and ∇ · ω(r) = 0 (the latter being valid because ω’s only
nonvanishing component is along ẑ, whereas ∇ acts only on
the 2D x̂- ŷ plane), we obtain a damped-diffusion equation for
the vorticity,

D2
ν∇2ω(r) = ω(r). (10)

We therefore see that Dν plays the role of a diffusion length
for ω(r).

In Eq. (5) we have also introduced a “Drude-like” conduc-
tivity,

σ0 ≡ e2n̄τ

m
. (11)

Since we are in the hydrodynamic regime, σ0 should not be
confused [24] with the ordinary dc conductivity in the dif-
fusive transport regime: Once again, τ = τ (n̄,T ) represents a
phenomenological parameter that should be fit to experimental
data as we discuss below in Sec. III. This naive description
of momentum-non-conserving collisions in the hydrodynamic
transport regime can be relaxed by following arguments similar
to those in Ref. [19]: This is however well beyond the scope
of the present article and will be the topic of future studies. In
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the absence of viscosity, Eq. (2) reduces to a local version of
Ohm’s law, i.e., J(r) = σ0∇φ(r)/e.

Finally, we note that taking the divergence of Eq. (5)
and making use of Eq. (1) we obtain the Laplace equation
∇2φ(r) = 0 for the electric potential φ(r) on the 2D plane.
This should not be confused with the usual three-dimensional
(3D) Poisson equation for the 3D electrostatic potential �(r,z),(

∇2 + ∂2

∂z2

)
�(r,z) = 4πen(r)δ(z). (12)

The 2D potential in Eq. (2) is φ(r) = �(r,z = 0). On the right-
hand side of Eq. (12) we note the steady-state charge-density
distribution −en(r) which occurs in the sample in response to
the drive current I . Equation (12) needs to be solved in 3D
space with suitable boundary conditions—depending on the
dielectric environment, gates, etc., surrounding the graphene
sheet—if one is interested in determining n(r). In this article
we will focus our attention on J(r) and φ(r).

Equations (1) and (5) will be used to describe transport
in the Hall bar geometry pictorially represented in Fig. 1.
Mathematically, it is convenient to work in a Hall bar of infinite
length in the longitudinal direction x̂ since this allows us to use
the Fourier transform to solve the equations of motion—see
Sec. IV. The width W of the Hall bar will be kept finite. In the
next section we will describe a crucially important ingredient
of the theory: boundary conditions.

A. Boundary conditions

In order to find φ(r) and J(r) in the Hall bar geometry
depicted in Fig. 1, we need to solve Eqs. (1) and (5) in the
rectangle (−∞,∞)[−W/2,W/2] with appropriate boundary
conditions (BCs) at the edges, i.e., at y = ±W/2.

Lateral electrodes acting as current injectors/collectors are
described through BCs on the component of the current
perpendicular to the edges,

Jy(x,y = ±W/2) = J±(x). (13)

HereJ±(x) is a function that describes a distribution of current
injectors and collectors on the upper (lower) edge of the
multiterminal Hall bar. It is through Eq. (13) that the total drive
current I injected into the system at the boundaries enters the
problem.

Following Abanin et al. [58], we model the electrodes as
pointlike (i.e., δ function) sources and sinks. (A more realistic
modeling of electrodes has been carried out in Ref. [49]
where finite-width effects and metallic boundary conditions
at extended electrodes have been taken into account in a
fully numerical solution of Eqs. (1) and (5). Such details
have essentially no impact on the physics we are going
to highlight below.) For example, for the setup depicted in
Fig. 1 with a current injector at x = x0, a current collector at
x = −x0, and no injectors/collectors on the upper edge, we will
use

J−(x) = −I

e
δ(x − x0) + I

e
δ(x + x0), (14)

and J+(x) = 0.
In the presence of a finite shear viscosity ν, we need an

additional BC on the tangential component of the current at

the top (y = +W/2) and bottom (y = −W/2) edges of the
Hall bar. We use the following BC:

[∂yJx(x,y) + ∂xJy(x,y)]y=±W/2 = ∓Jx(x,y = ±W/2)

lb
,

(15)

where lb is a “boundary slip length,” i.e., a length scale
describing friction at the physical boundaries of the sample.
This BC can be explained as follows. The left-hand side
of Eq. (15) is proportional to the off-diagonal component
of the stress tensor [1], calculated at the edges of the
Hall bar. It represents the tangential component of the
frictional force exerted by the boundaries of the Hall bar
on the 2D electron liquid [1]. This force depends on the
tangential velocity of the 2D electron liquid and boundary
roughness: In the linear-response regime, it is natural to
replace such unknown dependence with a linear law char-
acterized by the single parameter lb as on the right-hand side
of Eq. (15).

