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We studied the square-octagonal lattice of the transition metal dichalcogenide MX2 (with M = Mo, W; X = S,
Se, and Te), as an isomer of the normal hexagonal compound of MX2. By band-structure calculations, we
observe the graphene-like Dirac band structure in a rectangular lattice of MX2 with nonsymmorphic space group
symmetry. Two bands with van Hove singularity points cross each at the Fermi energy, leading to two Dirac
cones that locate at opposite momenta. Spin-orbit coupling can open a gap at these Dirac points, inside which
gapless topological edge states exists as the quantum spin Hall (QSH) effect, the 2D topological insulator.
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Since the discovery of graphene [1,2], research about
two-dimensional (2D) materials has been widely explored
in both theory and experiment. During the the past few
years, transition metal dichalcogenides (TMD) MX2 (with
M = Mo, W and X = S, Se, Te) [3,4] have attracted extensive
attention. For example, monolayer of MoS2 is a direct-gap
semiconductor and regarded as massive Dirac systems in
the honeycomb lattice with interesting valley physics [5].
Besides, 2D topological insulator (TI) [6,7] phase was also
theoretically proposed in MX2 with 1 − T ′ structure [8], and
other interesting layered materials such as stanene [9,10] and
ZrTe5 [11]. Very recently, an isomer structure of MX2 in the
square-octagonal (so) lattice [12] was found to exhibit gapless
band structure with a Dirac cone a the zone center, and lattice
distortion [13] was claimed to remove above Dirac cone and
induce additional band crossing at the Fermi energy. However,
the topological feature in the band structure was neglected due
to the missing of spin-orbital coupling (SOC) in calculations.
In this work, we revisited the square-octahedral lattices of
MX2 isomers and discovered their graphene-like Dirac band
structures (see Fig. 1) and the 2D TI phase. Inspired by the
atomic structures of grain boundaries in normal hexagonal
MoS2 [14–16], a square-octagon (so) lattice for MoS2 [12]
was investigated in theory. There are four Mo atoms and eight
S atoms in each primitive cell, as shown in Fig. 1. And this
lattice can be viewed as repeated square-octagon pairs in both
x and y directions. Here, the trigonal prismatic structure of
MoS6 is slightly distorted compared to the hexagonal phase.
Furthermore, distortions from the square lattice to a rectangle
lattice (distorted-so lattice) were found to optimize the strain in
the 2D structure and realize more stable structures [13]. In this
work, we adopted the similar lattice structures to TMD MX2

(with M = Mo and W; X = S, Se, and Te) monolayers and
found that the distorted-so lattice is indeed the energetically
favored structure for all compounds. The lattice distortion and
total energy differences are summarized in Table I. We can see
that for lattice distortion, characterized by the ratio of in-plane
lattice parameters b/a, becomes stronger as the increasing of
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atomic radius of atom X for fixed metal atom M , due to the
elongated M-X bond.

We mainly focus on their topological electronic properties,
after clarifying the lattice structures of MX2. Our calculations
have been performed by using density functional theory
(DFT) with projected augmented wave (PAW) method as
implemented in the code of Vienna ab initio simulation
package (VASP) [17,18]. The exchange-correlation energy are
considered in the generalized gradient approximation (GGA)
level with Perdew-Burke-Ernzerhof (PBE) based density func-
tional [19]. The energy cutoff was set to be 350 eV. The tight
binding matrix elements were calculated by projection Bloch
states onto maximally localized Wannier functions (MLWFs)
[20–22], using the VASP2WANNIER90 interface [23].

Because all the compounds of MX2 share similar electronic
properties, in the following part we will take MoS2 and WS2 as
the examples for detailed analysis of their electronic structures.
Band structures for two types of lattices are compared in Fig. 2.
Without the inclusion of SOC effect, band structure in the
so lattice presents doubly degenerated dz2 states at � point
around the Fermi energy for both MoS2 and WS2, exhibiting
as a semimetallic state. As long as the SOC is taken into
consideration, the degenerated dz2 bands split into two single
states, with one locating at the top of valence band and the other
up shifting to the second conduction band. Beside that, band
anticrossing between conduction and valence bands appears
around � point, which implies the existence of band inversion.

