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Formation of nonreciprocal bands in magnetized diatomic plasmonic chains
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We show that nonreciprocal bands can be formed in a magnetized periodic chain of spherical plasmonic
particles with two particles per unit cell. Simplified forms of symmetry operators in dipole approximations
are used to demonstrate explicitly the relation between spectral nonreciprocity and broken spatial-temporal
symmetries. Due to hybridization among plasmon modes and free-photon modes, strong spectral nonreciprocity
appears in the region slightly below the light line, where highly directed guiding of energy can be supported. The
results may provide clear guidance on the design of one-way waveguides.

DOI: 10.1103/PhysRevB.92.165430 PACS number(s): 73.20.Mf, 78.67.Pt, 11.30.Qc

I. INTRODUCTION

Breaking Lorentz reciprocity [1,2] in optics has been
of great interest to physicists for many decades. In recent
years, the asymmetry in dispersion relation ω(−k) �= ω(k)
(i.e., spectral nonreciprocity) [3,4] has drawn a great deal
of interest because of its possible topological nature [5]
and potential applications such as on-chip optical isolators,
unidirectional waveguides, and circulators [6–9]. Nonrecip-
rocal bands predicted by topological band theory usually
appear as surface modes attached to two-dimensional (2D)
or three-dimensional (3D) bulk photonic systems. To make
the device more compact, approaches based on symmetry
breaking in waveguide structures usually suggest complex
geometries such as helical structures [5,10–12].

Spectral reciprocity, ω(−k) = ω(k), can be protected by
time-reversal symmetry (T ) and spatial symmetries such as
inversion (P) [3,4], in addition to the local symmetries in
permittivity or permeability tensors (εT = ε or μT = μ). It is
easy to understand that T symmetry can be broken by external
static magnetic field [5], while P symmetry can be broken by
using asymmetric structures such as chiral structures [5,10–12]
or a symmetrical structure under external magnetic field of
specific orientation [13]. However, spectral reciprocity can
also be protected by a combination of symmetries such as
spatial-temporal symmetries, which add more complexities in
the design of nonreciprocal waveguides.

In this paper, we use compact nonchiral magnetized
plasmonic waveguides consisting of only spherical particles
to demonstrate how spectral reciprocity can be protected by
a rotation-time-reversal (RT ) symmetry (i.e., time reverse
followed by rotation of 180◦ about propagation x axis). In
the RT -symmetry-broken case, we show that asymmetric dis-
persion relation can be supported. By coupling the hybridized
bands with light lines, this simple system further supports
one-way wave propagation and energy transmission within a
finite range of frequencies.

II. MODEL AND METHODS

We start by considering a magnetized diatomic system as
shown in Fig. 1. The chain contains two types of metallic
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nanoparticles with different sizes, namely particle A and B,
with the same dielectric constant ε(ω)/ε0. The two nanoparti-
cles formed “atoms” of a unit cell, and hence it is regarded as
a dimer chain. As long as the nanoparticles are not too close
together, the electromagnetic responses of the nanoparticles
can be modeled by electric dipoles [14]. We denote the dipole
moment of the nanoparticle in the nth unit cell as pn;σ , where
σ = A or B for type A and B particles, respectively. These
dipole moments satisfy a set of self-consistent equations,
known as the coupled dipole equations [14–16],∑

m,σ ′

(
α−1

σ δnmδσσ ′ − Gnmσσ ′
)
pm;σ ′ = Eext

n;σ , (1)

in which m runs from −N to N , σ ′ = A or B, δnm is the
Kronecker delta function, and Eext

n;σ is the external driving field.
We note that ασ is the quasistatic polarizability with radiation
correction of nanoparticle σ , and Gnmσσ ′ is interaction between
dipoles pm;σ ′ and pn;σ . Expressions are given in Appendix A 1
[see Eqs. (A1) and (A4)].
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FIG. 1. (Color online) Geometry of a diatomic chain system. The
chain contains two metallic nanoparticles in a unit cell, denoted by
A and B. They can be elliptical or spherical, dependent on the values
of semimajor axis aσ

x and semiminor axis aσ
y , where σ = A or B. In

the case of spherical, aσ
x = aσ

y . A and B are separated by distance ty .
External static magnetic field B is applied in z direction. Length of
a unit cell is d . The chain breaks time-reversal (T ), inversion (P),
and rotation-time-reversal (RT ) symmetry. RT is defined by time
reversal followed by rotating the structure about the chain axis by
180◦.
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We first consider the case without external driving field
(Eext

n;σ = 0) and N → ∞. Since the system is spatially periodic,
by Bloch’s theorem we can write pm;σ = pk;σ eikmd , where k is
a wave vector. This simplifies Eq. (1) into a 6 × 6 matrix form
[see Eq. (A3)]:

Mk(ω)

[
pk;A

pk;B

]
= 0, (2)

where

Mk(ω) =
[
α−1

A 0
0 α−1

B

]
−

[
GkAA GkAB

GkBA GkBB

]
. (3)

In the above Gkσσ ′ = ∑
m G0mσσ ′eikmd is the interaction

between nanoparticles σ and σ ′ in k space. Instead of solving
det Mk(ω) = 0 to obtain the dispersion relation [10,14,17],
we may apply a method similar to the eigenresponse theory
to evaluate the dispersion relation [15,18]. We plot 1/|λ| as
a function of k and ω, where |λ| = |λ(k,ω)| is the smallest
absolute value of the eigenvalue of the matrix Mk(ω). This
quantity gives a huge value when there is resonance, and is
plotted in Fig. 2(a). Note that the dynamic dipolar Green’s
function [10] is used, and an infinite series in the interaction
up to |m| = 120.