In the description of transport of molecular liquids in
constrained geometries, such as water in a pipe, where the
interactions between the molecules of the fluid and the walls
of the container are of the same nature as of those between
molecules of the fluid, the most used BCs are the so-called
“no-slip” BCs [1] in which the component of the current
tangential to the boundary vanishes. The no-slip BCs can be
obtained from Eq. (15) by taking the limit lb → 0. In the
opposite limit of a free-surface geometry, such as the surface
of water in an open bucket, the tangential force applied from
the boundary to the fluid element vanishes at the boundary.
These free-surface BCs [1,24] can be obtained from Eq. (15)
by taking the limit lb → +∞.

Which of these BCs should be used to model the experi-
ments in Ref. [49] will become clear at the end of Sec. III.

B. Applicability of the linearized theory

The validity of the linearized Navier-Stokes Eq. (5) relies
on the smallness of the Reynolds number [1–3] RW . This
is a dimensionless parameter (which depends on the sample
geometry) that controls the smallness of the nonlinear term
[v(r,t) · ∇]v(r,t) in the convective derivative with respect to
the viscous term. In our case we can define the Reynolds
number as follows:∣∣∣∣ [v(r,t) · ∇]v(r,t)

ν∇2v(r,t)

∣∣∣∣ 
 v̄W

ν
= I

en̄ν
≡ RW, (16)

where v̄ is the typical value of the fluid-element velocity. For
an injected current [49] I = 2 × 10−7 A, a Hall bar width
of W = 1 μm and an equilibrium density of n̄ = 1012 cm−2,
we obtain v̄ ∼ I/(en̄W ) ≈ 104 cm s. We note that v̄ is much
smaller than the graphene Fermi velocity of vF ∼ 106 m s and
the flow is therefore nonrelativistic. The corresponding value
of the Reynolds number isRW ∼ 10−3 � 1, obtained by using
a kinematic viscosity ν ∼ 103 cm2 s of the 2D electron liquid
in graphene [48]. Our linearized theory in Eqs. (1) and (5) is
therefore fully justified.
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III. LONGITUDINAL TRANSPORT AND THE GURZHI
EFFECT

We first consider the situation in which no current is injected
or extracted laterally at the Hall bar edges, i.e., J±(x) = 0.

In this case the local current J(r) does not depend on the
longitudinal coordinate x, and all the spatial derivatives with
respect to x in Eqs. (1), (5), and (15) vanish. The continuity
equation implies that Jy does not depend on y and vanishes
identically because of Eq. (13). Therefore the y component
of the electric field must also vanish. The x component of the
current respects the following equation: Jx(y) − D2

ν∂
2
yJx(y) =

−σ0Ex/e, where E = −∇φ(r) is the electric field. Note that
Ex cannot depend on y because Ey vanishes and ∇ × E = 0.
The solution of this equation that fulfills the BC (15) is

Jx(y) = −σ0

e
Ex

[
1 − Dν

ξ
cosh

(
y

Dν

)]
, (17)

where we have introduced the length,

ξ ≡ lb sinh

(
W

2Dν

)
+ Dν cosh

(
W

2Dν

)
. (18)

We can calculate the total longitudinal current I carried by the
flow by integrating Eq. (17) in the transverse direction, i.e.,

I = −e

∫ W/2

−W/2
dy Jx(y) = σ0WEx(1 − F), (19)

where we have defined the dimensionless quantity,

F ≡ 2
D2

ν

Wξ
sinh

(
W

2Dν

)
. (20)

Measuring the longitudinal potential drop 	V between two
lateral contacts at positions x and x + L yields a four-point
longitudinal conductivity σxx of the form

σxx ≡ I

	V

L

W
= σ0(1 − F). (21)

Equation (21) is the most important result of this section.
In the limit lb → ∞ (i.e., free-surface BCs) F → 0. For

this choice of BC the longitudinal conductivity σxx depends
only on the rate of momentum-non-conserving collisions τ−1