In order to make clear the topological electronic properties,
we analyzed the wave functions around the Fermi energy. As
presented in Figs. 2(a) and 2(d), the top valence band and
bottom conduction bands at � point are mainly dominated by
M − dz2 and M − dx2−y2 orbitals, respectively, and these two
states have opposite parities. Since two M − dz2 split states are
both “−” in parity, the effect of SOC here is just opening the
band gap but not changing topological band order. Because of
the inversion symmetry in the so lattice, we can directly achieve
the topological number of Z2 invariant by the products of
parities at time-reversal invariant momenta (TRIM) [24]. The
parity products for occupied states at the three independent
TRIMs of �(0,0), X((0.5,0),(0,0.5)) and S(0.5,0.5) are “−”,
“+” and “+”, respectively, which gives the Z2 invariant
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FIG. 1. (Color online) Crystal lattice structure for MX2

(M = Mo, W; X = S, Se, Te) in the (a) normal hexagonal lattice,
(b) square-octagonal (so) lattice, and (c) distorted-so lattice. The
primitive unit cell is denoted by dashed lines. The band structures
near the Fermi energy are illustrated in the 2D Brillouin zone for
(d) so lattice, (e) distorted-so lattice. The 3D plot of the distorted-so
lattice is shown in (f), where two Dirac cones forms in the �-X
line. The Dirac point and the van Hove singularity (VHS) point are
indicated by empty and filled circles in (e), respectively.

ν0 = 1. Therefore, it directly conforms the existence of
quantum spin Hall (QSH) insulator state in the so MX2.

After the lattice distortion, the symmetry decreased from
D2h to C2h, and one can expect a dramatically change of
the electronic properties. As shown in Figs. 2(b) and 2(e),
doubly degenerated M-dz2 states at � point split for both MoS2

and WS2, even without the inclusion of SOC. Meanwhile,
a linear band crossing forms a massless Dirac cone at the
Fermi level near � point on the line of �-X. The crossed two
bands are mainly dominated by M-dz2 and M-dx2−y2 orbitals,
respectively. Besides, it is found that the location of the 2D
Dirac cone kD is strongly related to the distortion strength. As
given in Table I, the Dirac cone shifts far away from � point as
the increasing of lattice distortion. With the inclusion of SOC,
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FIG. 2. (Color online) Electronic band structures and density of
states (DOS) for MoS2 and WS2. Energy dispersion along high
symmetry lines in 2D BZ for (a) and (b) MoS2 with so and distorted-so
lattices, and (d) and (e) WS2 with so and distorted-so lattices. Energy
bands with (black solid lines) and without (red dot lines) SOC effect
are both included. (c) and (f) are total DOS for distorted-so MoS2 and
WS2, respectively. DOS are calculated with the inclusion of SOC.
Local band structures around Fermi energy are also given in the
inserted figures. VHS points in the DOS are remarked with red and
blue dots in (c) and (f). (g–j) Evolution of WS2 bulk band structures as
decreasing the lattice constant and inclusion of SOC. The green arrow
between (g) and (h) represents that the band inversion occurs between
dz2 bonding and antibonding states. Band structures are calculated
from ab initio method, and DOS are calculated from MLWFs. Plus
and minus signs are the parity eigenvalues. Fermi energy is set to
zero.

TABLE I. The lattice constants and electronic properties of MX2 (with M = Mo, W; X = S, Se, and Te). Total energy differences between
two types of lattices is defined as �E = Eso lattice − Edistorted-so lattice in one primitive cell. In the distorted-so lattice, the linear band crossing at
Fermi energy induces a Dirac cone, which locates on the line of �−X in the lattice momentum space. Its detailed location (kD) is defined as the
the relative distance away from � point, as the schematic diagram given in Fig. 1(b). The ab initio calculations for lattice structure optimization,
total energy differences �E, and location of Dirac cone are preformed without the inclusion of SOC, while for band gap Eg and Z2 invariants
the SOC was included.