III. FORMATION OF NONRECIPROCAL BANDS

In Fig. 2(a), we show the geometry and corresponding
dispersion relation for the four in-plane modes in subpanels (i)
and (ii). This case considers that nanoparticles are spherical
with radius aA

x = 0.35d and aB
x = 3

√
0.5aA

x , inner particle sepa-
ration ty = 0.75d, and plasma wavelength λd ≡ c/(2πωp) =

10d, where ωp and c are plasma frequency and light speed
in vacuum. Cyclotron frequency ωc = q|B|/m = 0.005ωp, in
which B, m, and q are external static magnetic field, electron
mass, and electron charge. As ωc ∝ |B|, it is treated as a
variable to indicate the magnitude of B. Furthermore, for
simplicity, a simple lossless Drude model is used [19], and
bands related to pz

k;σ , the z component of pk;σ , are not shown.
This is because B is in the z direction, so px

k;σ are coupled
with p

y

k;σ but not pz
k;σ , hence the bands can be separated. Note

that the two solid blue lines are light lines, the dispersion of
free-photon modes. The region within the light lines is the light
cone; the modes in the light cone are radiative and therefore
not sustainable [10,20,21].

Figure 2(a) shows a case with nonreciprocal (asymmetric)
bands. For comparison, using the same formalism, a case with
reciprocal (symmetric) bands is shown in Fig. 2(b). This is a
case where nanoparticles B and A are on the same axis, and
the horizontal inner separation is tx = 0.425d ′, where d ′ is the
length of the unit cell in (b). We set d ′ = 2d, twice that in (a);
therefore the light cone in (b) is bigger than that in (a). Both (a)
and (b) share the same nanoparticles A and B, cyclotron fre-
quency ωc, and plasma wavelength λd (λp = 5d ′ in this case).

The nonreciprocal bands in Fig. 2(a), subpanel (ii), predict
that only guided modes with positive group velocities are
allowed within the range �ω. This results in one-way propaga-
tion behavior, which can be utilized as an isolator. Note that the
operation frequency �ω is relatively broad, for example, about
50 times wider than the structure suggested in Ref. [10]. The
range of operation frequency is about 1 × 10−4ωp in Ref. [10],
while we have about 5 × 10−3ωp. The isolator also has a lower
requirement on the external magnetic field, where cyclotron
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FIG. 2. (Color online) Dispersion relations for an infinitely long and magnetized diatomic chain system without RT symmetry (a) and
with RT symmetry (b). Subpanel (i) is the chain geometry, while (ii) is the corresponding dispersion relation obtained by density plot of 1/|λ|,
where λ is the smallest eigenvalue of Mk(ω) defined in Eq. (2). Panel (a), subpanel (ii), shows nonreciprocal bands [ω(k) �= ω(−k)], while
only reciprocal bands [ω(k) = ω(−k)] can be seen in panel (b), subpanel (ii). Bands related to the z component are separated and not shown
here. The blue solid lines are dispersions of free-photon modes. Inner particle separation in (a) is ty = 0.75d , and in (b) is tx = 0.425d ′, where
d ′ = 2d . Furthermore, panel (a), subpanel (ii), can be understood as hybridization of 4 bands, which are schematically drawn with dashed lines
for guidance. Each dashed line represents different oscillation modes at k = 0, which is labeled by arrows at the middle. �ω is the range at
which only one-way propagation modes are allowed.
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frequency ωc ∼ 0.005ωp is about 10 times smaller than that
used in Refs. [10,11], and about 100 times smaller than that in
Ref. [22]. A higher resolution of the one-way region as well
as the estimation of �ω are discussed in Sec. V C.

We notice that the nonreciprocal bands in Fig. 2(a) are
obtained by means of the simultaneous violation of certain
symmetries, P , T , and RT symmetries, whereas the only
breaking of P and T still makes the system reciprocal shown
in Fig. 2(b). We will discuss the relation between reciprocity
and related symmetries below.

A. Reciprocity protected by P and T symmetry

Given that pn;σ (t) = pk;σ eiknd−iωt is a solution of a system
with frequency ω and wave vector k, the spatially inverted state
will be P[pn;σ (t)] = P(pk;σ )e−iknd−iωt . P turns (x,y,z) into
(−x,−y,−z), flips the direction of vector quantities, but does
not modify ω. If the system has P symmetry, the inverted state
will also be the solution of the system. The factor e−iknd−iωt of
the new solution means that it is a solution with frequency ω

but wave vector −k. This tells us that we are always able to find
a solution with frequency ω but wave vector −k if the system
has P symmetry, and thus the dispersion must be symmetric
[ω(k) = ω(−k)].