(through σ0) and is independent of ν.
On the other hand, in the limit lb → 0 (i.e., no-slip BCs)

Eq. (21) reduces to

σxx = σ0

[
1 − 2

Dν

W
tanh

(
W

2Dν

)]
. (22)

We can easily understand two asymptotic limits of Eq. (22).
In the limit Dν � W Eq. (22) yields σxx = σ0(1 − 2Dν/W ):
The small correction to the Drude-like conductivity σ0 is due
to a reduction of the fluid-element velocity in a thin region
of width Dν near the top and bottom edges of the Hall bar. In
the opposite limit Dν � W , we obtain σxx = σ0W

2/(12D2
ν ) =

e2n̄W 2/(12mν). In this limit the problem is equivalent to that
of Poiseuille flow in a pipe [1,2] with a velocity profile vx(y)
that depends quadratically on the transverse coordinate y and
a resistance that is entirely due to viscosity.

A summary of our main results for longitudinal electron
transport in the presence of a finite viscosity is reported in
Fig. 2.
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FIG. 2. Panel (a) The longitudinal conductivity (21) (in units of
σ0) is plotted as a function of the ratio Dν/W for different values of
the boundary scattering length lb: lb = ∞ (thick solid line), lb = 10W

(dashed line), lb = W (dotted line), lb = 0.1W (dashed-dotted line),
and lb = 0 (thin solid line). Panel (b) The current-density profile
−eJx(y), normalized by the total current I/W , is plotted as a function
of y for lb = 0 (no-slip BCs) and different values of Dν : Dν = 0 (thick
solid line), Dν = 0.01W (dashed line), and Dν = 0.1W (dotted line).
The case of Dν � W , corresponding to Poiseuille flow, is represented
by a thin solid line.

The Gurzhi effect

We now would like to make a remark on the temperature
dependence of σxx in Eq. (21). For the sake of simplicity, we
assume that lb does not depend on temperature. We observe
that the derivative of σxx with respect to T ,

dσxx

dT
= dσ0

dT
(1 − F) − σ0

dF
dDν

dDν

dT
(23)

is the sum of two contributions with opposite signs. The first
term on the right-hand side of Eq. (23) is negative because
F < 1 and dσ0/dT < 0. The latter inequality holds because
the scattering rate τ−1 describing momentum nonconserving
collisions is a monotonically increasing function of tempera-
ture [49]. On the contrary, the second term is positive because
dF/dDν > 0 and dDν/dT < 0. The vorticity diffusion length
Dν decreases with increasing temperature because both ν

and τ are decreasing functions of T . We therefore conclude
that due to viscosity σxx (ρxx) can increase (decrease) upon
increasing temperature. This is the so-called Gurzhi effect [12].
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The existence of this effect relies crucially on the nature of
BCs that are used to solve the hydrodynamic equations. In
particular, it disappears for free-surface BCs. All previous
experimental studies of transport in graphene and other 2D
electron liquids we are aware of have reported monotonic
temperature dependencies (i.e., no evidence of the Gurzhi
effect) in the ordinary longitudinal geometry in the linear-
response regime. We therefore conclude that free-surface BCs
are the most appropriate for a weak driving current I . In this
case, σxx depends only on the unknown damping rate τ−1,
which can therefore be determined from an ordinary four-point
longitudinal transport measurement at every value of n̄ and T ,
i.e., τ−1 = e2n̄/(mσxx).

In the next section, we will discuss another hydrodynamic
phenomenon occurring in 2D electron liquids, i.e., the forma-
tion of whirlpools in electron flow [49], yielding a clear-cut
experimental signal of hydrodynamic transport in weakly
nonlocal linear-response transport measurements. Since the
experimental data in Ref. [49] do not show any Gurzhi effect
in the linear-response regime, in the next section we will
utilize only the free-surface BCs (lb → ∞). Whirlpools in

hydrodynamic electron flow, however, do exist also when no-
slip BCs are used [49]. In this sense whirlpools are a much
more robust phenomenon that the Gurzhi effect in longitudinal
transport. Whirlpools are also more dramatic in experimental
appearance.

IV. NONLOCAL TRANSPORT AND THE IMPACT
OF VISCOSITY

We now present the solution of the problem posed
by Eqs. (1), (5), (13), and (15) in the rectangle
(−∞,∞)[−W/2,W/2]. We use free-surface boundary con-
ditions, corresponding to lb → ∞.