Lattice constant (Å) Eg (meV) Z2 invariant

so lattice Distorted-so lattice �E (meV) so lattice distorted-so lattice so lattice distorted-so lattice kD ( 2π

a
)

MoS2 a = 6.34 a = 6.30, b = 6.37 0.68 25 12 1 1 0.025
MoSe2 a = 6.62 a = 6.56, b = 6.67 1.11 38 23 1 1 0.073
MoTe2 a = 7.06 a = 6.72, b = 7.32 17.87 49 19 1 1 0.201
WS2 a = 6.36 a = 6.32, b = 6.42 1.26 111 64 1 1 0.072
WSe2 a = 6.64 a = 6.30, b = 6.88 29.50 152 20 1 1 0.225
WTe2 a = 7.11 a = 6.66, b = 7.37 87.20 213 19 1 1 0.245
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as presented by the local band structures in Figs. 2(b) and 2(e),
a general gap is opened with the breaking of the band crossing,
which is just a typical image for TIs. Since the distortion
does not change the bulk band order, electronic structures are
topological equivalent in so lattice and distorted-so lattice.
For further confirmation, we also calculated the Z2 invariant.
Though the distortion changes the lattice structure and atomic
positions, inversion symmetry is preserved. So parity product
at TRIMs is still effective for identifying the topological order
[24]. Our calculations found that the Z2 invariant is 1 for
any compound of MX2, as shown in Table I. Therefore,
distorted-so MX2 is still locating at topological nontrivial
state.

The SOC effect becoming stronger along with the increas-
ing of atomic weight, and correspondingly, the SOC opened
band gap should be also increased. As given in Table I, it
is really the case in so lattice. However, for the distorted-so
lattice, the lattice distortion is also becoming stronger as the
increasing of atomic radius. Meanwhile, the band crossing
point kD shifts far away from � point, as shown in Table I.
Hence, the bulk band gap in the situation with distorted-so
lattice is decided by a competition between the strengths
of SOC and lattice distortion. As presented in Table I, the
competed result in this series of compounds gives the largest
band gap of about 64 meV, appearance in WS2.

As we have discussed above, the so lattice and disordered-so
lattice have the same band order, and the effect of SOC is just
opening the band gap but not inducing band inversion. There-
fore, the physics of band inversion can be understood in the so
lattice without SOC. We have calculated the band structures
with smoothly increasing the lattice constants and found that
the band inversion happens between bonding and antibonding
dz2 states. Taking WS2 as the example, the evolution of band
inversion is given in Figs. 2(g)–2(j), which is similar to the
phase transition from CdTe to HgTe [25]. Before the band
inversion, the band structure presents as an ordinary band
insulator. The top of valence bands are double degenerated
W-dz2 antibonding state with odd parity, and the bottom of
conduction bands is W-dz2-dominated bonding states with
even parity. Shrinking the lattice constants, the W-dz2 bonding
state shifts down to valence bands, as the arrow pointed
between Figs. 2(g) and 2(h). And because of the double
degeneracy of W-dz2 antibonding states at � points, the W-2

transforms to semimetallic state along with the band inversion.
Going on decreasing the lattice constants, the W-dz2 bonding
state further shifts down in the energy space, but band order
does not change any more. Besides, the W-dx2−y2 orbital is
closer to the Fermi level and hybridization with W-dz2 orbital
becomes stronger, as the comparison between Figs. 2(h) and
2(i). However, different from HgTe, the degeneration can be
opened by the SOC effect and strain is not necessary here, as
presented in Fig. 2(j).