The time-reversed state is obtained by taking the complex
conjugate of the frequency component (see Ref. [23], and also
Appendix A 5),

T [pn;σ (t)] = (pk;σ eiknd )∗e−iωt = p∗
k;σ e−iknd−iωt . (4)

This will be another solution if the system has T symmetry.
Similarly, it is a solution with frequency ω but wave vector
−k, as it has the factor e−iknd−iωt . Using arguments as those
in P symmetry, we know the bands are symmetric as long as
there is T symmetry. We see that, from Fig. 3, the direction
of external B will be flipped if T is operated on the system.
Thus, the presence of external B breaks T symmetry, as the
transformed one is not identical to the initial one.

Note that a lossy system will also break T symmetry.
We assumed that the material is lossless, and the effect of
radiation loss is compensated if we count the contributions
from all nanoparticles in the infinite chain system [25]. So the
T symmetry will be broken by external B only.

x

y

......

External static 
magnetic field B

......

T

B

......

R

B ... ...

... ...

... ...

x

y
B

B

B

T

R

(a) (b)

FIG. 3. RT acts on the diatomic chain systems shown in Fig. 2. T
is time-reversal operation, which flips the direction of B when acting
on the system. This can be understood as the motion of electrons
being reversed [24]. R is π rotation about the x axis. It exchanges the
positions of A and B and flips the direction of B in case (a), and only
flips B in case (b). RT is the operation T followed by R. For (a), as
the final system is not identical to the initial one, the chain does not
have RT symmetry. For (b), the final system is identical to the initial
one, and the chain has RT symmetry.

B. Reciprocity protected by RT symmetry

R is the π -rotation operator, which rotates the system with
180◦ about the x axis. In the case of the diatomic chain system
shown in Fig. 1, the direction of external B is flipped, and the
positions of A and B are exchanged; see Fig. 3. RT is the
operation T followed by R. When RT acts on the solution,
we have

RT [pn;σ (t)] = R(p∗
k;σ e−iknd−iωt ) = R(p∗

k;σ )e−iknd−iωt .

(5)

Here we used the property that R is not related to position x

and time T . Again, if the system has RT symmetry, Eq. (5)
will be a solution with frequency ω but wave vector −k. This
shows that the bands are symmetric about k.

The matrix representation of R depends on system geom-
etry. For the chain system shown in Fig. 2(a), R not only
exchanges the positions of A and B, but also rotates the
vector quantities when acting on the states. Denoting the 3 × 3
rotation matrix which rotates a vector about the x axis with
180◦ by R = diag(1,−1,−1), then the RT transformed state
is

RT [pn;σ (t)] =
[

0 R
R 0

][
p∗

k;A
p∗

k;B

]
e−iknd−iωt . (6a)

For the chain system shown in Fig. 2(b), R does not
exchange positions of A and B, so the RT transformed state
is

RT [pn;σ (t)] =
[

R 0
0 R

][
p∗

k;A
p∗

k;B

]
e−iknd−iωt . (6b)

For the system of Fig. 2(a), the external B breaks the T
symmetry, and simultaneously the nonidentical nanoparticles
A and B break the P and RT symmetry; see Fig. 3. The
nonreciprocal band could then be obtained as shown in
Fig. 2(a), subpanel (ii). In contrast, when RT acts on the
system shown in Fig. 2(b), B is flipped twice and remains
unchanged. Meanwhile, particles A and B are on the x axis,
R would not modify their positions, and thus the transformed
system is identical to the nontransformed one, which means it
has RT symmetry. More details in quasistatic approximation
is provided in Appendix A 6. We get the reciprocal dispersion
relation in Fig. 2(b), subpanel (ii).

Therefore, in order to obtain nonreciprocal bands in a 1D
magnetized chain system, it is essential to break all related
symmetries, including P , T , and RT symmetries. It should
be noted that the R operator above can be replaced by
reflection-in-y in our example. Similarity between π -rotation
and reflection-in-y is discussed in Appendix A 7.

IV. SYMMETRY OPERATORS ON DIATOMIC
CHAIN SYSTEM

A system is said to have 	 symmetry if it is invariant
under transformation, 	Mk(ω)	−1 = Mk(ω). Here we show
explicitly that the T and RT operate on the coupled dipole
equation Mk(ω). For simplicity, we consider the system shown
in Fig. 1, employ the quasistatic dipolar Green’s function, use
a simple lossless Drude model, and neglect the radiation term
in polarizability.
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A. Coupled dipole equation in quasistatic limit

Quasistatic expressions are obtained by taking free-space
wave vector k0 → 0, so the polarizability, from Eq. (A1), is

α′
σ

−1 = 1

ε0Vσ

⎡
⎣Lσ +

⎛
⎝ −ω2 iωωc 0

−iωωc −ω2 0
0 0 −ω2

⎞
⎠ 1

ω2
p

⎤
⎦,

(7)

in which we are assuming the lossless model, with γ = 0.
Symbols are defined under Eq. (A1). Also, the quasistatic
dipolar Green’s function, from Eq. (A4), is

G′
kσσ ′ ≡ lim

k0→0
Gkσσ ′ = 1

4πε0

∑
m�=0

Cσσ ′(m)
eikmd

r3
0mσσ ′

, (8)

where for the case shown in Fig. 1, relative position vectors
r0mσσ ′ are defined by Eq. (A6), and

CAA(m) = CBB(m) =
⎛
⎝2 0 0

0 −1 0
0 0 −1

⎞
⎠, (9a)

CAB(m) =

⎛
⎜⎜⎝

3m2d2

m2d2+t2
y

− 1 3mdty
m2d2+t2

y
0

3mdty
m2d2+t2

y

3t2
y

m2d2+t2
y

− 1 0

0 0 −1

⎞
⎟⎟⎠, (9b)

CBA(m) = CAB(−m). (9c)

The above was obtained by putting Eq. (A6) into (A5) in
Appendix A 3. Some properties of G′

kσσ ′ are discussed in
Appendix A 4.