To this end, we introduce the Fourier transform with respect
to the longitudinal coordinate x in the two equations (1)
and (5) (the latter for the two components Jx and Jy). The
Fourier transform of a function f (x,y) will be denoted by
f̂ (k,y). These equations can be grouped into a linear system
of three second-order ordinary differential equations (ODEs)
with respect to the independent variable y. It is convenient to
rewrite this system in terms of four first-order ODEs. We find

∂y

⎛
⎜⎜⎜⎝

kĴx(k,y)

kĴy(k,y)

∂yĴx(k,y)

k2σ0φ̂(k,y)/e

⎞
⎟⎟⎟⎠ = k

⎛
⎜⎜⎝

0 0 1 0
−i 0 0 0

1 + 1/(kDν)2 0 0 −i/(kDν)2

0 1 + (kDν)2 i(kDν)2 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

kĴx(k,y)

kĴy(k,y)

∂yĴx(k,y)

k2σ0φ̂(k,y)/e

⎞
⎟⎟⎟⎠. (24)

Equation (24) can be solved by diagonalizing the 4 × 4 matrix
on the right-hand side, which has four distinct eigenval-
ues: ±1 and ±

√
1 + 1/(kDν)2. The general solution will

therefore be a linear combination of exponentials of the
form

∑
i aivi exp(λiky) where vi (λi) are the eigenvectors

(eigenvalues) of the matrix. The four unknown coefficients
ai can be found by enforcing the desired BCs. These are found
by taking the Fourier transform of Eqs. (13) and (15) with
respect to x,

Ĵy(k,y = ±W/2) = Ĵ±(k), (25)

and

[∂yĴx(k,y) + ikĴy(k,y)]y=±W/2 = 0. (26)

The solution reads as follows:

φ̂(k,y) =
∑
α=±

eĴα(k)W

σ0

[
F̂1α

(
kW,

y

W

)

+ 2D2
ν

W 2
F̂2α

(
kW,

y

W

)]
, (27)

Ĵx(k,y) =
∑
α=±

Ĵα(k)W

{
ik

[
F̂1α

(
kW,

y

W

)

+ 2D2
ν

W 2
F̂2α

(
kW,

y

W

)]

− 2D2
ν

W 2
∂yF̂3α

(
kW,

y

W
,
Dν

W

)}
, (28)

and

Ĵy(k,y)

=
∑
α=±

Ĵα(k)W

{
∂y

[
F̂1α

(
kW,

y

W

)
+ 2D2

ν

W 2
F̂2α

(
kW,

y

W

)]

+ 2D2
ν

W 2
ikF̂3α

(
kW,

y

W
,
Dν

W

)}
. (29)

In writing Eqs. (27)–(29) we have introduced the following
functions of dimensionless arguments:

F̂1±(k̃,ỹ) = 1

2

[
sinh(k̃ỹ)

k̃ cosh(k̃/2)
± cosh(k̃ỹ)

k̃ sinh(k̃/2)

]
, (30)

F̂2±(k̃,ỹ) = k̃

2

[
sinh(k̃ỹ)

cosh(k̃/2)
± cosh(k̃ỹ)

sinh(k̃/2)

]
, (31)

and

F̂3±(k̃,ỹ,λ) = ik̃

2

[
cosh(ỹ

√
k̃2 + λ−2)

cosh(1/2
√

k̃2 + λ−2)

± sinh(ỹ
√

k̃2 + λ−2)

sinh(1/2
√

k̃2 + λ−2)

]
. (32)

Equations (27)–(32) are the most important results of this
article.