Because of the nontrivial 2D bulk band order in MX2, topo-
logical protected metallic edge state happens. For calculation
of the edge state, we have constructed the slab model through
MLWFs based tight binding method [20–22]. In so lattice,
since the bands around Fermi level are mainly consisted by the
hybridized M-dz2 and M-dx2−y2 orbitals for all the compounds
of MX2, MLWFs are derived from atomic dz2 and dx2−y2 -like
orbitals. While for distorted-so lattice, due to the difference
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FIG. 3. (Color online) Tight binding edge band structures for (a)
so MoS2, (b) and (c) distorted-so MoS2 on (0 1) and (1 0) edges, (d)
so WS2, (e) and (f) distorted-so WS2 on (0 1) and (1 0) edges. Local
band structures for MoS2 around Fermi energy are showing inset.
Red curves correspond to edge states. Fermi energy is set to zero.

between lattice constants of a and b, it is not accurate enough
to describe the tight-binding model by only including dz2 and
dx2−y2 -like orbitals, in which dxy-like oribtal is also necessary.
The tight-binding parameters are determined from the MLWFs
overlap matrix. The slab model was constructed in x direction
for so lattice due to the cubic symmetry, and both of x and
y directions were choose for distorted-so lattice. In order to
eliminate the coupling between two edges, the widenesses of
the slabs were up to 200 and 100 unit cells for MoS2 and WS2,
respectively.

From Fig. 3 we can see that edge states exist for both so
lattice and distorted-so lattice. While the details are depending
on different compounds and edge terminations. For example,
edge bands cut Fermi level three times for so WS2, whereas
other cases just cut Fermi level once. As the differences of
chemical potentials, some cases do not show Dirac pointlike
edge states, but the nontrivial Z2 invariant guarantees the edge
bands always cutting Fermi level odd times.

From the DFT band structures we have known that, without
inclusion of SOC the so-lattice MX2 presents as semimetallic
state with degenerated M-dz2 locating at � point. This
degeneration can be regarded as an overlap of two saddle points
belonging to the two bands with Van Hove singularity (VHS),
as the schematic shows in Fig. 1(d). After lattice distortion, the
character of VHS becomes more obvious due to the symmetry
breaking. As presented in Fig. 1(e), the two neighboring bands
shift upwardly and downwardly, respectively, and the two
overlapped saddle points are separated by a band gap around
� point. The features of VHS are clear in the DFT band
structures in Figs. 2(a), 2(b) and 2(d), 2(e), which are further
confirmed by the divergence of the density of states (DOS), as
presented in Figs. 2(c) and 2(f). Furthermore, as we have seen
in the DFT band structures, the lattice distortion also shifts
the degenerated point away from � point. Similar to graphene,

165421-3



YAN SUN, CLAUDIA FELSER, AND BINGHAI YAN PHYSICAL REVIEW B 92, 165421 (2015)

)b()a(

(c) =1.1; =0.1

-10

-5

0

5

)u.a(
ygrenE

X Y

X Y DOS (a.u)

)u.a(
ygrenE

-10

-5

0

5
(d)

t =-1; t =4; t =311 22 12

t -t

-t t

FIG. 4. (Color online) (a) Schematics of the tight-binding model.
Two orbitals are illustrated as dx2−y2 and dz2 . (b) Band structure from
the tight-binding model with C4 rotation symmetry. (c) After breaking
C4 rotation symmetry, the band crossing shifts from � point to the high
symmetry line between �-X. And the band crossing opens with the
inclusion of SOC effect. Bands with (black solid lines) and without
(red dot lines) SOC effect are both included. (d) Density of states
(DOS) corresponding to (c) with the inclusion of SOC. Two peaks
related to VHS points are highlighted by red and blue dots.

the new degenerated point exhibits as a massless Dirac cone,
and the only difference is the location difference of the Dirac
cone in lattice momentum space. In graphene, the Dirac cones
paired locate at the high symmetry momentas of K and K ′,
which are connected by inversion and time-reversal symmetry.
While in distorted-so MX2, Dirac cones paired locate at kD

on the line of X-�-X, which are also connected by inversion
and time reversal symmetry, as shown in Figs. 1(e) and 1(f).
SOC is strong enough to open a considerable bang gap in
distorted-so MX2, which is much larger than that of graphene
[26]. However, we note that these two VHS bands at the Fermi
energy do not induce the topological nature, since both share
the same parity.