B. T and RT transformation on the system

When T operates on the system, it turns k into −k and takes
a complex conjugate (see also Appendix A 5):

T Mk(ω)T −1 = M−k(ω)∗. (10)

In the quasistatic limit, Eq. (10) can be written as

T
(
α′

σ
−1 − G′

kσσ ′
)
T −1 = (

α′
σ

−1
)∗ − G′

kσσ ′ . (11)

Therefore, T Mk(ω)T −1 = Mk(ω) only if (α′
σ

−1)∗ = α′
σ

−1,
which means ωc = 0. That is, the system has T symmetry
if external B = 0.

For the RT transformation, first we notice that R−1 = R,
then (RT )Mk(ω)RT −1 = RT Mk(ω)T R. In the quasistatic
limit for the case shown in Fig. 1, with Eq. (10), we have

RT α′
σ

−1δσσ ′T R

=
[

0 R
R 0

][
α′

A
−1∗ 0
0 α′

B
−1∗

][
0 R
R 0

]

=
[
α′

B
−1 0

0 α′
A

−1

]
.

(12a)

Similarly,

RT G′
kσσ ′T R = G′

kσσ ′ . (12b)

Equation (12) implies that the RT transformed system is
not generally identical to the nontransformed one. So the chain
in Fig. 1 hasRT symmetry only if α′

A = α′
B , which is not true.

The dispersion relation can be obtained by solving deter-
minant equation det [Mk(ω)] = 0. Neglecting z components,
Appendix A 4 shows that it is a polynomial with G′

kAB,xy up to
second order, and G′

kAB,xy is the only term which is odd in k

in the determinant polynomial. Nonreciprocal dispersion only
comes out when the polynomial is not an even function of k,
which means the coefficient of G′

kAB,xy , given by

−2iωωc

ω2
pε0

(
1

VA

− 1

VB

)
(G′

kAA,xxG
′
kAB,yy − G′

kAA,yyG
′
kAB,xx),

is nonzero. It is the case that both ωc �= 0 and VA �= VB ; that
is, external magnetic field B �= 0 and the particles A and B are
not identical. Therefore, T and RT symmetry should not be
present in our case of Fig. 1.

V. ONE-WAY WAVE PROPAGATION
AND ENERGY TRANSMISSION

The nonreciprocal bands in Fig. 2(a), subpanel (ii), predict
that only guided modes with positive group velocities are al-
lowed within the range �ω, which gives one-way propagation
behavior. We demonstrate the propagation behavior and energy
transmission of the magnetized diatomic chain by considering
its finite version in this section.

A. One-way wave propagation

For a finite magnetized diatomic chain system containing
N unit cells, Eq. (1) can be written in a matrix equation
form M(ω)p = Eext, where M(ω) is a (12N + 6) × (12N + 6)
square matrix vectorized from Mnmσσ ′ = α−1

σ (ω)δnmδσσ ′ −
Gnmσσ ′ . p and Eext are column vectors vectorized from
pm;σ ′ and Eext

n;σ , where each has (2N + 1) × 2 × 3 = 12N + 6
elements (2N + 1 unit cells, 2 atoms per unit cell, and 3 spatial
dimensions in our system). Since M(ω) is known, and Eext

depends on our choices, the excited dipole moments p can be
found by evaluating the inverse:

p = M(ω)−1Eext. (13)

We study the finite version of magnetized diatomic chain in
Fig. 2(a), with N = 46 and plasma collision frequency γ = 0.
Two types of driving polarizations are applied only to the
site n = 0, coherent in the x direction, or coherent in the y

direction; see Fig. 4(b), subpanels (i) and (ii). In both cases,
Eext

n;σ = 0 for n �= 0, while Eext
0;A = Eext

0;B = (1,0,0)T for case (i),
and Eext

0;A = Eext
0;B = (0,1,0)T for case (ii).