In general, it is not an easy task to inverse Fourier transform
Eqs. (27)–(29) to real space after the functions Ĵ±(k) have
been specified. Indeed, this requires calculating a convolution
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which involves the BCs and the functions F1±(x̃,ỹ), F3±(x̃,ỹ),
and F3±(x̃,ỹ,λ) in real space. We now introduce the inverse
Fourier transforms of the functions F̂1±(k̃,ỹ), F̂2±(k̃,ỹ), and
F̂3±(k̃,ỹ,λ), which read

F1±(x̃,ỹ) = 1

4π
ln

[
1 + e−2π |x̃| + 2 sin(πỹ)e−π |x̃|

1 + e−2π |x̃| − 2 sin(πỹ)e−π |x̃|

]

∓ 1

4π
ln[1 + e−4π |x̃| + 2 cos(2πỹ)e−2π |x̃|]

∓ |x̃|
2

, (33)

and

F2±(x̃,ỹ) = {−π sin(πỹ)e−π |x̃|(1 + e−2π |x̃|)

×{1 + e−4π |x̃| − 2[cos(2πỹ) + 2]e−2π |x̃|}
± 2πe−2π |x̃|[cos(2πỹ)(1 + e−4π |x̃|) + 2e−2π |x̃|]}
× [1 + e−4π |x̃| + 2 cos(2πỹ)e−2π |x̃|]−2. (34)

The functions F3±(x̃,ỹ,λ) do not have simple expressions in
terms of elementary functions but can be cast in the form of
an exponentially converging series,

F3±(x̃,ỹ,λ) = −π sgn(x̃)

{ ∞∑
�=0

(2� + 1)(−1)� cos[(2� + 1)πỹ]

× exp[−|x̃|
√

λ−2 + π2(2� + 1)2]

∓
∞∑

�=1

(2�)(−1)� sin(2�πỹ)

× exp[−|x̃|
√

λ−2 + π2(2�)2]

}
. (35)

In the following we will make use of a number of
asymptotic behaviors of the functions F1±(x̃,ỹ), F2±(x̃,ỹ),
and F3±(x̃,ỹ,λ), which have been listed for the sake of
convenience in Table I.

The task of calculating the potential and currents in real
space simplifies substantially if the currents J±(x) in Eq. (13)
can be represented by the sum of a finite number of δ functions
in real space. Let us focus on the geometry of Fig. 1 where the
Fourier transform of the BCs (14) reads Ĵ−(k) = −I (eikx0 −
e−ikx0 )/e and Ĵ+(k) = 0. In this case, we find that the steady-
state current pattern can be written as

J(r) = σ0

e
∇φ(r) − n̄D2

ν∇ × ω(r), (36)

where the potential φ(r) and vorticity ω(r) ≡ ẑω(r) are given
by

φ(r) = − I

σ0

{
F1−

(
x−
W

,
y

W

)
− F1−

(
x+
W

,
y

W

)

+ 2D2
ν

W 2

[
F2−

(
x−
W

,
y

W

)
− F2−

(
x+
W

,
y

W

)]}
, (37)

and

ω(r) = − 2I

en̄W 2

[
F3−

(
x−
W

,
y

W
,
Dν

W

)

−F3−

(
x+
W

,
y

W
,
Dν

W

)]
. (38)

In Eqs. (37) and (38) we have introduced the shorthand
x± ≡ x ± x0 with x+ (x−) representing the lateral separation
between the observation point and the collector (injector).

From Eq. (36) we clearly notice an important feature of
the solution, i.e., for vanishing viscosity the current flow is
irrotational. More precisely, the viscosity plays a twofold role:
It modifies the irrotational contribution due to the electric
potential φ(r) and introduces a finite vorticity. It is noteworthy
that these effects yield independent experimental signatures:
The modification of the electrical potential can be detected
by monitoring the resistances in a nonlocal configuration (or
by carrying out scanning probe potentiometry), whereas the
vorticity generates a magnetic field, which can be detected by
scanning probe magnetometry. These two effects are discussed
in detail in the following sections.

A. Spatial dependence of the 2D electrical potential, charge
current, and nonlocal resistances

Illustrative results for the spatial map of the 2D electrical
potential φ(r)—Eq. (37)—and the charge current pattern
−e J(r)—Eq. (36)—are shown in Fig. 3. For typical values
of the drive current I and conductivity, i.e., I = 20 μA
through a submicron constriction and σ0 = 20 mS, we find
that the scale over which the 2D electrical potential changes
is φ0 ≡ I/σ0 = 1 mV. We clearly see that in the case of
ν �= 0—panels (b) and (c) in Fig. 3—whirlpools with a spatial
extension ∼Dν develop in the spatial current pattern −e J(r)
to the right of the current injector and to the left of the current
collector. Once again, the spatial variations of the 2D electrical
potential φ(r) are amenable to experimental studies based on
scanning probe potentiometry.