It is very interesting to explore the physical origin of
the Dirac-like states in so MX2. We project the Wannier
Hamiltonian to the wave functions of two VHS bands and
derive an effective tight-binding Hamiltonian in a simple
square lattice. Although this effective model does not depend
on the specific atomic lattice any more, we can still assume
a square lattice with two orbitals at one single site. For the
sake of simplicity, we take orbitals 1, 2 as dx2−y2 and dz2 ,
for example, and the lattice parameter as 1. One can find that
the hopping t12 between neighboring sites exhibits opposite
signs along the x and y directions due to the orbital symmetry,
as illustrated in Fig. 4(a). The opposite sign of hopping is
the direct cause of VHS bands, which is also revealed in the
Wannier Hamiltonian. In the basis of {|1〉,|2〉}, the Hamiltonian

can be constructed in the nearest hopping approximation,

H = (� coskx + cosky − 2)

(
t11

t22

)

+ (� coskx − cosky)

(
t12

t12

)
, (1)

where, ti,j (i,j = 1 and 2) are the hopping parameters between
two nearest orbitals, � = 1 corresponds to the square lattice,
and � > 1 corresponds to a rectangular lattice where the
hopping amplitude along x direction is larger than that along y.
The “−2” in diagonal terms guarantees that two bands crosses
at zero, the Fermi energy, in the square lattice. For the case
of square lattice � = 1, a kp Hamiltonian can be derived near
the � point in the form

H = −1

2

(
k2
x + k2

y

)(t11

t22

)
− 1

2

(
k2
x − k2

y

)( t12

t12

)
,

(2)

where diagonal terms represent two parabolic bands while
off-diagonal terms determine the character of a saddle point.

Though SOC matrix elements between atomic orbital
dx2−y2 and dz2 are zeros, the hybridization with other states dxy

orbital, as we have seen in the DFT calculations, can induce
effective SOC. Therefore, we consider SOC term in a simple
way as

hSOC = iλ

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠, (3)

with the basis of {|1↑〉,|2↑〉,|1↓〉,|2↓〉}, where λ is the SOC
strength. From Fig. 4(c) we can see a band gap opening at
the crossing points with the inclusion of SOC effect. Besides,
the divergent because of the VHS can also be reproduced in
this effective model. As shown in Fig. 4(d), two peaks in the
DOS appears due to the saddle point in corresponding band
structures. The ab initio low-energy bands with VHS and Dirac
cones are well reproduced in current tight-binding model.

In conclusion, we have proposed a series of QSH insulators
in the isomers of monolayer TMD MX2 (with M = Mo, W;
X = S, Se, and Te) by band structure calculations. The ground-
state structures are found to be distorted square-octagonal
lattice. Similar to graphene, two bands with Von Hove
singularity cross each other and give rise two Dirac cone-like
states at the Fermi energy. QSH phases exist when SOC opens
an energy gap at the Dirac point. Owing to strong SOC in
MX2, the inverted band gaps are considerable for experiment
detection. For example, the band gaps are 12 meV in MoS2 and
64 meV in WS2. The QSH phase in MX2 broadens the physical
properties for TMDs, calling for transport and spectroscopy
experiments to verify the topological edge states. In addition,
the quadratic band touching [27] and Von Hove singularity
band with Lifshitz transition in the Fermi surface [28] may
promise more exotic phenomena in current systems.

We are grateful to Z. Wang, C.-X. Liu, H. Su, H. Yao, W.
Fan, Z.-C. Zhong, and S.-C. Wu for fruitful discussion. We
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notice another two works on the similar MoS2 lattice [29,30]
that appeared after our first submission. This work was fi-
nancially supported by the Deutsche Forschungsgemeinschaft

DFG (Project No. EB 518/1-1 of DFG-SPP 1666 “Topological
Insulators,” and SFB 1143) and by the ERC (Advanced Grant
No. 291472 “Idea Heusler”).
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