The norm of excited dipole moments by three driving
frequencies is shown in Fig. 4(a). Subpanels (1) and (2)
correspond to coherent driving in the x direction and y

direction. From Fig. 4(a), we see the system supports two-
way propagation at ω = 0.555ωp, as there are excitations
throughout the chain; and supports one-way propagation at
ω = 0.546ωp, as only spheres on the right are excited; and no
supported modes at ω = 0.538ωp, as there is no excitation on
both sides. This is reasonable, as the slope of the dispersion
relation is the group velocity of the coupled plasmon mode.
From Fig. 2(a), we see that at ω = 0.546ωp, only the mode
with positive k is allowed, and therefore only the mode with +x

propagation is supported at this frequency. Note that reversing
the propagation direction can be easily done by just flipping
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FIG. 4. (Color online) (a) Dipole moments excited on a finite
magnetized diatomic chain system (93 cells). An external driving
electric field is applied to the middle of the chain (n = 0) with
driving frequency (i) ω = 0.555ωp , (ii) 0.546ωp , (iii) 0.538ωp ,
indicated by dotted lines in Fig. 2(a). The subpanels in each frequency
correspond to two types of driving polarization, coherent in the x or y

direction, labeled by (1) and (2). Note that at ω = 0.546ωp , one-way
propagation occurred, as only modes with positive k are allowed.
(b) External driving electric polarization. (i) Coherent in x direction;
(ii) coherent in y direction.

the direction of the external static magnetic field; this gives us
a switchable optical isolator.

B. One-way energy transmission

Energy transmission is usually hard to define in plasmonic
waveguides. Here we infer the transmission of the diatomic
chain shown in Fig. 1 by reading the dipole moments pn;σ

excited on nanoparticles. Since energy density is proportional
to the square of electric field |Re(E)|2, and since dipole
moment satisfies p = αE, the time-averaged energy density of
a particle σ at cell n is thus proportional to |pn;σ |2 ≡ pn;σ · p∗

n;σ ,
which gives the sense of energy transmission. We consider the
quantity defined by

〈|pn|2〉 = 1

9

n+4∑
m=n−4

(|pm;A|2 + |pm;B |2).

In the above we picked 4 cells near the nth for spatial average.
One can improve by picking more cells, but in that case the
chain has to be longer, or this is no longer a local quantity
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2
35 or 35n=−p

FIG. 5. (Color online) Energy transmissions to the left end (n =
−35) or the right end (n = 35). Energy density is proportional to
the quantity 〈|pn|2〉 (defined in text), and is plotted in the figure. Left
(right) end quantity is denoted by the blue (red) curve and uses the left
(right) upper horizontal frame ticks. The magnetized diatomic chain
dispersion relation is drawn as a background for reference. Panels
(a)–(d) correspond to different external driving polarizations, which
are pictured in the subpanels (modes 1–4). One-way propagation
property is demonstrated at ω ∼ 0.546ωp , where red curve is finite but
blue curve is zero. A little material damping γ = 0.0004ωp is added
to the nanoparticles here, which is to reduce extreme fluctuations so
that excitations can be seen more clearly.

at cell n. This quantity is displayed in Fig. 5. There are 4
driving polarization modes to excite the system, two in phase
and two out of phase [26], denoted by modes 1 to 4 as shown
in the subpanels of Fig. 5. It shows that there is no energy
transmission within band gaps, since 〈|p35|2〉 = 〈|p−35|2〉 = 0
at ω ∼ 0.54ωp and ω ∼ 0.61ωp. The one-way property can
be seen at ω = 0.546ωp in Figs. 5(a)–5(c), in which the red
curve is finite while the blue curve is zero, implying that there
is energy transmission to the right end but no transmission to
the left end.

From Fig. 5 we also see that different modes excite different
frequency ranges. Polarization modes 1 to 4 correspond
to ω > 0.55ωp, ω < 0.58ωp, ω < 0.56ωp, and ω > 0.62ωp,
respectively. This can be explained by using the band hy-
bridization model (discussed in the next section), which is
shown in Fig. 2(a), subpanel (ii).

C. One-way region dispersion and propagation length

In this subsection, we discuss the properties near the
one-way region of Fig. 2(a), subpanel (ii), in more detail and
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FIG. 6. (Color online) Higher resolution of the density plot for
the one-way region shown in Fig. 2(a), subpanel (ii). The brightness of
a point reflects the electric response of the structure, which indicates
how “easily” a mode can be excited. The two solid light blue lines are
light lines. The blue and the red solid lines are the left and right energy
transmissions excited by mode 3, which is a higher resolution version
of Fig. 5(c). The horizontal dashed line represents ω/ωp = 0.546,
which cuts the dispersion at point Q and the tail on the left. The
modes at the tail are difficult to excite; therefore a mode with positive
group velocity (positive slope, indicated by the short solid white line)
results. Range of one-way frequency �ω can also be estimated by
reading the transmission at which approximately left transmission is
zero while right transmission is finite.

estimate the propagation length of the one-way mode in the
presence of material absorptive losses. The high-resolution
plot near this one-way region is shown in Fig. 6 with bright
narrow lines indicating the plasmon modes. In the figure, the
brightness reflects the strength of the mode. The nearly vertical
tails of the dispersion bands near the light lines are the results
from interacting with the free photons [15,27]. It should be
noted that the tails of bands which align very much with the
light line are hard to excite because of their tiny residues of
poles [27,28]. In Fig. 6, it is also shown that the quasimodes
inside the light cone are so poor in mode quality (as indicated
by the spreading of brightness in the density plot). As a result,
near the one-way region, only one mode of the well-defined
propagation direction can be effectively excited by a localized
source. For reference, higher resolution of transmission by
excitation mode 3 is also shown in Fig. 6 (the solid blue and red
lines). The range for the one-way frequency �ω ∼ 0.005ωp

(also marked in Fig. 6) is estimated from the strong asymmetric
transmission region where the amount of dipole moments
propagating to the right is much higher than that to the left.