In passing, we note that near the current injector at x = x0

the potential is dominated by the singular parts of the functions

TABLE I. Explicit expressions of the functions Fm− defined in the main text, evaluated at ỹ = ∓1/2. We also summarize useful asymptotic
behaviors in the limits |x̃| � 1 and |x̃| � 1. Similar expressions can also be obtained for the quantities Fm+(x̃,ỹ) by noting that Fm+(x̃,ỹ) =
Fm−(x̃, − ỹ).

|x̃| � 1 |x̃| � 1

ỹ = ∓1/2 ỹ = −1/2 ỹ = 1/2 ỹ = ∓1/2

F1− π−1 ln(1 ∓ e−π |x̃|) + |x̃|/2 π−1 ln(π |x̃|) π−1 ln(2) |x̃|/2 ∓ π−1e−π |x̃|

F2− ±πe−π |x̃|/(1 ∓ e−π |x̃|)2 (πx̃2)−1 −π/4 ±πe−π |x̃|

F3− (1 ± 1)δ′(x̃)/2 δ′(x̃) 0 0
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0
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0

φ0
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(b)

(c)
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−W/2

0

W/2

−φ0

0

φ0

FIG. 3. (Color online) Steady-state spatial map of the 2D elec-
trical potential φ(r) (in units of φ0 ≡ I/σ0) and charge current
streamlines −e J(r) in a Hall bar device, such as the one depicted
in Fig. 1 with x0 = W . Different panels refer to different values of
the vorticity diffusion length Dν : Dν = 0 [panel (a)], Dν = 0.5W

[panel (b)], and Dν = W [panel (c)]. Whirlpools are clearly seen in
the bottom right and bottom left of panels (b) and (c). No whirlpools
occur in the absence of viscosity as in panel (a). In each panel, the
current streamlines change color from white (high current density) to
black (low current density).

Fm−. Keeping only the leading terms for |x − x0| � x0,W and
|y + W/2| � x0,W in Eq. (37) we find an extremely simple
expression for the potential near the injector,

φ(r ′,θ ) = − I

πσ0

[
ln

(
r ′

R

)
− 2D2

ν

cos(2θ )

r ′ 2

]
, (39)

where r ′ is the distance from the injection point, θ is the
angle measured from the injection direction ŷ, and R is a
length determined by BCs far from the contact. Note that: (i)
changing R is equivalent to changing φ by an arbitrary additive
constant, and (ii) the limit of a very large internal viscous force
(compared to the frictional force exerted on a fluid element by
agents external to the electron liquid) can be taken in Eq. (39)
by letting τ → ∞. The end result of this limit is

lim
τ→∞ φ(r ′,θ ) = 2mIν

πn̄e2

cos(2θ )

r ′ 2
. (40)

Equation (40) explains the negative lobes of the electrical
potential near the injector that are present in panel (c) of Fig. 3.

If dc transport is to be used as the main tool to detect
hydrodynamic electron flow, it is pivotal to understand the
spatial dependence of the nonlocal resistance RNL, which we
define in the following way:

RNL(x,y) ≡ φ(x,y) − φ(x → +∞,y)

I
, (41)

where the quantity φ(x → +∞,y) does not depend on y.
Because of (37), we find that, at each point in space, RNL(x,y)

is a quadratic function of Dν ,

RNL(x,y)σ0 = a(x,y)D2
ν + b(x,y), (42)

where

a(x,y) = 2

W 2

[
F2−

(x+
W

,
y

W

)
− F2−

(x−
W

,
y

W

)]
, (43)

and

b(x,y) = F1−
(x+

W
,
y

W

)
− F1−

(x−
W

,
y

W

)
− x0

W
. (44)

To make contact with Ref. [49], we now introduce the vicinity
resistance, which is the nonlocal resistance measured on the
edge where the current is injected at a distance 	x from the
current injector,

RV(	x) ≡ RNL(x0 + 	x, − W/2). (45)

Using Eqs. (42)–(44), the asymptotic results in Table I, and
taking the limit x0 � W , we find

RV(	x)σ0 = −2πe−π |	x|/W

W 2(1 − e−π |	x|/W )2
D2

ν

+
[
− 1

π
ln(1 − e−π |	x|/W ) + 	x �(−	x)

]
.