To estimate the propagation length of the one-way mode
(point Q in Fig. 6) in the presence of material absorptive
losses, we follow the method in Ref. [29]. We consider
plasma collision frequency γ = 0.002ωp in the Drude model,
which is appropriate for silver. By putting kd = 0.216 to
the equation detMk(ω) = 0, the complex root is found to
be ω/ωp = 0.546 − 0.000963i, where the inverse of the
imaginary part is the lifetime of the plasmon mode and
the propagation length can be estimated by multiplying the
lifetime by the group velocity dω/dk ∼ 0.015ωpd [slope at

Q = d(ω/ωp)/d(kd/2) ∼ 0.03]. As a result, the propagation
length = 1

0.000963ωp
× dω

dk
= 15.6d.

VI. HYBRIDIZATION OF BANDS IN DIATOMIC CHAIN

There are four surface plasmon resonant modes for isolated
dimer particles, two transverse modes (in-phase and antiphase
oscillations) and two longitudinal modes [30]. The four modes
form dispersion bands when the dimer particles are duplicated,
becoming a diatomic chain. After that, the dispersion relation
of the magnetized diatomic chain can be understood as a result
of four-band hybridization, colored in blue, yellow, red, and
green in Fig. 2(a), subpanel (ii). We can see the transition of
the four bands in Fig. 7.

For better understanding of the hybridization, here we
consider the diatomic chain formed by ellipsoids. Spheres
in Fig. 1 are replaced by ellipsoids with varying aσ

x and
aσ

y , where ty = 0.75d. Figure 7(a), subpanels (i)–(iv), show
the dispersion relations with increasing aσ

y . In these 4 cases,
aA

x = 0.35d, VB/VA = 0.5, and B = 0. Corresponding unit
cell structures are depicted in Fig. 7(b), subpanels (i) to (iv).
Figure 7(a), subpanel (i), shows four separated bands. The
lower two bands move up and cross the upper two bands when
the particles are more spherical, as shown in subpanels (i)–(iv).
If one further applies external static magnetic field to case (iv)
such that ωc = 0.005ωp, we have case (v), which is the case

Plasmon wave vector kd/2
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m
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nc

y
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ω
ω/
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(iv) (v) (vi) 0
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1
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same spheres with
external magnetic field

same spheres with
external magnetic field

(i) (ii) (iii) (iv) (v)
(b) Unit cell configurations 

(vi)

With external 
magnetic field

Identical spheres
with external 
magnetic field

(spherical)(ellipsoidal)
0.250A
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ya d= 0.325A

ya d= 0.350A
ya d= 0.350A

ya d=

(a) 

0.250a d= 0.300a d= 0.325a d=

0.350a d=
0.350a d=

FIG. 7. (Color online) (a) Dispersion relations of diatomic chains
formed by different ellipsoids. Corresponding unit cell configurations
are shown in (b). Moving from (i) to (vi), semiminor axes aσ

y are
increased one by one, so nanoparticles become more and more
spherical. B = 0, aA

x = 0.35d , and VB/VA = 0.5 in (i) to (vi). From
(i) to (vi), the lower two bands move upwards, cross the upper two
bands, and hybridize each other. Note that (iv) is the case that A

and B are spherical. (v) is different from (iv) by adding external
static magnetic field (ωc = 0.005ωp), resulting in a nonreciprocal
dispersion. In (vi), A and B are identical spheres with aA

x = aB
x =

0.35d . Although B �= 0, the dispersion is reciprocal as it is protected
by P symmetry.
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in Fig. 2(a). Thus, in cases (i)–(v), we see the deformation
of bands, and so conclude that the dispersion in case (iv) of
Fig. 7 is formed by hybridization of the four bands. Figure 7(b),
subpanel (vi), shows the case where nanoparticle B is identical
to nanoparticle A; that is, aσ

x = aσ
y = 0.35d, where σ = A

or B. This is obtained by replacing all particles B by A in
Fig. 7(b), subpanel (v). The bands in Fig. 7(b), subpanel (vi),
are symmetric, as it has both RT and P symmetry. From
these we know the exitance of B and nonidentical spheres are
essential to achieve nonreciprocal bands.

The hybridization model also explains the excitations in
Fig. 5. Figure 2(a), subpanel (ii), shows that the upper two
bands contain parts that are original from the red dashed
band, and therefore the excitation by polarization mode 1 is
prominent at the upper two bands, as found in Fig. 5(a). This
is because the oscillation mode of the red dashed band at
k = 0 is the same as mode 1. Similarly, the lower two bands
contain parts that are original from the green dashed band,
and hence excitation by polarization mode 2 is prominent at
the lower two bands.