(46)

Here �(x) is the Heaviside step function. For positive 	x the
two terms in Eq. (46) have opposite signs. For this reason,
RV(	x) is expected to change sign as a function of Dν . The
change in sign of the vicinity resistance is a key signature of
the viscous contribution to the electric potential. Maximum
sensitivity to viscosity is achieved when slightly nonlocal
or vicinity voltage drops are measured outside the region
[−x0; x0] where the current flux is maximum. The vicinity
resistance (46) rapidly decays for |	x| � W/π : It is therefore
pivotal to measure [49] the potential φ(x,y) for a lateral
separation 	x from the current injection point which is on
the order of the vorticity diffusion length Dν .

Once the rate of momentum-non-conserving collisions
τ−1(n̄,T ) is measured from an ordinary four-point longitudinal
measurement of σxx (as explained in Sec. III), a measurement
of the vicinity resistance RV(	x) yields a map ν = ν(n̄,T ) of
the kinematic viscosity of the 2D electron liquid. We hasten
to stress that our all-electrical nonlocal protocol to measure
the kinematic viscosity ν = ν(n̄,T ) applies to any 2D electron
liquid driven into the hydrodynamic transport regime (and not
only to doped SLG and BLG).

For the sake of completeness, we note that the authors of
Ref. [24] have proposed an ac Corbino disk viscometer, which
allows a determination of the hydrodynamic shear viscosity
from the dc potential difference that arises between the inner
and the outer edges of the disk in response to an oscillating
magnetic flux.

B. Spatial dependence of the current-induced magnetic field

Because the steady-state current −e J(r) generates a mag-
netic field in the proximity of 2D electron system, whirlpools
and viscosity-dominated hydrodynamic transport can also be
detected by scanning probe magnetometry (see, for example,
Refs. [59–61]).

165433-8



NONLOCAL TRANSPORT AND THE HYDRODYNAMIC SHEAR . . . PHYSICAL REVIEW B 92, 165433 (2015)

−x0 0

(a)

(b)

x0
−W/2

0

W/2

−B0

0
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−W/2

0

W/2
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FIG. 4. (Color online) Spatial map of the ẑ component of the
magnetic field Bz(r,z) (in units of B0 ≡ μ0Id/W 2), generated by
the 2D steady-state current pattern J(r) and calculated immediately
above the graphene sheet, i.e., for 0 < z � W,Dν . These results have
been obtained for the same parameters as in Fig. 3. Different panels
refer to different values of Dν : Dν = 0.5W [panel (a)] and Dν = W

[panel (b)]. In this figure we have not shown results for Dν = 0: In
the absence of viscosity Bz(r,z) is identically zero.

As shown in the Appendix, in a sample in which a backgate
is placed at a distance z = −d below the graphene sheet with
d � W,Dν , a local relation exists between the ẑ component
Bz(r,z > 0) of the magnetic field and the vorticity ω(r). In
Système International (SI) units, this relation reads as follows:

Bz(r,z > 0) = −eμ0n̄ dω(r), (47)

where μ0 = 4π × 10−7 N A2 is the magnetic constant and the
vorticity has been introduced earlier in Eq. (38).

A typical 2D spatial map of Bz(r,z > 0) is shown in Fig. 4
for different values of the vorticity diffusion constant Dν .
In this figure the magnetic field is plotted in units of B0 ≡
μ0Id/W 2. For I = 200 μA, W = 1 μm, and d = 80 nm, we
find B0 = 20 μT. This value is well within reach of current
technology [59–61].

V. SUMMARY AND FUTURE PERSPECTIVES

To summarize, we have presented a theoretical study of dc
transport in graphene driven into the hydrodynamic regime.
As highlighted in Ref. [49], this regime occurs in a wide range
of temperatures and carrier concentrations.

Our theory, which applies only to the doped regime,
relies on the continuity (1) and Navier-Stokes (5) equations,
augmented by suitable boundary conditions at Hall bar edges.
We have demonstrated analytically that a combination of
ordinary four-point longitudinal transport measurements and
measurements of nonlocal resistances in Hall bar devices can
be used to extract the hydrodynamic shear viscosity of the
two-dimensional electron liquid in graphene [49].

We have also discussed how to probe the viscosity-
dominated hydrodynamic transport regime by scanning probe
methods. Indeed, we believe that it possible to observe
hydrodynamic electron flow with spatial resolution by using
available scanning probe potentiometry and magnetometry
setups. Spatial maps of the two-dimensional electrical poten-

tial φ(r) and current-induced magnetic field Bz(r,z > 0) for
experimentally relevant parameters are shown in Figs. 3 and 4.

We wish to emphasize that our theoretical approach is
immediately applicable to any 2D electron liquid in the
hydrodynamic transport regime. In particular, it would be
interesting to revisit the hydrodynamic electron flow of 2D
parabolic-band electron liquids in high-quality GaAs/AlGaAs
semiconductor heterostructures by employing the nonlocal
measurement geometry proposed in Ref. [49] and used in this
paper. As discussed in Ref. [14], in such heterostructures the
hydrodynamic regime is expected to occur around 30 K.

In the future, we plan to extend our theoretical approach
to semimetals with linear and quadratic band touchings at
the charge neutrality point where viscosity is expected to be
very low [17] and the Reynolds number (16) is expected to
be very large, possibly enabling the observation of electronic
turbulence. This will require dealing with thermally excited
carriers, coupling between charge and energy flow, and non-
linear terms in the Navier-Stokes equation. We also would like
to gain a fully microscopic understanding of momentum-non-
conserving collisions in the hydrodynamic transport regime
by treating smooth scalar and vector potentials due to disorder
(strain [62], charged impurities [53], etc.) along the lines of
what was done by the authors of Ref. [19] for the case of a
smooth scalar potential.

Last, but not least, we believe that hydrodynamic flow and
the shear viscosity of 2D electron liquids can also be ac-
cessed [63] by scattering-type near-field optical spectroscopy
(see, for example, Ref. [38] and references therein to earlier
work) in the terahertz spectral range since this technique
measures the nonlocal conductivity σ (q,ω). Terahertz radi-
ation is required: (a) to make sure that the hydrodynamic
inequality ωτee � 1 is satisfied (with τee = �ee/vF) and (b)
to have measurable nonlocal effects due to viscosity since the
latter decreases quickly [48] as a function of the external probe
frequency ω.
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APPENDIX A: LOCAL INDUCTANCE APPROXIMATION

In this Appendix we present a derivation of Eq. (47). We
use SI units and the Coulomb gauge ∇ · A = 0 for the vector
potential. We assume that a bottom gate positioned at z = −d

exists below the graphene sheet. This will be treated as a
perfect conductor.

The vector potential is related to the steady-state current
pattern by the following 3D Poisson equation:(

∇2 + ∂2

∂z2

)
A(r,z) = μ0e J(r)δ(z). (A1)
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This is similar to the Poisson equation in Eq. (12) for the scalar
potential �(r,z).

Fourier transforming Eq. (A1) with respect to the in-plane
coordinate r we find

(
−q2 + ∂2

∂z2

)
Â(q,z) = μ0e Ĵ(q)δ(z), (A2)

where q · Ĵ(q) = 0 because of the continuity equation Eq. (1).
The general solution of Eq. (A2) is as follows:

Â(q,z) = −μ0e Ĵ(q)
e−q|z|

2q
+ â+(q)eqz + â−(q)e−qz. (A3)

The quantities â±(q) must obey the condition â±z(q) =
∓iq · â±(q)/q to enforce the Coulomb gauge and must be
determined from BCs. Requiring Â(q,z → +∞) = 0 implies
that â+(q) must vanish.

The corresponding z component of the magnetic field is
given by

B̂z(q,z) = [iq × Â(q,z)]z. (A4)

Since Bz must vanish at the gate position, i.e., for z = −d, we
find: â−(q) = μ0e Ĵ(q)e−2qd/(2q). In deriving the previous
result we have assumed that â−(q) · q = 0.

The Fourier transform of the vector potential is therefore
given by

Â(q,z) = −μ0e Ĵ(q)
e−q|z| − e−q(2d+z)

2q
. (A5)

Now, if d and |z| are small with respect to the lateral length
scales W and Dν over which the steady-state current pattern
J(r) changes in the sample, i.e., d,|z| � W,Dν , the above
formula can be approximated for z > 0 as

Â(q,z > 0) ≈ −eμ0 d Ĵ(q). (A6)

Making use of Eq. (A4) and transforming back to real space
we finally obtain the desired result,

Bz(r,z > 0) ≈ −eμ0d[∇ × J(r)]z = −eμ0n̄ dω(r). (A7)
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