VII. CONCLUSIONS

To conclude, we used a compact nonchiral magnetized
plasmonic chain to demonstrate the crucial role of RT sym-
metry in the design of these subwavelength waveguides with
nonreciprocal dispersion [ω(−k) �= ω(k)]. The hybridization
among four plasmon modes and free-photon modes gives rise
to a frequency range where only guided modes in one direction
are allowed. While we are considering a weaker magnetic field,
this operation frequency range is already much wider than that
in Ref. [10]. Matrix representations of the symmetry operators
were used to explain explicitly how the spectral reciprocity
is protected by T , P , and RT symmetries. The results may
provide a clear guidance on the design of one-way waveguides.
After the review process of our article, we became aware of
another article considering only spatial symmetries of similar
physical systems [31].
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APPENDIX

1. Polarizability and Drude model in external B

The inverse polarizability of an ellipsoidal particle σ (aσ
x �

aσ
y = aσ

z ) is given by [10,32,33]

α−1
σ = 1

ε0V

[(
ε(ω)

ε0
− I

)−1

+ Lσ

]
− ik3

0

6πε0
I, (A1)

where volume Vσ ≡ 4πaσ
x aσ

y aσ
z /3, I is identity 3 × 3 ma-

trix, k0 is light wave vector in free space, and pa-
rameter Lσ depends on the particle’s shape, which is
given by Lσ = diag(Nx,Ny,Nz). For spherical particles,

Nx = Ny = Nz = 1/3. For ellipsoidal particles, Nx = (1 +
e2)[ln 1+e

1−e
− 2e]/(2e3) and Ny = Nz = (1 − Nx)/2, where

e =
√

1 − aσ
y

2/aσ
x

2 . As we consider nanoparticles A and B

are of the same shape in this paper, so LA = LB . The last term
with k3

0 accounts for the radiation correction [34], which will
vanish in the quasistatic approximation.

With the Drude model, the dielectric tensor is in the
form [17,35]

ε(ω)

ε0
=

⎛
⎝ εxx εxy 0

−εxy εyy 0
0 0 εzz

⎞
⎠, (A2)

in which εxx = εyy = 1 − ω2
p(ω + iγ )/[ω(ω + iγ )2 − ωω2

c )],
εxy = −iω2

pωc/[ω(ω + iγ )2 − ωω2
c ], εzz = 1 − ω2

p/(ω2 +
iγ ω). γ , ωp, and ωc are plasma collision frequency, plasmon
frequency, and cyclotron frequency. In the case without
material loss, λ = 0, and ε(ω) becomes real. More terms
have to be added to the static polarizability if one wants an
accurate numerical evaluation on lossy materials, but it is not
of interest in this paper. Further discussions can be found in
Chap. 8 of Ref. [35].

2. Coupled dipole equation in k space

In Eq. (1), defining Mnmσσ ′ = α−1
σ δnmδσσ ′ − Gnmσσ ′ ,

putting pm;σ ′ = pk;σ ′eikmd , and in the case Eext
n;σ = 0, we have

∑
σ ′

(∑
m

Mnmσσ ′eikmd

)
pk;σ ′ = 0.

Multiplying both sides by e−iknd , and noticing that Mnmσσ ′

depends on m − n only, we have Mnmσσ ′ = M0,m−n,σσ ′ , and
thus

∑
σ ′

(∑
m

M0,m−n,σσ ′eik(m−n)d

)
pk;σ ′ = 0.

As the sum m runs from −∞ to ∞, we have

∑
σ ′

(∑
m

M0mσσ ′eikmd

)
pk;σ ′ = 0.

Writing it in matrix form, we have

∑
m

{[
α−1

A 0
0 α−1

B

]
δ0m

−
[

G0mAA G0mAB

G0mBA G0mBB

]
eikmd

}[
pk;A

pk;B

]
= 0. (A3)

This gives Eq. (2).

3. Dynamic dipolar Green’s function for diatomic chain system

The dipolar coupling between the particle σ ′ in the mth
cell and the particle σ in the nth cell depends on m − n

only, i.e., Gnmσσ ′ = G0,m−n,σσ ′ , so we only show elements
G0mσσ ′ here. Also, the position vector of the particle σ ′ in the
mth cell is denoted by rmσ ′ . The relative position vector is
then r0mσσ ′ ≡ r0σ − rmσ ′ , and the corresponding unit vector is
therefore ρσσ ′(m) ≡ r0mσσ ′/r0mσσ ′ . Spatial components of the

165430-7



C. W. LING, JIN WANG, AND KIN HUNG FUNG PHYSICAL REVIEW B 92, 165430 (2015)

unit vector are denoted by ρσσ ′(m)x , ρσσ ′(m)y , and ρσσ ′(m)z.
The dynamic coupling is well known and is given by [10]

G0mσσ ′ = eik0r0mσσ ′

4πε0
×

[
Aσσ ′(m)

k2
0

r0mσσ ′

+ Cσσ ′(m)

(
1

r3
0mσσ ′

− ik0

r2
0mσσ ′

)]
(A4)

for m �= 0 together with σ ′ �= σ ; otherwise G00σσ = 0, as a
particle is not interacting itself by generating electric field. In
the above, ε0 is free-space permittivity, and k0 = ω/c is the
light wave vector in free space. Matrices in the above are

Aσσ ′(m)

=
⎛
⎝ ρσσ ′(m)2

y −ρσσ ′(m)yρσσ ′(m)x 0
−ρσσ ′(m)xρσσ ′(m)y ρσσ ′(m)2

x 0
0 0 1

⎞
⎠

and

Cσσ ′(m)

=

⎛
⎜⎝

3ρσσ ′(m)2
x − 1 3ρσσ ′(m)xρσσ ′(m)y 0

3ρσσ ′(m)yρσσ ′(m)x 3ρσσ ′(m)2
y − 1 0

0 0 −1

⎞
⎟⎠.

(A5)

For the system shown in Fig. 1 or Fig. 2(a), subpanel (i),
relative position vectors are

r0mAA = r0mBB = (−md,0,0)T,

r0mAB = (−md,−ty,0)T, (A6)

r0mBA = (−md,ty,0)T.

For the system shown in Fig. 2(b), subpanel (i), relative
position vectors are

r0mAA = r0mBB = (−md,0,0)T,

r0mAB = (−md − tx,0,0)T, (A7)

r0mBA = (−md + tx,0,0)T.

4. Properties of quasistatic Green’s function G′
kσσ ′

for system in Fig. 2(a)

There are some properties about the matrix G′
kσσ ′ regarding

to the system in Fig. 1. From Eq. (8), one can see

G′
−kσσ ′

∗ = G′
kσσ ′ . (A8)

Also, from Eq. (9a) we know that G′
kAA = G′

kBB , and they are
both diagonal, so we have

RG′
kAAR−1 = G′

kAA = G′
kBB,

RG′
kBBR−1 = G′

kBB = G′
kAA,

(A9a)

where R = diag(1,−1,−1) is the rotation matrix about the x

axis with 180◦. Furthermore, Eq. (9c) tells us that off-diagonal
elements in G′

kAB and G′
kBA are purely imaginary, and Eq. (9b)

implies G∗
kAB = GkBA, so we have

RG′
kABR−1 = G′

kAB
∗ = G′

kBA,

RG′
kBAR−1 = G′

kBA
∗ = G′

kAB.
(A9b)

With Eqs. (A8) and (A9), we have Eq. (12b).

Elements in G′
kσσ ′ are functions of k. By expanding the

terms and Eq. (A9), we see that G′
kAA, G′

kAB,xx , and G′
kAB,yy

are purely real and even in k, while G′
kAB,xy is purely

imaginary and odd in k. Hence, we deduced that, neglecting z

components,

G′
kAA = G′

kBB =
(

G′
kAA,xx 0

0 G′
kAA,yy

)
,

G′
kAB =

(
G′

kAB,xx G′
kAB,xy

G′
kAB,xy G′

kAB,yy

)
,

G′
kBA =

(
G′

kAB,xx −G′
kAB,xy

−G′
kAB,xy G′

kAB,yy

)
.

Therefore, the determinant

|Mk(ω)| =
∣∣∣∣∣α

′
A

−1(ω) − G′
kAA −G′

kAB

−G′
kBA α′

B
−1(ω) − G′

kAA

∣∣∣∣∣
is a polynomial with G′

kAB,xy up to second order.

5. The T operator

Regarding Eq. (4), noticing T −1 = T , we have

∑
m

T −1MnmT pm =
∑
m

T MnmT pke
ikmd

= T
∑
m

Mnmp∗
ke

−ikmd

= T e−iknd
∑
m

eikndMnmp∗
ke

−ikmd

= T
∑
m

Mnme−ik(m−n)dp∗
ke

−iknd

= T M−kp∗
ke

−iknd = M∗
−kpke

iknd .

In the above, we used the fact that Mnm = M0,m−n and defined
Mk = ∑

m M0meikmd . The last line proves Eq. (10).

6. The RT operator on diatomic chain system in Fig. 2(b)

The double chain in Fig. 2(b) has RT symmetry. Here we
show that Mk(ω) commutes with RT in the quasistatic limit.
By Eqs. (6b) and (11),

(RT )α′
σ

−1δσσ ′(RT )−1

=
[

R 0
0 R

]
T

[
α′

A
−1 0

0 α′
B

−1

]
T

[
R 0
0 R

]

=
[
α′

A
−1 0

0 α′
B

−1

]
= α′

σ
−1δσσ ′ .

Also, by putting Eq. (A7) into (A5), we see Cσσ ′(m) =
diag(2,−1,−1), and thus G′

kσσ ′ are diagonal. As a result,
R−1Gkσσ ′R = Gkσσ ′ , and we have

(RT )Gkσσ ′(RT )−1 = Gkσσ ′ .
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7. Comments on π -rotation (R) symmetry and reflection-in- y
(P y) symmetry

We note that for the structure we have considered, the
diatomic chain of plasmonic spheres, reflection-in-y followed
by time-reverse operation (PyT ), in which Py turns (x,y,z)
into (x,−y,z), has the same effects on the chain structure
as RT on the structure. That is, they switch the position
atom A and B, but the magnetic field remains unchanged.

This operational symmetry has to be avoided in order to
have nonreciprocal bands, which means both PyT and RT
symmetry have to be avoided at the same time in order to
break the spectral reciprocity. To describe this symmetry, we
may refer to it as the result of the PyT symmetry, or the
RT symmetry, but neither operation can be regarded as more
fundamental. RT symmetry is chosen for presentation in our
conclusion because we believe rotation is easier to physically
visualize, and thus simpler to follow.
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